Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Interaction context (ICON): towards a geometric functionality descriptor

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We introduce a contextual descriptor which aims to provide a geometric description of the functionality of a 3D object in the context of a given scene. Differently from previous works, we do not regard functionality as an abstract label or represent it implicitly through an agent. Our descriptor, called interaction context or ICON for short, explicitly represents the geometry of object-to-object interactions. Our approach to object functionality analysis is based on the key premise that functionality should mainly be derived from interactions between objects and not objects in isolation. Specifically, ICON collects geometric and structural features to encode interactions between a central object in a 3D scene and its surrounding objects. These interactions are then grouped based on feature similarity, leading to a hierarchical structure. By focusing on interactions and their organization, ICON is insensitive to the numbers of objects that appear in a scene, the specific disposition of objects around the central object, or the objects' fine-grained geometry. With a series of experiments, we demonstrate the potential of ICON in functionality-oriented shape processing, including shape retrieval (either directly or by complementing existing shape descriptors), segmentation, and synthesis.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bar-Aviv, E., and Rivlin, E. 2006. Functional 3D object classification using simulation of embodied agent. In British Machine Vision Conference, 32:1--10.Google ScholarGoogle Scholar
  2. Belongie, S., Malik, J., and Puzicha, J. 2002. Shape matching and object recognition using shape context. IEEE Trans. Pat. Ana. & Mach. Int. 24, 4, 509--522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bogoni, L., and Bajcsy, R. 1995. Interactive recognition and representation of functionality. Computer Vision and Image Understanding 62, 2, 194--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE Trans. Pat. Ana. & Mach. Int. 23, 11, 1222--1239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Caine, M. 1994. The design of shape interactions using motion constraints. In IEEE Conference of Robotics and Automation, vol. 1, 366--371.Google ScholarGoogle ScholarCross RefCross Ref
  6. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., and Ouhyoung, M. 2003. On visual similarity based 3D model retrieval. Computer Graphics Forum 22, 3, 223--232.Google ScholarGoogle ScholarCross RefCross Ref
  7. Duygulu, P., Barnard, K., de Freitas, N., and Forsyth, D. 2002. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In Proc. Euro. Conf. on Comp. Vis., 97--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural relationships in scenes using graph kernels. ACM Trans. on Graph (SIGGRAPH) 30, 4, 34:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Grabner, H., Gall, J., and Van Gool, L. 2011. What makes a chair a chair? In Proc. IEEE Conf. on Comp. Vis. and Pat. Rec., 1529--1536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gupta, A., Kembhavi, A., and Davis, L. S. 2009. Observing human-object interactions: Using spatial and functional compatibility for recognition. IEEE Trans. Pat. Ana. & Mach. Int. 31, 10, 1775--1789. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. ACM Trans. on Graph (SIGGRAPH Asia) 30, 6, 125:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Johnson, A., and Hebert, M. 1999. Using spin-images for efficient multiple model recognition in cluttered 3D scenes. IEEE Trans. Pat. Ana. & Mach. Int. 29, 5, 433--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kim, V. G., Chaudhuri, S., Guibas, L., and Funkhouser, T. 2014. Shape2Pose: Human-centric shape analysis. ACM Trans. on Graph (SIGGRAPH) 33, 4, 120:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Laga, H., Mortara, M., and Spagnuolo, M. 2013. Geometry and context for semantic correspondence and functionality recognition in manmade 3D shapes. ACM Trans. on Graph 32, 5, 150:1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Liu, Z., Xie, C., Bu, S., Wang, X., Han, J., Lin, H., and Zhang, H. 2014. Indirect shape analysis for 3D shape retrieval. Computer & Graphics 46, 110--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mitra, N. J., Guibas, L., and Pauly, M. 2006. Partial and approximate symmetry detection for 3D geometry. ACM Trans. on Graph (SIGGRAPH) 25, 3, 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mitra, N., Wand, M., Zhang, H. R., Cohen-Or, D., Kim, V., and Huang, Q.-X. 2013. Structure-aware shape processing. In SIGGRAPH Asia 2013 Courses, 1:1--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pechuk, M., Soldea, O., and Rivlin, E. 2008. Learning function-based object classification from 3D imagery. Comput. Vis. Image Underst. 110, 2, 173--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Rivlin, E., Dickinson, S. J., and Rosenfeld, A. 1995. Recognition by functional parts. Comput. Vis. Image Underst. 62, 2, 164--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Savva, M., Chang, A. X., Hanrahan, P., Fisher, M., and Niessner, M. 2014. SceneGrok: Inferring action maps in 3D environments. ACM Trans. on Graph (SIGGRAPH Asia) 33, 6, 212:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. on Graph (SIGGRAPH Asia) 30, 6, 126:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Song, H. O., Fritz, M., Gu, C., and Darrell, T. 2011. Visual grasp affordances from appearance-based cues. In ICCV Workshops, 998--1005.Google ScholarGoogle Scholar
  23. Stark, L., and Bowyer, K. 1996. Generic Object Recognition Using Form and Function. World Scientific. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sutton, M., Stark, L., and Bowyer, K. 1994. GRUFF-3: generalizing the domain of a function-based recognition system. Pattern Recognition 27, 12, 1743--1766.Google ScholarGoogle ScholarCross RefCross Ref
  25. Tevs, A., Huang, Q., Wand, M., Seidel, H.-P., and Guibas, L. 2014. Relating shapes via geometric symmetries and regularities. ACM Trans. on Graph (SIGGRAPH) 33, 4, 119:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Torsello, A., Hidovic-Rowe, D., and Pelillo, M. 2005. Polynomial-time metrics for attributed trees. IEEE Trans. Pat. Ana. & Mach. Int. 27, 7, 1087--1099. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. van Kaick, O., Xu, K., Zhang, H., Wang, Y., Sun, S., Shamir, A., and Cohen-Or, D. 2013. Co-hierarchical analysis of shape structures. ACM Trans. on Graph (SIGGRAPH) 32, 4, 69:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., and Xiong, Y. 2011. Symmetry hierarchy of man-made objects. Computer Graphics Forum (Eurographics) 30, 2, 287--296.Google ScholarGoogle ScholarCross RefCross Ref
  29. Xu, K., Ma, R., Zhang, H., Zhu, C., Shamir, A., Cohen-Or, D., and Huang, H. 2014. Organizing heterogeneous scene collection through contextual focal points. ACM Trans. on Graph (SIGGRAPH) 33, 4, 35:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Zelnik-Manor, L., and Perona, P. 2004. Self-tuning spectral clustering. In NIPS, vol. 17, 1601--1608.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zhao, X., Wang, H., and Komura, T. 2014. Indexing 3D scenes using the interaction bisector surface. ACM Trans. on Graph 33, 3, 22:1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zheng, Y., Cohen-Or, D., and Mitra, N. J. 2013. Smart variations: Functional substructures for part compatibility. Computer Graphics Forum (Eurographics) 32, 2pt2, 195--204.Google ScholarGoogle Scholar
  33. Zhu, Y., Fathi, A., and Fei-Fei, L. 2014. Reasoning about object affordances in a knowledge base representation. Lecture Notes in Computer Science (Proc. ECCV) 8690, 408--424.Google ScholarGoogle Scholar

Index Terms

  1. Interaction context (ICON): towards a geometric functionality descriptor

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader