Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2808719.2811443acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
poster

A comprehensive analysis of classification algorithms for cancer prediction from gene expression

Published:09 September 2015Publication History

ABSTRACT

With the advent of inexpensive microarray technology, biologists have become increasingly reliant on gene expression analysis for detecting disease states, including diagnosis of cancerous tissue [12]. While random forests and SVMs have proven to be popular methods for expression analysis, little work has been done to compare these methods with AdaBoost, a popular ensemble learning algorithm, across a wide array of cancer prediction tasks. Our work shows AdaBoost outperforms other approaches on binary predictions while random forests and SVMs are the best choice in multi-class predictions.

References

  1. L. Breiman. Random forests. Machine Learning, 45(1):5--32, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Díaz-Uriarte and S. A. De Andres. Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7(1):3, 2006.Google ScholarGoogle Scholar
  3. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. T. S. Furey, N. Cristianini, N. Duffy, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16.10:906--914, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  5. N. Iizuka, M. Oka, H. Yamada-Okabe, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. The Lancet, 361(9361):923--929, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  6. R. Kuner, T. Muley, M. Meister, et al. Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung Cancer, 63(1):32--38, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Naderi, A. Teschendorff, N. Barbosa-Morais, et al. A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene, 26(10):1507--1516, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  8. D. T. Ross, U. Scherf, M. B. Eisen, et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics, 24:227--235, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Sanchez-Palencia, M. Gomez-Morales, J. A. Gomez-Capilla, et al. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. International Journal of Cancer, 129(2):355--364, 2011.Google ScholarGoogle Scholar
  10. A. Statnikov, C. F. Aliferis, I. Tsamardinos, et al. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21(5):631--643, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Statnikov, L. Wang, and C. F. Aliferis. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics, 9(1):319, 2008.Google ScholarGoogle Scholar
  12. A. C. Tan and D. Gilbert. Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics, 2:S75--83, 2003.Google ScholarGoogle Scholar
  13. E. Tian, F. Zhan, R. Walker, et al. The role of the wnt-signaling antagonist dkk1 in the development of osteolytic lesions in multiple myeloma. New England Journal of Medicine, 349(26):2483--2494, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  14. V. N. Vapnik. Statistical Learning Theory, volume 1. Wiley New York, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A comprehensive analysis of classification algorithms for cancer prediction from gene expression

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          BCB '15: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics
          September 2015
          683 pages
          ISBN:9781450338530
          DOI:10.1145/2808719

          Copyright © 2015 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 9 September 2015

          Check for updates

          Qualifiers

          • poster

          Acceptance Rates

          BCB '15 Paper Acceptance Rate48of141submissions,34%Overall Acceptance Rate254of885submissions,29%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader