Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2808719.2808754acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

CNVScan: detecting borderline copy number variations in NGS data via scan statistics

Authors Info & Claims
Published:09 September 2015Publication History

ABSTRACT

Background. Next Generation Sequencing (NGS) data has been extensively exploited in the last decade to analyse genome variations and to understand the role of genome variations in complex diseases. Copy number variations (CNVs) are genomic structural variants estimated to account for about 1.2% of the total variation in humans. CNVs in coding or regulatory regions may have an impact on the gene expression, often also at a functional level, and contribute to cause different diseases like cancer, autism and cardiovascular diseases. Computational methods developed for detection of CNVs from NGS data and based on the depth of coverage are limited to the identification of medium/large events and heavily influenced by the level of coverage.

Result. In this paper we propose, CNVScan a CNV detection method based on scan statistics that overcomes limitations of previous read count (RC) based approaches mainly by being a window-less approach. The scans statistics have been used before mainly in epidemiology and ecology studies, but never before was applied to the CNV detection problem to the best of our knowledge. Since we avoid windowing we do not have to choose an optimal window-size which is a key step in many previous approaches. Extensive simulated experiments with single read data in extreme situations (low coverage, short reads, homo/heterozygoticity) show that this approach is very effective for a range of small CNV (200-500 bp) for which previous state-of-the-art methods are not suitable.

Conclusion. The scan statistics technique is applied and adapted in this paper for the first time to the CNV detection problem. Comparison with state-of-the art methods shows the approach is quite effective in discovering short CNV in rather extreme situations in which previous methods fail or have degraded performance. CNVScan thus extends the range of CNV sizes and types that can be detected via read count with single read data.

References

  1. A. Abyzov, A. E. Urban, M. Snyder, and M. Gerstein. Cnvnator: an approach to discover, genotype, and characterize typical and atypical cnvs from family and population genome sequencing. Genome research, 21(6):974--984, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  2. D. Agarwal, A. McGregor, J. M. Phillips, S. Venkatasubramanian, and Z. Zhu. Spatial scan statistics: approximations and performance study. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 24--33. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Agarwal, J. M. Phillips, and S. Venkatasubramanian. The hunting of the bump: on maximizing statistical discrepancy. In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 1137--1146. Society for Industrial and Applied Mathematics, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. Alkan, B. P. Coe, and E. E. Eichler. Genome structural variation discovery and genotyping. Nature Reviews Genetics, 12(5):363--376, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. Alkodsi, R. Louhimo, and S. Hautaniemi. Comparative analysis of methods for identifying somatic copy number alterations from deep sequencing data. Briefings in bioinformatics, page bbu004, 2014.Google ScholarGoogle Scholar
  6. C. Bartenhagen and M. Dugas. Rsvsim: an r/bioconductor package for the simulation of structural variations. Bioinformatics, page btt198, 2013.Google ScholarGoogle Scholar
  7. Y. Benjamini and T. P. Speed. Summarizing and correcting the gc content bias in high-throughput sequencing. Nucleic acids research, page gks001, 2012.Google ScholarGoogle Scholar
  8. P. J. Campbell, P. J. Stephens, E. D. Pleasance, S. O'Meara, H. Li, T. Santarius, L. A. Stebbings, C. Leroy, S. Edkins, C. Hardy, et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nature genetics, 40(6):722--729, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  9. D. F. Conrad, D. Pinto, R. Redon, L. Feuk, O. Gokcumen, Y. Zhang, J. Aerts, T. D. Andrews, C. Barnes, P. Campbell, et al. Origins and functional impact of copy number variation in the human genome. Nature, 464(7289):704--712, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  10. K. Das, J. Schneider, and D. B. Neill. Anomaly pattern detection for biosurveillance. Advances in Disease Surveillance, 5:19, 2008.Google ScholarGoogle Scholar
  11. T. Derrien, J. Estellé, S. M. Sola, D. G. Knowles, E. Raineri, R. Guigó, and P. Ribeca. Fast computation and applications of genome mappability. PloS one, 7(1):e30377, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Duan, J.-G. Zhang, H.-W. Deng, and Y.-P. Wang. Comparative studies of copy number variation detection methods for next-generation sequencing technologies. PloS one, 8(3):e59128, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Glaz, J. I. Naus, S. Wallenstein, S. Wallenstein, and J. I. Naus. Scan statistics. Springer, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Gusnanto, C. C. Taylor, I. Nafisah, H. M. Wood, P. Rabbitts, and S. Berri. Estimating optimal window size for analysis of low-coverage next-generation sequence data. Bioinformatics, 30(13):1823--1829, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  15. W. Huang, L. Li, J. R. Myers, and G. T. Marth. Art: a next-generation sequencing read simulator. Bioinformatics, 28(4):593--594, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Kulldorff. A spatial scan statistic. Communications in Statistics-Theory and Methods, 26(6):1481--1496, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  17. M. Kulldorff. Spatial scan statistics: models, calculations, and applications. In Scan Statistics and Applications, pages 303--322. Birkhauser, Boston, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  18. H. Li and R. Durbin. Fast and accurate short read alignment with burrows--wheeler transform. Bioinformatics, 25(14):1754--1760, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and G. P. D. P. Subgroup. The sequence alignment/map format and samtools. Bioinformatics, 25(16):2078--2079, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Magi, M. Benelli, S. Yoon, F. Roviello, and F. Torricelli. Detecting common copy number variants in high-throughput sequencing data by using JointSLM algorithm. Nucleic acids research, page gkr068, 2011.Google ScholarGoogle Scholar
  21. A. Magi, L. Tattini, T. Pippucci, F. Torricelli, and M. Benelli. Read count approach for dna copy number variants detection. Bioinformatics, 28(4):470--478, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. A. McCarroll, F. G. Kuruvilla, J. M. Korn, S. Cawley, J. Nemesh, A. Wysoker, M. H. Shapero, P. I. de Bakker, J. B. Maller, A. Kirby, et al. Integrated detection and population-genetic analysis of snps and copy number variation. Nature genetics, 40(10):1166--1174, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  23. P. Medvedev, M. Stanciu, and M. Brudno. Computational methods for discovering structural variation with next-generation sequencing. Nature methods, 6:S13--S20, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  24. R. E. Mills, K. Walter, C. Stewart, R. E. Handsaker, K. Chen, C. Alkan, A. Abyzov, S. C. Yoon, K. Ye, R. K. Cheetham, et al. Mapping copy number variation by population-scale genome sequencing. Nature, 470(7332):59--65, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. I. Naus. The distribution of the size of the maximum cluster of points on a line. Journal of the American Statistical Association, 60(310):532--538, 1965.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. I. Naus. Approximations for distributions of scan statistics. Journal of the American Statistical Association, 77(377):177--183, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  27. D. B. Neill and A. W. Moore. Anomalous spatial cluster detection. Proceedings of the KDD 2005 Workshop on Data Mining Methods for Anomaly Detection, 2005.Google ScholarGoogle Scholar
  28. D. B. Neill, A. W. Moore, F. Pereira, and T. M. Mitchell. Detecting significant multidimensional spatial clusters. In Advances in Neural Information Processing Systems, pages 969--976, 2004.Google ScholarGoogle Scholar
  29. S. Pabinger, A. Dander, M. Fischer, R. Snajder, M. Sperk, M. Efremova, B. Krabichler, M. R. Speicher, J. Zschocke, and Z. Trajanoski. A survey of tools for variant analysis of next-generation genome sequencing data. Briefings in bioinformatics, 15(2):256--278, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  30. P. A. Pevzner and S.-H. Sze. Combinatorial approaches to finding subtle signals in DNA sequences. In Proc. 18th Int. Conf. on Intelligent Systems for Mol. Biol., pages 269--278, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. N. Rieber, M. Zapatka, B. Lasitschka, D. Jones, P. Northcott, B. Hutter, N. Jäger, M. Kool, M. Taylor, P. Lichter, et al. Coverage bias and sensitivity of variant calling for four whole-genome sequencing technologies. PLoS One, 8(6):e66621, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  32. S. M. Teo, Y. Pawitan, C. S. Ku, K. S. Chia, and A. Salim. Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics, 28(21):2711--2718, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. T. J. Treangen and S. L. Salzberg. Repetitive dna and next-generation sequencing: computational challenges and solutions. Nature Reviews Genetics, 13(1):36--46, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  34. R. Xi, A. G. Hadjipanayis, L. J. Luquette, T.-M. Kim, E. Lee, J. Zhang, M. D. Johnson, D. M. Muzny, D. A. Wheeler, R. A. Gibbs, et al. Copy number variation detection in whole-genome sequencing data using the bayesian information criterion. Proceedings of the National Academy of Sciences, 108(46):E1128--E1136, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  35. R. Xi, T.-M. Kim, and P. J. Park. Detecting structural variations in the human genome using next generation sequencing. Briefings in functional genomics, page elq025, 2011.Google ScholarGoogle Scholar
  36. C. Xie and M. T. Tammi. Cnv-seq, a new method to detect copy number variation using high-throughput sequencing. BMC bioinformatics, 10(1):80, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  37. S. Yoon, Z. Xuan, V. Makarov, K. Ye, and J. Sebat. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome research, 19(9):1586--1592, 2009.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. CNVScan: detecting borderline copy number variations in NGS data via scan statistics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          BCB '15: Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics
          September 2015
          683 pages
          ISBN:9781450338530
          DOI:10.1145/2808719

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 9 September 2015

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          BCB '15 Paper Acceptance Rate48of141submissions,34%Overall Acceptance Rate254of885submissions,29%
        • Article Metrics

          • Downloads (Last 12 months)2
          • Downloads (Last 6 weeks)0

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader