Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/307418.307533acmconferencesArticle/Chapter ViewAbstractPublication PagesdateConference Proceedingsconference-collections
Article
Free Access

An analog performance estimator for improving the effectiveness of CMOS analog systems circuit synthesis

Authors Info & Claims
Published:01 January 1999Publication History
First page image

References

  1. {1} ACACIA. Release 2.0, user guides. ACACIA Group, 1994.Google ScholarGoogle Scholar
  2. {2} B. Antao and A. Brodersen. Techniques for synthesis of analog integrated circuits. IEEE Design & Test of Computers, pages 8-18, March 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. {3} L. R. Carley, G. Gielen, R. A. Rutenbar, and W. Sansen. Synthesis tools for mixed-signal ics: Progress on frontend and backend strategies. DAC Proceedings, pages 298-303, June 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {4} M. Degrauwe, O. Nys, and E. Dijkstra. Idac: an interactive design tool for analog cmos circuits. IEEE Sol. st. Circ., 22:1106-16, December 1987.Google ScholarGoogle Scholar
  5. {5} N. Dhanwada, A. Nunez-Aldana, and R. Vemuri. Hierarchical constraint transformation using directed interval search for analog system synthesis. DATE Proceedings, March 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. {6} A. Doboli and R. Vemuri. A vhdl-ams compiler and architecture generator for behavioral synthesis of analog systems. DATE Proceedings, March 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. {7} G. E. Gielen, H. Walscharts, and W. Sansen. Isaac: A symbolic simulator for analog integrated circuits. IEEE J. Solid-State Circuits, 24(6):1587-1597, December 1989.Google ScholarGoogle ScholarCross RefCross Ref
  8. {8} R. Gregorian and G. C. Temes. Analog MOS Integrated Circuits For Signal processing. Wiley series on Filters, 1986.Google ScholarGoogle Scholar
  9. {9} R. Harjani, R. Rutenbar, and L. Carley. Oasys: a framework for analog circuit synthesis. IEEE Trans CAD, 8(12):1247- 1266, December 1989.Google ScholarGoogle ScholarCross RefCross Ref
  10. {10} J. Harvey, M. Elmasry, and B. Leung. Staic: An interactive framework for synthesizing cmos and bicmos analog circuits. IEEE Trans. CAD, 11(11):1402-1415, Nov. 1992.Google ScholarGoogle ScholarCross RefCross Ref
  11. {11} H. Koh, C. Sequin, and P. Gray. Opasyn: a compiler for cmos operational amplifiers. IEEE Trans. CAD, 9(2):113- 125, Feb. 1990.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {12} W. Kruiskamp and D. Leenaerts. Darwin: Cmos opamp synthesis by means of a genetic algorithm. 32nd Design Automation Conference, pages 433-438, Jun 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {13} W. Nye, D. Riley, A. Sangiovanni-Vicentelli, and A. Tits. Delight. spice: An optimization-based system for the design of integrated circuits. IEEE trans. CAD, 7(4):501-519, Apr. 1988.Google ScholarGoogle Scholar
  14. {14} E. S. Ochotta, R. A. Rutenbar, and L. R. Carley. Synthesis of high-performance analog circuits in astrx/oblx. IEEE Trans. CAD, 15:273-294, Mar. 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {15} L. Pillage and R. Rohrer. Asymptotic waveform evaluation for timing analysis. IEEE Trans. CAD, 9(4):352-366, Apr. 1990.Google ScholarGoogle ScholarCross RefCross Ref
  16. {16} K. Swings and W. Sansen. Donald: a workbench for interactive design space exploration and sizing of analog circuits. proc. EDAC, pages 475-479, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {17} K. Swings and W. Sansen. Ariadne: A constraint-base approach to computer-aided synthesis and modeling of analog integrated circuits. Analog Integrated Circuits and Signal Processing, 3:197-215, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {18} A. Torralba, J. Chavez, and L. Franquelo. Circuit performance modeling by means of fuzzy logic. IEEE Transactions on CAD, 15:1391-8, Nov. 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. {19} A. Torralba, J. Chavez, and L. Franquelo. Fasy: a fuzzy logic based tool for analog synthesis. IEEE Transactions on CAD, 15:705-15, July 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {20} R. Vemuri, N. Dhanwada, A. Nunez-Aldana, and P. Campisi. Vase: Vhdl-ams synthesis enviroment tools for mixed-signal system. Proc. EETimes Conference on analog and mixed-signal applications, pages 1C:77-1C:84, July 1997.Google ScholarGoogle Scholar

Index Terms

  1. An analog performance estimator for improving the effectiveness of CMOS analog systems circuit synthesis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        DATE '99: Proceedings of the conference on Design, automation and test in Europe
        January 1999
        730 pages
        ISBN:1581131216
        DOI:10.1145/307418

        Copyright © 1999 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 January 1999

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate518of1,794submissions,29%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader