Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2750858.2804287acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

Experiences with eNav: a low-power vehicular navigation system

Published:07 September 2015Publication History

ABSTRACT

This paper presents experiences with eNav, a smartphone-based vehicular GPS navigation system that has an energy-saving location sensing mode capable of drastically reducing navigation energy needs. Traditional navigation systems sample the phone's GPS at a fixed rate (usually around 1Hz), regardless of factors such as current vehicle speed and distance from the next navigation waypoint. This practice results in a large energy consumption and unnecessarily reduces the attainable length of a navigation session, if the phone is left unplugged. The paper investigates two questions. First, would drivers be willing to sacrifice some of the affordances of modern navigation systems in order to prolong battery life? Second, how much energy could be saved using straightforward alternative localization mechanisms, applied to complement GPS for vehicular navigation? According to a survey we conducted of 500 drivers, as much as 91% of drivers said they would like to have a vehicular navigation application with an energy saving mode. To meet this need, eNav exploits on-board accelerometers for approximate location sensing when the vehicle is sufficiently far from the next navigation waypoint (or is stopped). A user test-study of eNav shows that it results in roughly the same user experience as standard GPS navigation systems, while reducing navigation energy consumption by almost 80%. We conclude that drivers find an energy-saving mode on phone-based vehicular navigation applications desirable, even at the expense of some loss of functionality, and that significant savings can be achieved using straightforward location sensing mechanisms that avoid frequent GPS sampling.

References

  1. G. Chandrasekaran, T. Vu, A. Varshavsky, M. Gruteser, R. P. Martin, J. Yang, and Y. Chen. Tracking vehicular speed variations by warping mobile phone signal strengths. In PerCom, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D.-K. Cho, M. Mun, U. Lee, W. J. Kaiser, and M. Gerla. Autogait: A mobile platform that accurately estimates the distance walked. In PerCom, 2010.Google ScholarGoogle Scholar
  3. Y. Chon, E. Talipov, H. Shin, and H. Cha. Mobility prediction-based smartphone energy optimization for everyday location monitoring. In SenSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. I. Constandache, R. R. Choudhury, and I. Rhee. Towards mobile phone localization without war-driving. In INFOCOM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Electronista. Garmin profits drop as hardware sales continue decline http://goo.gl/8YVH8p, 2013.Google ScholarGoogle Scholar
  6. R. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. Abdelzaher. Greengps: A participatory sensing fuel-efficient maps application. In Mobisys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Y. Gao, J. Niu, R. Zhou, and G. Xing. Zifind: Exploiting cross-technology interference signatures for energy-efficient indoor localization. In INFOCOM, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. S. Grewal, L. R. Weill, and A. P. Andrews. Global positioning systems, inertial navigation, and integration. Wiley-Interscience, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Guha, K. Plarre, D. Lissner, S. Mitra, B. Krishna, P. Dutta, and S. Kumar. Autowitness: Locating and tracking stolen property while tolerating gps and radio outages. In SenSys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. Han, J. Yu, H. Zhu, Y. Chen, J. Yang, Y. Zhu, G. Xue, and M. Li. Senspeed: Sensing driving conditions to estimate vehicle speed in urban environments. In INFOCOM, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  11. S. Hu, H. Liu, L. Su, H. Wang, T. F. Abdelzaher, P. Hui, W. Zheng, Z. Xie, and J. Stankovic. Towards automatic phone-to-phone communication for vehicular networking applications. In INFOCOM, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher. Smartroad: Smartphone-based crowd sensing for traffic regulator detection and identification. ACM Transactions on Sensor Networks (TOSN), 11(4): 55:1--55:27, July 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. I. Jolliffe. Principal component analysis. Wiley Online Library, 2005.Google ScholarGoogle Scholar
  14. A. J. Khan, V. Ranjan, T.-T. Luong, R. Balan, and A. Misra. Experiences with performance tradeoffs in practical, continuous indoor localization. In WoWMoM, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava. Sensloc: sensing everyday places and paths using less energy. In SenSys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. B. Kjærgaard, J. Langdal, T. Godsk, and T. Toftkjær. Entracked: energy-efficient robust position tracking for mobile devices. In Mobisys, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Koukoumidis, L.-S. Peh, and M. R. Martonosi. Signalguru: leveraging mobile phones for collaborative traffic signal schedule advisory. In Mobisys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy aware localization for mobile devices. In MobiSys, 2010.Google ScholarGoogle Scholar
  19. J. Lindqvist and J. Hong. Undistracted driving: A mobile phone that doesn't distract. In HotMobile, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Liu, B. Priyantha, T. Hart, H. S. Ramos, A. A. Loureiro, and Q. Wang. Energy efficient gps sensing with cloud offloading. In SenSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Lu, J. Yang, Z. Liu, N. Lane, T. Choudhury, and A. Campbell. The jigsaw continuous sensing engine for mobile phone applications. In SenSys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. Milette and A. Stroud. Professional Android Sensor Programming. Wrox, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman, X. Zheng, and A. T. Campbell. Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In SenSys, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. P. Misra, W. Hu, Y. Jin, J. Liu, A. S. de Paula, N. Wirström, and T. Voigt. Energy efficient gps acquisition with sparse-gps. 2014.Google ScholarGoogle ScholarCross RefCross Ref
  25. P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In SenSys, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard, R. West, and P. Boda. Peir, the personal environmental impact report, as a platform for participatory sensing systems research. In Mobisys, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Nath. Ace: exploiting correlation for energy-efficient and continuous context sensing. In Mobisys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. OpenStreetMap. http://www.openstreetmap.org/, 2015.Google ScholarGoogle Scholar
  29. J. Paek, J. Kim, and R. Govindan. Energy-efficient rate-adaptive gps-based positioning for smartphones. In Mobisys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Paek, K.-H. Kim, J. P. Singh, and R. Govindan. Energy-efficient positioning for smartphones using cell-id sequence matching. In MobiSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. R. Quinlan. Induction of decision trees. Machine learning, 1(1): 81--106, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. F. Saremi, O. Fatemieh, H. Ahmadi, H. Wang, T. Abdelzaher, R. Ganti, H. Liu, S. Hu, S. Li, and L. Su. Experiences with greengps --- fuel-efficient navigation using participatory sensing. IEEE Transactions on Mobile Computing (TMC), PP(99): 1--1, 2015.Google ScholarGoogle Scholar
  33. S. Sen, J. Lee, K.-H. Kim, and P. Congdon. Avoiding multipath to revive inbuilding wifi localization. In MobiSys, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. I. Skog. A low-cost gps aided inertial navigation system for vehicular applications. KTH Signals Sensors and Systems, page 49, 2005.Google ScholarGoogle Scholar
  35. M. L. G. Thoone and H. P. M. Krukkert. Adaptive inertial vehicle navigation system, Mar. 7 1990. EP Patent 0,181,012.Google ScholarGoogle Scholar
  36. H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury. No need to war-drive: Unsupervised indoor localization. In MobiSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, and R. P. Martin. Sensing vehicle dynamics for determining driver phone use. In MobiSys, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wikispeedia. http://www.wikispeedia.org/, 2015.Google ScholarGoogle Scholar
  39. C.-L. Wu, Y.-T. Huang, C.-L. Wu, H.-h. Chu, P. Huang, and L.-J. Chen. An adaptive duty-cycle scheme for gps scheduling in mobile location sensing applications. PhoneSense, 2011.Google ScholarGoogle Scholar
  40. J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu, H. Liu, N. Cecan, Y. Chen, M. Gruteser, and R. P. Martin. Detecting driver phone use leveraging car speakers. In MobiCom, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Experiences with eNav: a low-power vehicular navigation system

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UbiComp '15: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing
      September 2015
      1302 pages
      ISBN:9781450335744
      DOI:10.1145/2750858

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 September 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UbiComp '15 Paper Acceptance Rate101of394submissions,26%Overall Acceptance Rate764of2,912submissions,26%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader