Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2371574.2371613acmconferencesArticle/Chapter ViewAbstractPublication PagesmobilehciConference Proceedingsconference-collections
research-article

Digging unintentional displacement for one-handed thumb use on touchscreen-based mobile devices

Published:21 September 2012Publication History

ABSTRACT

There is usually an unaware screen distance between initial contact and final lift-off when users tap on touchscreen-based mobile devices with their fingers, which may affect users' target selection accuracy, gesture performance, etc. In this paper, we summarize such case as unintentional displacement and give its models under both static and dynamic scenarios. We then conducted two user studies to understand unintentional displacement for the widely-adopted one-handed thumb use on touchscreen-based mobile devices under both scenarios respectively. Our findings shed light on the following four questions: 1) what are the factors that affect unintentional displacement; 2) what is the distance range of the displacement; 3) how is the distance varying over time; 4) how are the unintentional points distributed around the initial contact point. These results not only explain certain touch inaccuracy, but also provide important reference for optimization and future design of UI components, gestures, input techniques, etc.

References

  1. Agarwal, A. et al. High Precision Multi-Touch Sensing on Surfaces using Overhead Cameras. In Proc. Tabletop 2007, pp. 197--200.Google ScholarGoogle ScholarCross RefCross Ref
  2. Android SDK. http://developer.android.com/sdk.Google ScholarGoogle Scholar
  3. Baudisch, P. et al. Starburst: a Target Expansion Algorithm for Non-Uniform Target Distributions. In Proc. AVI 2008, pp. 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. FingerWorks SDK. http://fingerworks.com.Google ScholarGoogle Scholar
  5. Forlines, C. et al. Direct-Touch vs. Mouse Input for Tabletop Displays. In Proc. CHI 2007, pp. 647--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Froehlich, J. et al. Pointing: Using Physical Edges to Assist Target Acquisition on Mobile Device Touch Screens. In Proc. ASSETS 2007, pp. 19--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Han, J. Y. Low-Cost Multi-Touch Sensing through Frustrated Total Internal Reflection. In Proc. UIST 2005, pp. 115--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Holz, C. and Baudisch, P. The Generalized Perceived Input Point Model and How to Double Touch Accuracy by Extracting Fingerprints. In Proc. CHI 2010, pp. 581--590. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Holz, C. and Baudisch, P. Understanding Touch. In Proc. CHI 2011, pp. 2501--2510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Huot, S. and Lecolinet, E. Focus+Context Visualization Techniques for Displaying Large Lists with Multiple Points of Interest on Small Tactile Screens. In Proc. Interact 2007, pp. 219--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Karlson, A. K. and Bederson, B. B. One-Handed Touchscreen Input for Legacy Applications. In Proc. CHI 2008, pp. 1399--1408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Karlson, A. K. and Bederson, B. B. ThumbSpace: Generalized One-Handed Input for Touchscreen-Based Mobile Devices. In Proc. INTERACT 2007, pp. 324--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Karlson, A. K. and Bederson, B. B. Understanding Single-Handed Mobile Device Interaction. In Proc. HCIL 2006.Google ScholarGoogle Scholar
  14. Lü, H. and Li, Y. Gesture Avatar: A Technique for Operating Mobile User Interfaces Using Gestures. In Proc. CHI 2011, pp. 207--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Malik, S. and Laszlo, J. Visual Touchpad: a Two-Handed Gestural Input Device. In Proc. ICMI 2004, pp. 289--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Microsoft Surface. http://www.microsoft.com/surface.Google ScholarGoogle Scholar
  17. Parhi, P. et al. Target Size Study for One-Handed Thumb Use on Small Touchscreen Devices. In Proc. MobileHCI 2006, pp. 203--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Park, Y. S. et al. Touch Key Design for Target Selection on a Mobile Phone. In Proc. MobileHCI 2008, pp. 423--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Perry, K. B. and Hourcade, J. P. Evaluating One Handed Thumb Tapping on Mobile Touchscreen Devices. In Proc. GI 2008, pp. 57--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Potter, R. et al. Improving the Accuracy of Touchscreens: An Experimental Evaluation of Three Strategies. In Proc. CHI 1988, pp. 27--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Roudaut, A. et al. TapTap and MagStick: Improving One-Handed Target Acquisition on Small Touch-Screens. In Proc. AVI 2008, pp. 146--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Roudaut, A. et al. MicroRolls: Expending Touch-Screen Input Vocabulary by Distinguishing Rolls vs. Slides of the thumb. In Proc. CHI 2009, pp. 927--936. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sears, A. and Shneiderman, B. High Precision Touchscreens: Design Strategies and Comparisons with a Mouse. Int. J. Man-Mach. Stud. 34(4): 593--613. 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Smart Tables, SmartTech. http://www.smarttech.com.Google ScholarGoogle Scholar
  25. Vogel, D. and Baudisch, P. Shift: A Technique for Operating Pen-Based Interfaces Using Touch. In Proc. CHI 2007, pp. 657--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wang, F. et al. Detecting and Leveraging Finger Orientation for Interaction with Direct-Touch Surfaces. In Proc. UIST 2009, pp. 23--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, F. and Ren, X. Empirical Evaluation for Finger Input Properties in Multi-Touch Interaction. In Proc. CHI 2009, pp. 1063--1072. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wellner, P. Interacting with Paper on the DigitalDesk. In Commun. ACM 36, 7(Jul. 1993). pp. 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wigdor, D. et al. LucidTouch: A See-Through Mobile Device. In Proc. UIST 2007, pp. 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wilson, A. D. PlayAnywhere: A Compact Interactive Tabletop Projection-Vision System. In Proc. UIST 2005, pp. 83--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yatani, K. et al. Escape: A Target Selection Technique Using Visually-cued Gestures. In Proc. CHI 2008, pp. 285--294. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Digging unintentional displacement for one-handed thumb use on touchscreen-based mobile devices

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        MobileHCI '12: Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services
        September 2012
        468 pages
        ISBN:9781450311052
        DOI:10.1145/2371574

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 September 2012

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate202of906submissions,22%
      • Article Metrics

        • Downloads (Last 12 months)3
        • Downloads (Last 6 weeks)1

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader