Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3577163.3595094acmconferencesArticle/Chapter ViewAbstractPublication Pagesih-n-mmsecConference Proceedingsconference-collections
research-article

Limits of Data Driven Steganography Detectors

Published:28 June 2023Publication History

ABSTRACT

While deep learning has revolutionized image steganalysis in terms of performance, little is known about how much modern data driven detectors can still be improved. In this paper, we approach this difficult and currently wide open question by working with artificial but realistic looking images with a known statistical model that allows us to compute the detectability of modern content-adaptive algorithms with respect to the most powerful detectors. Multiple artificial image datasets are crafted with different levels of content complexity and noise power to assess their influence on the gap between both types of detectors. Experiments with SRNet as the heuristic detector indicate that independent noise contributes less to the performance gap than content of the same MSE. While this loss is rather small for smooth images, it can be quite large for textured images. A network trained on many realizations of a fixed textured scene will, however, recuperate most of the loss, suggesting that networks have the capacity to approximately learn the parameters of a cover source narrowed to a fixed scene.

References

  1. P. Bas. An embedding mechanism for natural steganography after down-sampling. In IEEE ICASSP, New Orleans, LA, March 5--9, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. Bas, T. Filler, and T. Pevný. Break our steganographic system -- the ins and outs of organizing BOSS. In T. Filler, T. Pevný, A. Ker, and S. Craver, editors, Information Hiding, 13th International Conference, volume 6958 of Lecture Notes in Computer Science, pages 59--70, Prague, Czech Republic, May 18--20, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  3. S. Bernard, P. Bas, T. Pevný, and J. Klein. Optimizing additive approximations of non-additive distortion functions. In D. Borghys and P. Bas, editors, The 9th ACM Workshop on Information Hiding and Multimedia Security, pages 105--112, Brussels, Belgium, June 22--25, 2021.Google ScholarGoogle Scholar
  4. R. Böhme. Improved Statistical Steganalysis Using Models of Heterogeneous Cover Signals. PhD thesis, Faculty of Computer Science, Technische Universität Dresden, Germany, 2008.Google ScholarGoogle Scholar
  5. M. Boroumand, M. Chen, and J. Fridrich. Deep residual network for steganalysis of digital images. IEEE Transactions on Information Forensics and Security, 14(5):1181-- 1193, May 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Boroumand, J. Fridrich, and R. Cogranne. Are we there yet? In A. Alattar and N. D. Memon, editors, Proceedings IS&T, Electronic Imaging, Media Watermarking, Security, and Forensics 2019, San Francisco, CA, January 14--17, 2019.Google ScholarGoogle Scholar
  7. J. Butora, Y. Yousfi, and J. Fridrich. How to pretrain for steganalysis. In D. Borghys and P. Bas, editors, The 9th ACM Workshop on Information Hiding and Multimedia Security, Brussels, Belgium, 2021. ACM Press.Google ScholarGoogle Scholar
  8. K. Chubachi. An ensemble model using CNNs on different domains for ALASKA2 image steganalysis. In IEEE International Workshop on Information Forensics and Security, New York, NY, December 6--11, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  9. R. Cogranne and J. Fridrich. Modeling and extending the ensemble classifier for steganalysis of digital images using hypothesis testing theory. IEEE Transactions on Information Forensics and Security, 10(2):2627--2642, December 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. R. Cogranne, Q. Giboulot, and P. Bas. The ALASKA steganalysis challenge: A first step towards steganalysis "Into the wild". In R. Cogranne and L. Verdoliva, editors, The 7th ACM Workshop on Information Hiding and Multimedia Security, Paris, France, July 3--5, 2019. ACM Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. R. Cogranne, Q. Giboulot, and P. Bas. ALASKA--2: Challenging academic re- search on steganalysis with realistic images. In IEEE International Workshop on Information Forensics and Security, New York, NY, December 6--11, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  12. R. Cogranne, V. Sedighi, T. Pevný, and J. Fridrich. Is ensemble classifier needed for steganalysis in high-dimensional feature spaces? In IEEE International Workshop on Information Forensics and Security, Rome, Italy, November 16--19, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  13. T. Denemark, P. Bas, and J. Fridrich. Natural steganography in JPEG compressed images. In A. Alattar and N. D. Memon, editors, Proceedings IS&T, Electronic Imaging, Media Watermarking, Security, and Forensics 2018, San Francisco, CA, January 29--February 1, 2018.Google ScholarGoogle Scholar
  14. T. Denemark, M. Boroumand, and J. Fridrich. Steganalysis features for content- adaptive JPEG steganography. IEEE Transactions on Information Forensics and Security, 11(8):1736--1746, August 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. Denemark, V. Sedighi, V. Holub, R. Cogranne, and J. Fridrich. Selection- channel-aware rich model for steganalysis of digital images. In IEEE International Workshop on Information Forensics and Security, Atlanta, GA, December 3--5, 2014. 16] E. Dworetzky, E. Kaziakhmedov, and J. Fridrich. On comparing ad hoc detectors with statistical hypothesis tests. In Y. Yousfi, A. Bharati, and C. Pasquini, editors, The 11th ACM Workshop on Information Hiding and Multimedia Security, Chicago, IL, June 28--30, 2023. ACM Press.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian. Practical poissonian- gaussian noise modeling and fitting for single-image raw-data. IEEE Transactions on Image Processing, 17(10):1737--1754, Oct. 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Fridrich and J. Kodovský. Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security, 7(3):868--882, June 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. E. Healey and R. Kondepudy. Radiometric CCD camera calibration and noise estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(3):267--276, March 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. V. Holub and J. Fridrich. Low-complexity features for JPEG steganalysis using undecimated DCT. IEEE Transactions on Information Forensics and Security, 10(2):219--228, February 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. Hu, L. Wang, W. Jiang, S. Zheng, and B. Li. A novel image steganography method via deep convolutional generative adversarial networks. IEEE Access, 6:38303--38314, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. Huang, J. Ni, L. Wan, and J. Yan. A customized convolutional neural network with low model complexity for JPEG steganalysis. In R. Cogranne and L. Verdoliva, editors, The 7th ACM Workshop on Information Hiding and Multimedia Security, Paris, France, July 3--5, 2019. ACM Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. R. Janesick. Scientific Charge-Coupled Devices, volume Monograph PM83. Washington, DC: SPIE Press - The International Society for Optical Engineering, January 2001.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. Kodovský, J. Fridrich, and V. Holub. Ensemble classifiers for steganalysis of digital media. IEEE Transactions on Information Forensics and Security, 7(2):432-- 444, April 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Li, M. Wang, and J. Huang. A new cost function for spatial image steganography. In Proceedings IEEE, International Conference on Image Processing, ICIP, Paris, France, October 27--30, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  25. B. Li, W. Wei, A. Ferreira, and S. Tan. ReST-Net: Diverse activation modules and parallel subnets-based CNN for spatial image steganalysis. IEEE Signal Processing Letters, 25(5):650--654, May 2018.Google ScholarGoogle ScholarCross RefCross Ref
  26. L. Li, W. Zhang, C. Qin, K. Chen, W. Zhou, and N. Yu. Adversarial batch im- age steganography against CNN-based pooled steganalysis. Signal Processing, 181:107920--107920, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  27. Ce Liu, R. Szeliski, Sing Bing Kang, C.L. Zitnick, and W.T. Freeman. Automatic estimation and removal of noise from a single image. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(2):299--314, Feb 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters, 6(12):300--303, December 1999.Google ScholarGoogle ScholarCross RefCross Ref
  29. Y. Qian, J. Dong, W. Wang, and T. Tan. Deep learning for steganalysis via convolu- tional neural networks. In A. Alattar and N. D. Memon, editors, Proceedings SPIE, Electronic Imaging, Media Watermarking, Security, and Forensics 2015, volume 9409, San Francisco, CA, February 8--12, 2015.Google ScholarGoogle Scholar
  30. V. Sedighi, R. Cogranne, and J. Fridrich. Content-adaptive steganography by minimizing statistical detectability. IEEE Transactions on Information Forensics and Security, 11(2):221--234, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Y. Q. Shi, P. Sutthiwan, and L. Chen. Textural features for steganalysis. In M. Kirchner and D. Ghosal, editors, Information Hiding, 14th International Confer- ence, volume 7692 of Lecture Notes in Computer Science, pages 63--77, Berkeley, California, May 15--18, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. X. Song, F. Liu, C. Yang, X. Luo, and Y. Zhang. Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In P. Comesana, J. Fridrich, and A. Alattar, editors, 3rd ACM IH&MMSec. Workshop, Portland, Oregon, June 17--19, 2015.Google ScholarGoogle Scholar
  33. W. Su, J. Ni, X. Hu, and J. Huang. New design paradigm of distortion cost function for efficient JPEG steganography. Signal Processing, 190:108319, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  34. T. Taburet, P. Bas, J. Fridrich, and W. Sawaya. Computing dependencies between DCT coefficients for natural steganography in JPEG domain. In R. Cogranne and L. Verdoliva, editors, The 7th ACM Workshop on Information Hiding and Multimedia Security, Paris, France, July 3--5, 2019. ACM Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. T. Taburet, P. Bas, W. Sawaya, and J. Fridrich. A natural steganography embed- ding scheme dedicated to color sensors in the JPEG domain. In A. Alattar and N. D. Memon, editors, Proceedings IS&T, Electronic Imaging, Media Watermarking, Security, and Forensics 2019, San Francisco, CA, January 14--17, 2019.Google ScholarGoogle Scholar
  36. T. Taburet, P. Bas, W. Sawaya, and J. Fridrich. Natural steganography in JPEG domain with a linear development pipeline. IEEE Transactions on Information Forensics and Security, 16:173--186, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  37. W. Tang, B. Li, M. Barni, J. Li, and J. Huang. Improving cost learning for JPEG steganography by exploiting JPEG domain knowledge. IEEE Transactions on Circuits and Systems for Video Technology, 32(6):4081--4095, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  38. W. Tang, B. Li, S. Tan, M. Barni, and J. Huang. CNN-based adversarial embedding for image steganography. IEEE Transactions on Information Forensics and Security, 14(8):2074--2087, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. W. Tang, H. Li, W. Luo, and J. Huang. Adaptive steganalysis based on embedding probabilities of pixels. IEEE Transactions on Information Forensics and Security, 11(4):734--745, April 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Thanh Hai Thai, R. Cogranne, and F. Retraint. Camera model identification based on the heteroscedastic noise model. Image Processing, IEEE Transactions on, 23(1):250--263, Jan 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. G. Xu, H. Z. Wu, and Y. Q. Shi. Structural design of convolutional neural networks for steganalysis. IEEE Signal Processing Letters, 23(5):708--712, May 2016.Google ScholarGoogle ScholarCross RefCross Ref
  42. J. Yang, K. Liu, X. Kang, E. K. Wong, and Y.-Q. Shi. Spatial image steganography based on generative adversarial network, 2018.Google ScholarGoogle Scholar
  43. J. Yang, D. Ruan, J. Huang, X. Kang, and Y. Q. Shi. An embedding cost learning framework using GAN. IEEE Transactions on Information Forensics and Security, 15(10):839--851, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. Yang, D. Ruan, X. Kang, and Y.-Q. Shi. Towards automatic embedding cost learning for JPEG steganography. In R. Cogranne and L. Verdoliva, editors, The 7th ACM Workshop on Information Hiding and Multimedia Security, Paris, France, July 3--5, 2019. ACM Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. J. Yang, Y.-Q. Shi, E.K. Wong, and X. Kang. JPEG steganalysis based on densenet. CoRR, abs/1711.09335, 2017.Google ScholarGoogle Scholar
  46. J. Ye, J. Ni, and Y. Yi. Deep learning hierarchical representations for image steganalysis. IEEE Transactions on Information Forensics and Security, 12(11):2545-- 2557, November 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. M. Yedroudj, F. Comby, and M. Chaumont. Yedroudj-net: An efficient CNN for spatial steganalysis. In IEEE ICASSP, pages 2092--2096, Alberta, Canada, April 15--20, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Y. Yousfi, J. Butora, and J. Fridrich. CNN steganalyzers leverage local embedding artifacts. In IEEE International Workshop on Information Forensics and Security, Montpellier, France, December 7--10, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  49. Y. Yousfi, J. Butora, Q. Giboulot, and J. Fridrich. Breaking ALASKA: Color sepa- ration for steganalysis in JPEG domain. In R. Cogranne and L. Verdoliva, editors, The 7th ACM Workshop on Information Hiding and Multimedia Security, Paris, France, July 3--5, 2019. ACM Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Y. Yousfi, J. Butora, E. Khvedchenya, and J. Fridrich. ImageNet pre-trained CNNs for JPEG steganalysis. In IEEE International Workshop on Information Forensics and Security, New York, NY, December 6--11, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  51. Y. Yousfi and J. Fridrich. An intriguing struggle of CNNs in JPEG steganalysis and the OneHot solution. IEEE Signal Processing Letters, 27:830--834, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  52. J. Zeng, S. Tan, B. Li, and J. Huang. Large-scale JPEG image steganalysis using hybrid deep-learning framework. IEEE Transactions on Information Forensics and Security, 13(5):1200--1214, May 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. J. Zeng, S. Tan, G. Liu, Bin Li, and J. Huang. WISERNet: Wider separate-then- reunion network for steganalysis of color images. CoRR, abs/1803.04805, 2018.Google ScholarGoogle Scholar
  54. N. Zhong, Z. Qian, Z. Wang, X. Zhang, and X. Li. Batch steganography via gen- erative network. IEEE Transactions on Circuits and Systems for Video Technology, 31(1):88--97, January 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Limits of Data Driven Steganography Detectors

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          IH&MMSec '23: Proceedings of the 2023 ACM Workshop on Information Hiding and Multimedia Security
          June 2023
          190 pages
          ISBN:9798400700545
          DOI:10.1145/3577163

          Copyright © 2023 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 28 June 2023

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate128of318submissions,40%
        • Article Metrics

          • Downloads (Last 12 months)62
          • Downloads (Last 6 weeks)3

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader