Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2424321.2424381acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Fusing oblique imagery with augmented aerial LiDAR

Authors Info & Claims
Published:06 November 2012Publication History

ABSTRACT

We present a scalable out-of-core technique for mapping colors from aerial oblique imagery to large scale aerial LiDAR (Light Detection and Ranging) point cloud. Our method does not require meshing or intensive processing of points, only fast and effective augmentation is applied to fill occluded points on building walls and under tree canopies. The presented system applies a modified visibility pass of GPU splatting to map colors, where occluded points are filtered out by projecting all points as oriented surface splats into images. A weighting scheme is utilized to accumulate colors from all contributing images while leveraging image resolution and surface orientation. The effectiveness of color mapping is demonstrated through visualizations of colored points by a GPU splatting algorithm.

References

  1. M. Dellepiane, M. Callieri, M. Corsini, P. Cignoni, and R. Scopigno. Improved color acquisition and mapping on 3d models via flash-based photography. J. Comput. Cult. Herit., 2(4):9:1--9:20, Mar. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. C. Frueh, R. Sammon, and A. Zakhor. Automated texture mapping of 3d city models with oblique aerial imagery. In Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium, 3DPVT '04, pages 396--403, Washington, DC, USA, 2004. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Z. Gao, L. Nocera, and U. Neumann. Visually-complete aerial lidar point cloud rendering. ACM SIGSPATIAL GIS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. H. K., S. T., K. K., and M. M. Combination of different surveying methods for archaeological documentation: the case study of the bronze age wooden chest from mitterberg. In Proceedings of the 38th Conference on Computer Applications and Quantitative Methods in Archaeology, Granada, Spain, 2010. IEEE Computer Society.Google ScholarGoogle Scholar
  5. B. Kovač and B. alik. Visualization of lidar datasets using point-based rendering technique. Comput. Geosci., 36(11):1443--1450, Nov. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. A. Li-Chee-Ming J. Fusion of optical and terrestrial laser scanner data. In CD-ROM proceedings Canadian Geomatics Conference 2010 and ISPRS Com I Symposium, pages 156--161. ISPRS, March 2011.Google ScholarGoogle Scholar
  7. W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: a system for programming graphics hardware in a c-like language. In ACM SIGGRAPH 2003 Papers, SIGGRAPH '03, pages 896--907, New York, NY, USA, 2003. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Mastin, J. Kepner, and J. W. F. III. Automatic registration of lidar and optical images of urban scenes. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2639--2646. IEEE, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  9. R. Pintus, E. Gobbetti, and M. Callieri. A streaming framework for seamless detailed photo blending on massive point clouds. In Proc. Eurographics Area Papers, pages 25--32, 2011.Google ScholarGoogle Scholar
  10. C. Scheiblauer, N. Zimmermann, and M. Wimmer. Interactive domitilla catacomb exploration. In K. Debattista, C. Perlingieri, D. Pitzalis, and S. Spina, editors, VAST, pages 65--72. Eurographics Association, September 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. L. Wang and U. Neumann. A robust approach for automatic registration of aerial images with untextured aerial lidar data. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2623--2630. IEEE, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  12. Q. Wang and S. You. A vision-based 2d-3d registration system. In IEEE Workshop on Applications of Computer Vision (WACV), pages 1--8, Snowbird, Utah, USA, December 2009.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Fusing oblique imagery with augmented aerial LiDAR

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader