Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3149808.3149815acmotherconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article
Open Access

Deep learning for multisensor image resolution enhancement

Published:07 November 2017Publication History

ABSTRACT

We describe a deep learning convolutional neural network (CNN) for enhancing low resolution multispectral satellite imagery without the use of a panchromatic image. For training, low resolution images are used as input and corresponding high resolution images are used as the target output (label). The CNN learns to automatically extract hierarchical features that can be used to enhance low resolution imagery. The trained network can then be effectively used for super-resolution enhancement of low resolution multispectral images where no corresponding high resolution image is available. The CNN enhances all four spectral bands of the low resolution image simultaneously and adjusts pixel values of the low resolution to match the dynamic range of the high resolution image. The CNN yields higher quality images than standard image resampling methods.

References

  1. University of Twenty Faculty of Geo-Information and Earth Observation (ITC) ITC's database of satellites and sensors. 2017.Google ScholarGoogle Scholar
  2. LeCun, Y., Bengio, Y. and Hinton, G. Deep learning. Nature, 521, 7553 (2015), 436--444.Google ScholarGoogle ScholarCross RefCross Ref
  3. Nielsen, M. A. Neural Networks and Deep Learning. Determination Press, 2015.Google ScholarGoogle Scholar
  4. Badrinarayanan, V., Handa, A. and Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293 (2015).Google ScholarGoogle Scholar
  5. Basu, S., Ganguly, S., Mukhopadhyay, S., DiBiano, R., Karki, M. and Nemani, R. Deepsat: a learning framework for satellite imagery. In Proceedings of the Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (Seattle, WA, 2015). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Farabet, C., Couprie, C., Najman, L. and LeCun, Y. Learning hierarchical features for scene labeling. IEEE transactions on pattern analysis and machine intelligence, 35, 8 (2013), 1915--1929. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. Going deeper with convolutions. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Boston, MA, 2015).Google ScholarGoogle ScholarCross RefCross Ref
  8. Tompson, J. J., Jain, A., LeCun, Y. and Bregler, C. Joint training of a convolutional network and a graphical model for human pose estimation. City, 2014.Google ScholarGoogle Scholar
  9. Chen, S., Wang, H., Xu, F. and Jin, Y.-Q. Target Classification Using the Deep Convolutional Networks for SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 54, 8 (2016), 4806--4817.Google ScholarGoogle Scholar
  10. Krizhevsky, A., Sutskever, I. and Hinton, G. E. Imagenet classification with deep convolutional neural networks. NIPS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dong, C., Loy, C. C., He, K. and Tang, X. Learning a deep convolutional network for image super-resolution. Springer, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  12. Zhong, J., Yang, B., Huang, G., Zhong, F. and Chen, Z. Remote sensing image fusion with convolutional neural network. Sensing and Imaging, 17, 1 (2016), 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  13. Radhika, K., Rao, C. and Prasad, V. K. Enhancement of AWiFS Spatial Resolution with SVM Learning. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC) (Bhimavaram, India, (2016). IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  14. Klinkenberg, L. Image Fusion.Google ScholarGoogle Scholar
  15. Saraf, A. IRS-1C-LISS-III and PAN data fusion: an approach to improve remote sensing based mapping techniques. International Journal of Remote Sensing, 20, 10 (1999), 1929--1934.Google ScholarGoogle ScholarCross RefCross Ref
  16. Saroglu, E., Bektas, F., Musaoglu, N. and Goksel, C. Fusion of multisensor remote sensing data: assessing the quality of resulting images. Int. Arch. Photogram. Rem. Sens. Spatial. Inform. Sci, 35 (2004), 575--579.Google ScholarGoogle Scholar
  17. Venkataraman, G., Mahato, B. C., Ravi, S., Rao, Y. and Mathur, P. Fusion of Optical and Microwave Remote Sensing data for Snow Cover Mapping. In Proceedings of the Geoscience and Remote Sensing Symposium, 2004. IGARSS'04. Proceedings. 2004 IEEE International (Anchorage, AK, 2004). IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  18. Pal, S., Majumdar, T. and Bhattacharya, A. K. ERS-2 SAR and IRS-1C LISS III data fusion: A PCA approach to improve remote sensing based geological interpretation. ISPRS journal of photogrammetry and remote sensing, 61, 5 (2007), 281--297.Google ScholarGoogle Scholar
  19. Harris, J. R., Murray, R. and Hirose, T. IHS transform for the integration of radar imagery with other remotely sensed data. Photogrammetric Engineering and Remote Sensing, 56, 12 (1990), 1631--1641.Google ScholarGoogle Scholar
  20. Yonghong, J. Fusion of landsat TM and SAR image based on principal component analysis. Remote Sensing Technology and Application, 13, 1 (1998), 46--49.Google ScholarGoogle Scholar
  21. Zhou, J., Civco, D. and Silander, J. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. International Journal of Remote Sensing, 19, 4 (1998), 743--757.Google ScholarGoogle ScholarCross RefCross Ref
  22. Huang, D. and Yang, M. SAR and Multi-spectral images fusion based on Contourlet and HIS Transform. In Proceedings of the Wireless Communications Networking and Mobile Computing (WiCOM), 2010 6th International Conference on (Chengdu, China, 2010). IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  23. Bannari, A., El-Battay, A., Saquaque, A. and Miri, A. PALSAR-FBS L-HH Mode and Landsat-TM Data Fusion for Geological Mapping. Advances in Remote Sensing, 5, 04 (2016), 246.Google ScholarGoogle Scholar
  24. Rao, C., Malleswara Rao, J., Senthil Kumar, A. and Dadhwal, V. Fast spatiotemporal data fusion: merging LISS III with AWiFS sensor data. International Journal of Remote Sensing, 35, 24 (2014), 8323--8344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Li, S., Yin, H. and Fang, L. Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Transactions on Geoscience and Remote Sensing, 51, 9 (2013), 4779--4789.Google ScholarGoogle ScholarCross RefCross Ref
  26. Rao, C., Malleswara Rao, J., Senthil Kumar, A., Lakshmi, B. and Dadhwal, V. Expansion of LISS III swath using AWiFS wider swath data and contourlet coefficients learning. GIScience & Remote Sensing, 52, 1 (2015), 78--93.Google ScholarGoogle ScholarCross RefCross Ref
  27. Patwary, M. A. A., Champati ray, P. K. and Parvaiz, I. IRS-LISS-III and PAN data analysis for landslide susceptibility mapping using heuristic approach in active tectonic region of Himalaya. Journal of the Indian Society of Remote Sensing, 37, 3 (2009), 493--509.Google ScholarGoogle ScholarCross RefCross Ref
  28. Dong, C., Loy, C. C. and Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European Conference on Computer Vision (Amsterdam, The Netherlands, 2016). Springer.Google ScholarGoogle ScholarCross RefCross Ref
  29. Kim, J., Kwon Lee, J. and Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Seattle, WA, 2016).Google ScholarGoogle Scholar
  30. Wang, L., Lin, Z., Gao, J., Deng, X. and An, W. Fast single image super-resolution based on sigmoid transformation. arXiv preprint arXiv:1708.07029 (2017).Google ScholarGoogle Scholar
  31. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J. and Wang, Z. Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802 (2016).Google ScholarGoogle Scholar
  32. Masi, G., Cozzolino, D., Verdoliva, L. and Scarpa, G. Pansharpening by convolutional neural networks. Remote Sensing, 8, 7 (2016), 594.Google ScholarGoogle ScholarCross RefCross Ref
  33. Palsson, F., Sveinsson, J. R. and Ulfarsson, M. O. Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural Network. IEEE Geoscience and Remote Sensing Letters, 14, 5 (2017), 639--643.Google ScholarGoogle ScholarCross RefCross Ref
  34. Seshadri, K., Rao, M., Jayaraman, V., Thyagarajan, K. and Murthi, K. S. Resourcesat-1: A global multi-observation mission for resources monitoring. Acta Astronautica, 57, 2 (2005), 534--539.Google ScholarGoogle ScholarCross RefCross Ref
  35. Pandya, M., Murali, K. and Kirankumar, A. Quantification and comparison of spectral characteristics of sensors on board Resourcesat-1 and Resourcesat-2 satellites. Remote sensing letters, 4, 3 (2013), 306--314.Google ScholarGoogle Scholar
  36. Clevert, D.-A., Unterthiner, T. and Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015).Google ScholarGoogle Scholar
  37. Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13, 4 (2004), 600--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Huynh-Thu, Q. and Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electronics letters, 44, 13 (2008), 800--801.Google ScholarGoogle Scholar
  39. GDAL Development Team GDAL - Geospatial Data Abstraction Library, Version 1.10. Open Source Geospatial Foundation, 2017.Google ScholarGoogle Scholar
  40. Kingma, D. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar

Index Terms

  1. Deep learning for multisensor image resolution enhancement

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        GeoAI '17: Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery
        November 2017
        57 pages
        ISBN:9781450354981
        DOI:10.1145/3149808

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 November 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate17of25submissions,68%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader