Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2808719.2808765acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Persistent phylogeny: a galled-tree and integer linear programming approach

Published:09 September 2015Publication History

ABSTRACT

The Persistent-Phylogeny Model is an extension of the widely studied Perfect-Phylogeny Model, encompassing a broader range of evolutionary phenomena. Biological and algorithmic questions concerning persistent phylogeny have been intensely investigated in recent years. In this paper, we explore two alternative approaches to the persistent-phylogeny problem that grow out of our previous work on perfect phylogeny, and on galled trees. We develop an integer programming solution to the Persistent-Phylogeny Problem; empirically explore its efficiency; and empirically explore the utility of using fast algorithms that recognize galled trees, to recognize persistent phylogeny. The empirical results identify parameter ranges where persistent phylogeny are galled trees with high frequency, and show that the integer programming approach can efficiently identify persistent phylogeny of much larger size than has been previously reported.

References

  1. P. Bonizzoni, C. Braghin, R. Dondi, and G. Trucco. The binary perfect phylogeny with persistent characters. Theoretical Computer Science, 454:51--63, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Bonizzoni, A. Carrieri, G. Della Vedova, R. Dondi, and T. Przytycka. When and how the perfect phylogeny model explains evolution. In N. Jonoska and M. Saito, editors, Discrete and Topological Models in Molecular Biology, Natural Computing Series, chapter 4. Springer, 2013.Google ScholarGoogle Scholar
  3. P. Bonizzoni, A. P. Carrieri, G. Della Vedova, and G. Trucco. Algorithms for the constrained perfect phylogeny with consistent characters, 2014. arXiv:1405.7497v1.Google ScholarGoogle Scholar
  4. P. Bonizzoni, A. P. Carrieri, G. Della Vedova, and G. Trucco. Explaining evolution via constrained persistent perfect phylogeny. BMC Genomics, 15(Suppl 6):S10, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  5. International HapMap Consortium. Integrating common and rare genetic variation in diverse human populations. Nature, 467:52--58, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  6. N. C. Crawford and T. C. Glenn et al. More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biology Letters, 8:783 786, 2012.Google ScholarGoogle Scholar
  7. L. Dollo. Le lois de l'évolution. Bulletin de la Societé Belge de Géologie de Paléontologie et d'Hydrologie, 7:164--167, 1893.Google ScholarGoogle Scholar
  8. J. Felsenstein. Inferring Phylogenies. Sinauer, 2004.Google ScholarGoogle Scholar
  9. G. Gundem and S. Bova et al. The evolutionary history of lethal metestatic prostate concer. Nature, 520:353--357, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  10. D. Gusfield. wwwcsif.cs.ucdavis.edu/~gusfield/.Google ScholarGoogle Scholar
  11. D. Gusfield. Efficient algorithms for inferring evolutionary history. Networks, 21:19--28, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997. Google ScholarGoogle ScholarCross RefCross Ref
  13. D. Gusfield. ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. MIT Press, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  14. D. Gusfield, S. Eddhu, and C. Langley. Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. Journal of Bioinformatics and Computational Biology, 2(1):173--213, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. Gusfield, Y. Frid, and D. Brown. Integer programming formulations and computations solving phylogenetic and population genetic problems with missing or genotypic data. In Proceedings of 13th Annual International Conference on Combinatorics and Computing, pages 51--64. LNCS 4598, Springer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Heimberg and R. C. Salari et al. MicroRNAs reveal the interrelationships of hagfish, lampreys and gnathostomes and the nature of the ancestral vertebrate. Proceedings of the National Academy of Sciences (USA), 107:19379--19383, 2010.Google ScholarGoogle Scholar
  17. D. M. Hillis. SINEs of the perfect character. Proceedings of the National Academy of Sciences (USA), 96:9979--9981, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  18. R. Hudson. Generating samples under the Wright-Fisher neutral model of genetic variation. Bioinformatics, 18(2):337--338, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Hudson and N. Kaplan. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics, 111:147--164, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  20. I. Pe'er, T. Pupko, R. Shamir, and R. Sharan. Incomplete directed perfect phylogeny. SIAM J. Comput., 33:590--607, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Przytycka. Stability of characters and construction of phylogenetic trees. Journal of Computational Biology, 14:539--549, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  22. T. Przytycka, G. Davis, N. Song, and D. Durand. Graph theoretical insights into evolution of multidomain proteins. Journal of Computational Biology, 13:351--363, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  23. D. A. Ray, J. Xing, A.-H. Salem, and M. A. Batzer. SINEs of the nearly perfect character. Systematic Biology, 55:928--935, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  24. I. B. Rogozin, Y. I. Wolf, V. N. Babenko, and E. V. Koonin. Dollo parsimony and the reconstruction of genome evolution. In V. A. Albert, editor, Parsimony, Phylogeny, and Genomics. Oxford University Press, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Rokas and P. Holland. Rare genomic changes as a tool for phylogenetics. Trends in Evolution and Ecology, 15:454--459, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. Zheng, I. Rogozin, E. Koonin, and T. Przytycka. Support for the coelomata clade of animals from a rigorous analysis of the pattern of intron conservation. Molecular Biology and Evolution, 24:2583--2592, 2007.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Persistent phylogeny: a galled-tree and integer linear programming approach

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                BCB '15: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics
                September 2015
                683 pages
                ISBN:9781450338530
                DOI:10.1145/2808719

                Copyright © 2015 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 9 September 2015

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

                Acceptance Rates

                BCB '15 Paper Acceptance Rate48of141submissions,34%Overall Acceptance Rate254of885submissions,29%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader