Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

EM-Based Estimation and Compensation of Phase Noise in Massive-MIMO Uplink Communications release_vndb7jhnsbhizlaw74xpix4yny

by Alberto Tarable, Francisco J. Escribano

Released as a article .

2022  

Abstract

Phase noise (PN) is a major disturbance in MIMO systems, where the contribution of different oscillators at the transmitter and the receiver side may degrade the overall performance and offset the gains offered by MIMO techniques. This is even more crucial in the case of massive MIMO, since the number of PN sources may increase considerably. In this work, we propose an iterative receiver based on the application of the expectation-maximization algorithm. We consider a massive MIMO framework with a general association of oscillators to antennas, and include other channel disturbances like imperfect channel state information and Rician block fading. At each receiver iteration, given the information on the transmitted symbols, steepest descent is used to estimate the PN samples, with an optimized adaptive step size and a threshold-based stopping rule. The results obtained for several test cases show how the bit error rate and mean square error can benefit from the proposed phase-detection algorithm, even to the point of reaching the same performance as in the case where no PN is present. Further analysis of the results allow to draw some useful trade-offs respecting final performance and consumption of resources.
In text/plain format

Archived Files and Locations

application/pdf  584.5 kB
file_fwhofld6cveyvdoltsy52oym4i
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article
Stage   submitted
Date   2022-07-17
Version   v1
Language   en ?
arXiv  2207.08213v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: c28fa3b3-fd4b-482b-9bd3-07b2a6e7d04a
API URL: JSON