Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs

  • Conference paper
  • First Online:
Secure IT Systems (NordSec 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13700))

Included in the following conference series:

  • 582 Accesses

Abstract

Interactive zero-knowledge systems are a very important cryptographic primitive, used in many applications, especially when deniability (also known as non-transferability) is desired. In the lattice-based setting, the currently most efficient interactive zero-knowledge systems employ the technique of rejection sampling, which implies that the interaction does not always finish correctly in the first execution; the whole interaction must be re-run until abort does not happen.

While repetitions due to aborts are acceptable in theory, in some practical applications it is desirable to avoid re-runs for usability reasons. In this work we present a generic technique that departs from an interactive zero-knowledge system (that might require multiple re-runs to complete the protocol) and obtains a 3-moves zero-knowledge system (without re-runs). The transformation combines the well-known Fiat-Shamir technique with a couple of initially exchanged messages. The resulting 3-moves system enjoys honest-verifier zero-knowledge and can be easily turned into a fully deniable proof using standard techniques. We show some practical scenarios where our transformation can be beneficial and we also discuss the results of an implementation of our transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Honest-verifier zero-knowledge (HVZK) is not enough, since the notion of deniability is intrinsically related to a dishonest verifier who could be interested in transferring its conviction to somebody else.

  2. 2.

    We stress that the abort-free protocol in [10] is not really suitable for this setting, in terms of efficiency.

References

  1. Agrawal, S., Kirshanova, E., Stehlé, D., Yadav, A.: Can round-optimal lattice-based blind signatures be practical? Cryptology ePrint Archive, Report 2021/1565 (2021). https://ia.cr/2021/1565

  2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, New York, NY, USA, pp. 99–108. Association for Computing Machinery (1996)

    Google Scholar 

  3. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: BLAZE: practical lattice-based blind signatures for privacy-preserving applications. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 484–502. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_26

    Chapter  Google Scholar 

  4. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: On lattice-based interactive protocols: an approach with less or no aborts. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 41–61. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3_3

    Chapter  MATH  Google Scholar 

  5. Attema, T., Fehr, S.: Parallel repetition of \((k_1,\dots , k_{\mu })\)-special-sound multi-round interactive proofs. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13507, pp. 415–443. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_15

  6. Attema, T., Fehr, S., Klooß, M.: Fiat-Shamir transformation of multi-round interactive proofs. IACR Cryptol. ePrint Arch. 1377 (2021)

    Google Scholar 

  7. Balli, F., Durak, F.B., Vaudenay, S.: BioID: a privacy-friendly identity document. In: Mauw, S., Conti, M. (eds.) STM 2019. LNCS, vol. 11738, pp. 53–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31511-5_4

    Chapter  Google Scholar 

  8. Behnia, R., Chen, Y., Masny, D.: On removing rejection conditions in practical lattice-based signatures. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 380–398. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_20

    Chapter  Google Scholar 

  9. Blundo, C., Persiano, G., Sadeghi, A.-R., Visconti, I.: Improved security notions and protocols for non-transferable identification. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 364–378. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_24

    Chapter  Google Scholar 

  10. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: More efficient amortization of exact zero-knowledge proofs for LWE. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 608–627. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88428-4_30

    Chapter  Google Scholar 

  11. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_7

    Chapter  Google Scholar 

  12. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transformation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_13

    Chapter  MATH  Google Scholar 

  13. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_9

    Chapter  Google Scholar 

  14. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs: new techniques for shorter and faster constructions and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_5

    Chapter  Google Scholar 

  15. Finogina, T., Herranz, J., Larraia, E.: How (not) to achieve both coercion resistance and cast as intended verifiability in remote eVoting. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS 2021. LNCS, vol. 13099, pp. 483–491. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92548-2_25

    Chapter  MATH  Google Scholar 

  16. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revisited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 500–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_18

    Chapter  Google Scholar 

  17. Katsumata, S.: A new simple technique to bootstrap various lattice zero-knowledge proofs to QROM secure NIZKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 580–610. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_20

    Chapter  Google Scholar 

  18. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  19. Lyubashevsky, V., Nguyen, N.K., Plancon, M.: Efficient lattice-based blind signatures via Gaussian one-time signatures. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13178, pp. 498–527. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97131-1_17

    Chapter  Google Scholar 

  20. Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge proofs and applications: shorter, simpler, and more general. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 71–101. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_3

  21. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge proofs via one-time commitments. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 215–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_9

    Chapter  Google Scholar 

  22. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 43:1–43:35 (2013)

    Google Scholar 

  23. Monnerat, J., Pasini, S., Vaudenay, S.: Efficient deniable authentication for signatures. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 272–291. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_17

    Chapter  Google Scholar 

  24. Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_19

    Chapter  Google Scholar 

  25. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)

    Article  MATH  Google Scholar 

  26. Rawal, S., Padhye, S., He, D.: Lattice-based undeniable signature scheme. Ann. Télécommun. 77(3–4), 119–126 (2022)

    Article  Google Scholar 

  27. Schuldt, J.C.N., Matsuura, K.: On-line non-transferable signatures revisited. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 369–386. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_23

    Chapter  Google Scholar 

  28. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_2

    Chapter  Google Scholar 

  29. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_3

    Chapter  Google Scholar 

  30. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based zero-knowledge arguments with standard soundness: construction and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_6

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Spanish Ministerio de Ciencia e Innovación (MICINN), under Project PID2019-109379RB-I00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tamara Finogina or Javier Herranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arnal, X., Cano, A., Finogina, T., Herranz, J. (2022). How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs. In: Reiser, H.P., Kyas, M. (eds) Secure IT Systems. NordSec 2022. Lecture Notes in Computer Science, vol 13700. Springer, Cham. https://doi.org/10.1007/978-3-031-22295-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22295-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22294-8

  • Online ISBN: 978-3-031-22295-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics