Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Lattice-Based Interactive Protocols: An Approach with Less or No Aborts

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12248))

Included in the following conference series:

Abstract

A canonical identification (CID) scheme is a 3-move protocol consisting of a commitment, challenge, and response. It constitutes the core design of many cryptographic constructions such as zero-knowledge proof systems and various types of signature schemes. Unlike number-theoretic constructions, CID in the lattice setting usually forces provers to abort and repeat the whole authentication process once the distribution of the computed response does not follow a target distribution independent from the secret key. This concept has been realized by means of rejection sampling, which makes sure that the secrets involved in a protocol are concealed after a certain number of repetitions. This however has a negative impact on the efficiency of interactive protocols because it leads to a number of communication rounds that is multiplicative in the number of aborting participants (or rejection sampling procedures). In this work we show how the CID scheme underlying many lattice-based protocols can be designed with smaller number of aborts or even without aborts. Our new technique exploits (unbalanced) binary hash trees and thus significantly reduces the communication complexity. We show how to apply this new method within interactive zero-knowledge proofs. We also present BLAZE \(^{+}\): a further application of our technique to the recently proposed lattice-based blind signature scheme BLAZE (FC’20). We show that BLAZE \(^{+}\) has an improved performance and communication complexity compared to BLAZE while preserving the size of keys and signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the fiat-shamir transform: minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_28

    Chapter  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems. In: ACM Symposium on Theory of Computing - STOC 1996, pp. 99–108. ACM (1996)

    Google Scholar 

  3. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: On lattice-based interactive protocols: an approach with less or no aborts. Cryptology ePrint Archive, Report 2020/007 (2020). http://eprint.iacr.org/2020/007. Full version of this paper

  4. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: BLAZE: practical lattice-based blind signatures for privacy-preserving applications. In: Financial Cryptography and Data Security - FC 2020. Springer, Cham (2020). http://eprint.iacr.org/2019/1167

  5. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_2

    Chapter  Google Scholar 

  6. Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_20

    Chapter  Google Scholar 

  7. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable ring signatures. In: Naccache, D., Xu, S., Qing, S., Samarati, P., Blanc, G., Lu, R., Zhang, Z., Meddahi, A. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 303–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1_18

    Chapter  Google Scholar 

  8. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: ACM Conference on Computer and Communications Security - CCS 2006, pp. 390–399. ACM (2006)

    Google Scholar 

  9. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better zero-knowledge proofs for lattice encryption and their application to group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_29

    Chapter  Google Scholar 

  10. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_3

    Chapter  Google Scholar 

  11. Brakerski, Z., Perlman, R.: Order-LWE and the hardness of Ring-LWE with entropic secrets. Cryptology ePrint Archive, Report 2018/494 (2018). https://eprint.iacr.org/2018/494

  12. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme. Trans. Cryptogr. Hardware Embed. Syst. TCHES 2018(1), 238–268 (2018)

    MathSciNet  Google Scholar 

  13. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS-Dilithium: digital signatures from module lattices. Cryptology ePrint Archive, Report 2017/633 (2017). Version: 20170627:201152. http://eprint.iacr.org/2017/633

  14. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_9

    Chapter  Google Scholar 

  15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  16. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_10

    Chapter  Google Scholar 

  17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Symposium on Theory of Computing - STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  18. Hülsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: XMSS: eXtended Merkle Signature Scheme. RFC 8391, May 2018

    Google Scholar 

  19. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052233

    Chapter  Google Scholar 

  20. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: ACM Conference on Computer and Communications Security - CCS 2018, pp. 525–537. ACM (2018)

    Google Scholar 

  21. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4

    Article  MathSciNet  MATH  Google Scholar 

  22. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  23. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  24. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  25. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3

    Chapter  Google Scholar 

  26. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

  27. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: Proceedings of the 43rd Symposium on Foundations of Computer Science FOCS, pp. 356–365. IEEE (2002)

    Google Scholar 

  28. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  Google Scholar 

  29. von Neumann, J.: Various techniques used in connection with random digits. In: Monte Carlo Method. National Bureau of Standards Applied Mathematics Series, vol. 12, pp. 36–38 (1951)

    Google Scholar 

  30. del Pino, R., Lyubashevsky, V.: Amortization with fewer equations for proving knowledge of small secrets. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 365–394. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_13

    Chapter  Google Scholar 

  31. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)

    Article  Google Scholar 

  32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: ACM Symposium on Theory of Computing, pp. 84–93. ACM (2005)

    Google Scholar 

  33. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_24

    Chapter  Google Scholar 

  34. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725

    Article  MathSciNet  MATH  Google Scholar 

  35. Alberto Torres, W.A., et al.: Post-quantum one-time linkable ring signature and application to ring confidential transactions in blockchain (lattice RingCT v1.0). In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 558–576. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_32

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers of ACISP’20 for their valuable comments. This work has been partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1119 – 236615297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Alkeilani Alkadri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J. (2020). On Lattice-Based Interactive Protocols: An Approach with Less or No Aborts. In: Liu, J., Cui, H. (eds) Information Security and Privacy. ACISP 2020. Lecture Notes in Computer Science(), vol 12248. Springer, Cham. https://doi.org/10.1007/978-3-030-55304-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55304-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55303-6

  • Online ISBN: 978-3-030-55304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics