Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2491288.2491299acmconferencesArticle/Chapter ViewAbstractPublication PagesmobihocConference Proceedingsconference-collections
research-article

Informative counting: fine-grained batch authentication for large-scale RFID systems

Published:29 July 2013Publication History

ABSTRACT

Many algorithms have been introduced to deterministically authenticate Radio Frequency Identification (RFID) tags, while little work has been done to address the scalability issue in batch authentications. Deterministic approaches verify them one by one, and the communication overhead and time cost grow linearly with increasing size of tags. We design a fine-grained batch authentication scheme, INformative Counting (INC), which achieves sublinear authentication time and communication cost in batch verifications. INC also provides authentication results with accurate estimates of the number of counterfeiting tags and genuine tags, while previous batch authentication methods merely provide 0/1 results indicating the existence of counterfeits. We conduct detailed theoretical analysis and extensive experiments to examine this design and the results show that INC significantly outperforms previous work in terms of effectiveness and efficiency.

References

  1. Thorsten Staake, Frédéric Thiesse, and Elgar Fleisch. Business strategies in the counterfeit market. Journal of Business Research, 65(5):658 -- 665, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  2. ICC Counterfeiting Intelligence Bureau. Countering counterfeiting: A guide to protecting and enforcing intellectual property rights. 1997.Google ScholarGoogle Scholar
  3. The spread of counterfeiting: Knock-offs catch on. The Economist, 2010.Google ScholarGoogle Scholar
  4. S. Weis, S. Sarma, R. Rivest, and D. Engels. Security and privacy aspects of low-cost radio frequency identification systems. Security in pervasive computing, pages 50--59, 2004.Google ScholarGoogle Scholar
  5. L. Lu, J. Han, L. Hu, Y. Liu, and L.M. Ni. Dynamic key-updating: Privacy-preserving authentication for rfid systems. In Proc. of IEEE PERCOM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. L. Lu, J. Han, R. Xiao, and Y. Liu. Action: breaking the privacy barrier for rfid systems. In Proc. of IEEE INFOCOM, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  7. L. Yang, J. Han, Y. Qi, and Y. Liu. Identification-free batch authentication for rfid tags. In Proc. of IEEE ICNP, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. Bolotnyy and G. Robins. Physically unclonable function-based security and privacy in rfid systems. In Proc. of IEEE PERCOM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Y.K. Lee, L. Batina, and I. Verbauwhede. Ec-rac (ecdlp based randomized access control): Provably secure rfid authentication protocol. In Proc. of IEEE RFID, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  10. Y.K. Lee, L. Batina, and I. Verbauwhede. Untraceable rfid authentication protocols: Revision of ec-rac. In Proc. of IEEE RFID, 2009.Google ScholarGoogle Scholar
  11. L.G. Roberts. Aloha packet system with and without slots and capture. ACM SIGCOMM Computer Communication Review, 5(2):28--42, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. B. Sheng, Q. Li, and W. Mao. Efficient continuous scanning in rfid systems. In Proc. of IEEE INFOCOM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Benedetti, G. Maselli, and C. Petrioli. Fast identification of mobile rfid tags. In Proc. of IEEE MASS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T.F. La Porta, G. Maselli, and C. Petrioli. Anticollision protocols for single-reader rfid systems: Temporal analysis and optimization. IEEE Transactions on Mobile Computing, 10(2):267 --279, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. Kumar, T.F. La Porta, G. Maselli, and C. Petrioli. Interference cancellation-based rfid tags identification. In Proc. of ACM MSWiM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Capetanakis. Tree algorithms for packet broadcast channels. IEEE Transactions on Information Theory, 25(5):505--515, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Myung and W. Lee. Adaptive splitting protocols for rfid tag collision arbitration. In Proc. of ACM MobiHoc, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Epcglobal radio-frequency identity protocols class-1 generation-2 uhf rfid protocol for communications at 860 mhz-960mhz, 2008.Google ScholarGoogle Scholar
  19. Information technology radio frequency identification for item management part 6: Parameters for air interface communications at 860 mhz to 960 mhz, 2010.Google ScholarGoogle Scholar
  20. T. Dimitriou. A secure and efficient rfid protocol that could make big brother (partially) obsolete. In Proc. of IEEE PERCOM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Li Lu, Yunhao Liu, and Xiang-Yang Li. Refresh: Weak privacy model for rfid systems. In Proc. of IEEE INFOCOM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Kodialam and T. Nandagopal. Fast and reliable estimation schemes in rfid systems. In Proc. of ACM MobiCom, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Qian, H. Ngan, Y. Liu, and L.M. Ni. Cardinality estimation for large-scale rfid systems. IEEE Transactions on Parallel and Distributed Systems, 22(9):1441--1454, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Y. Zheng and M Li. Pet: Probabilistic estimating tree for large-scale rfid estimation. IEEE Transactions on Mobile Computing, 11(11):1763--1774, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Shahzad and A. Liu. Every bit counts - fast and scalable rfid estimation. In Proc. of ACM MobiCom, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. T. Li, S. S. Wu, S. Chen, and M. C. K. Yang. Generalized energy-efficient algorithms for the rfid estimation problem. IEEE/ACM Transactions on Networking, 20(6):1978 --1990, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Y. Zheng and M. Li. Zoe: Fast cardinality estimation for large-scale rfid systems. In Proc. of IEEE INFOCOM, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  28. P.H. Cole and D.C. Ranasinghe. Networked rfid systems. Networked RFID Systems and Lightweight Cryptography, pages 45--58, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal. Design and implementation of puf-based unclonable rfid ics for anti-counterfeiting and security applications. In Proc. of IEEE RFID, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  30. R. Zhang, Y. Liu, Y. Zhang, and J. Sun. Fast identification of the missing tags in a large rfid system. In Proc. of IEEE SECON, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  31. P. Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. Journal of computer and system sciences, 31(2):182--209, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. R. Motwani and P. Raghavan. Randomized algorithms. Chapman & Hall/CRC, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P.S. Bullen. Handbook of Means and their Inequalities. Springer, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  34. Open rfid lab, http://pdcc.ntu.edu.sg/wands/orl.Google ScholarGoogle Scholar

Index Terms

  1. Informative counting: fine-grained batch authentication for large-scale RFID systems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MobiHoc '13: Proceedings of the fourteenth ACM international symposium on Mobile ad hoc networking and computing
      July 2013
      322 pages
      ISBN:9781450321938
      DOI:10.1145/2491288

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 July 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      MobiHoc '13 Paper Acceptance Rate42of234submissions,18%Overall Acceptance Rate296of1,843submissions,16%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader