Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Dependable Interference-Aware Time-Slotted Channel Hopping for Wireless Sensor Networks

Authors Info & Claims
Published:11 January 2018Publication History
Skip Abstract Section

Abstract

IEEE 802.15.4 Time-Slotted Channel Hopping (TSCH) aims to improve communication reliability in Wireless Sensor Networks (WSNs) by reducing the impact of the medium access contention, multipath fading, and blocking of wireless links. While TSCH outperforms single-channel communications, cross-technology interference on the license-free ISM bands may affect the performance of TSCH-based WSNs. For applications such as in-vehicle networks for which interference is dynamic over time, it leads to non-guaranteed reliability of the communications over time. This article proposes an Enhanced version of the TSCH protocol together with a Distributed Channel Sensing technique (ETSCH+DCS) that dynamically detects good quality channels to be used for communication. The quality of channels is extracted using a combination of a central and a distributed channel-quality estimation technique. The central technique uses Non-Intrusive Channel-quality Estimation (NICE) technique that proactively performs energy detections in the idle part of each timeslot at the coordinator of the network. NICE enables ETSCH to follow dynamic interference, while it does not reduce throughput of the network. The distributed channel quality estimation technique is executed by all the nodes in the network, based on their communication history, to detect interference sources that are hidden from the coordinator. We did two sets of lab experiments with controlled interferers and a number of simulations using real-world interference datasets to evaluate ETSCH. Experimental and simulation results show that ETSCH improves reliability of network communications, compared to basic TSCH and the state-of-the-art solution. In some experimental scenarios NICE itself has been able to increase the average packet reception ratio by 22% and shorten the length of burst packet losses by half, compared to the plain TSCH protocol. Further experiments show that DCS can reduce the effect of hidden interference (which is not detectable by NICE) on the packet reception ratio of the affected links by 50%.

References

  1. IEEE. 2005. IEEE standard for information technology—local and metropolitan area networks--specific requirements—part 15.1a: Wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPAN). IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002) (June 2005), 1--700.Google ScholarGoogle Scholar
  2. IEEE. 2007. IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements—part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999) (June 2007), 1--1076.Google ScholarGoogle Scholar
  3. HART. 2008. HART Field Communication Protocol Specifications, Revision 7.1, HART Communication Foundation Std. (2008).Google ScholarGoogle Scholar
  4. ANSI. 2011. ANSI/ISA-100.11a-2011 Wireless Systems for Industrial Automation: Process Control and Related Applications, International Society of Automation Std. (2011).Google ScholarGoogle Scholar
  5. IEEE. 2016. IEEE standard for low-rate wireless networks. IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011) (April 2016), 1--709.Google ScholarGoogle Scholar
  6. N. Accettura, E. Vogli, M. R. Palattella, L. A. Grieco, G. Boggia, and M. Dohler. 2015. Decentralized traffic aware scheduling in 6TiSCH networks: Design and experimental evaluation. IEEE IoT J. 2, 6 (Dec. 2015), 455--470.Google ScholarGoogle Scholar
  7. Atmel Corporation. 2017. ATmega256RFR2 Xplained Pro Evaluation Kit. (Sept. 2017). http://www.atmel.com/tools/ATMEGA256RFR2-XPRO.aspx.Google ScholarGoogle Scholar
  8. Tengfei Chang, Thomas Watteyne, Kris Pister, and Qin Wang. 2015. Adaptive synchronization in multi-hop TSCH networks. Comput. Netw. 76 (2015), 165--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana. 2016. LLSF: Low latency scheduling function for 6TiSCH networks. In Proceedings of the 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS’16). 93--95.Google ScholarGoogle Scholar
  10. M. Domingo-Prieto, T. Chang, X. Vilajosana, and T. Watteyne. 2016. Distributed PID-based scheduling for 6TiSCH networks. IEEE Commun. Lett. 20, 5 (May 2016), 1006--1009.Google ScholarGoogle ScholarCross RefCross Ref
  11. P. Du and G. Roussos. 2012. Adaptive time slotted channel hopping for wireless sensor networks. In Proceeedings of the Computer Science and Electronic Engineering Conference (CEEC’12). 29--34.Google ScholarGoogle Scholar
  12. D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert. 2014. 6TiSCH: Deterministic IP-enabled industrial internet (of things). IEEE Commun. Mag. 52, 12 (Dec. 2014), 36--41.Google ScholarGoogle ScholarCross RefCross Ref
  13. Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Watteyne. 2015. Orchestra: Robust mesh networks through autonomously scheduled TSCH. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys’15). ACM, New York, NY, 337--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Elsts, X. Fafoutis, R. Piechocki, and I. Craddock. 2017. Adaptive channel selection in IEEE 802.15.4 TSCH networks. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS’17). 1--6.Google ScholarGoogle Scholar
  15. Everette S. Gardner and David G. Dannenbring. 1980. Forecasting with exponential smoothing: Some guidelines for model selection. Decision Sciences 11, 2 (1980), 370--383.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. C. Gittins. 1979. Bandit processes and dynamic allocation indices. J. Roy. Stat. Soc. Ser. B 41, 2 (1979), 148--177. http://www.jstor.org/stable/2985029Google ScholarGoogle Scholar
  17. Pedro Henrique Gomes, Thomas Watteyne, and Bhaskar Krishnamachari. 2017. MABO-TSCH: Multihop and blacklist-based optimized time synchronized channel hopping. Trans. Emerg. Telecommun. Technol. (2017), e3223--n/a.Google ScholarGoogle Scholar
  18. D. De Guglielmo, B. Al Nahas, S. Duquennoy, T. Voigt, and G. Anastasi. 2017. Analysis and experimental evaluation of IEEE 802.15.4e TSCH CSMA-CA Algorithm. IEEE Trans. Vehic. Technol. 66, 2 (Feb 2017), 1573--1588.Google ScholarGoogle ScholarCross RefCross Ref
  19. S. A. Hanna and J. Sydor. 2012. Distributed sensing of spectrum occupancy and interference in outdoor 2.4 GHz Wi-Fi networks. In Proceedings of the Global Communications Conference (GLOBECOM’12). 1453--1459.Google ScholarGoogle Scholar
  20. K. Jeon and S. Chung. 2017. Adaptive channel quality estimation method for enhanced time slotted channel hopping on wireless sensor networks. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN’17). 438--443.Google ScholarGoogle Scholar
  21. Peishuo Li, T. Vermeulen, H. Liy, and S. Pollin. 2015. An adaptive channel selection scheme for reliable TSCH-based communication. In Proceedings of the 2015 International Symposium on Wireless Communication Systems (ISWCS’15). 511--515.Google ScholarGoogle Scholar
  22. K. Muraoka, T. Watteyne, N. Accettura, X. Vilajosana, and K. S. J. Pister. 2016. Simple distributed scheduling with collision detection in TSCH networks. IEEE Sens. J. 16, 15 (Aug 2016), 5848--5849.Google ScholarGoogle ScholarCross RefCross Ref
  23. M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler, and T. Engel. 2013. On optimal scheduling in duty-cycled industrial IoT applications using IEEE802.15.4e TSCH. IEEE Sens. J. 13, 10 (Oct 2013), 3655--3666.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco, G. Boggia, and M. Dohler. 2013. Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutor. 15, 3 (2013), 1389--1406.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. R. Palattella, T. Watteyne, Q. Wang, K. Muraoka, N. Accettura, D. Dujovne, L. A. Grieco, and T. Engel. 2016. On-the-fly bandwidth reservation for 6TiSCH wireless industrial networks. IEEE Sens. J. 16, 2 (Jan. 2016), 550--560.Google ScholarGoogle ScholarCross RefCross Ref
  26. K Pister and Lance Doherty. 2008. TSMP: Time synchronized mesh protocol. In Proceedings of the International Symposium on Distributed Sensor Networks (2008), 391--398.Google ScholarGoogle Scholar
  27. S. Pollin, M. Ergen, M. Timmers, A. Dejonghe, L. van der Perre, F. Catthoor, I. Moerman, and A. Bahai. 2006. Distributed cognitive coexistence of 802.15.4 with 802.11. In Proceedings of the 2006 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications. 1--5.Google ScholarGoogle Scholar
  28. C. F. Shih, A. E. Xhafa, and J. Zhou. 2015. Practical frequency hopping sequence design for interference avoidance in 802.15.4e TSCH networks. In Proceedings of the 2015 IEEE International Conference on Communications (ICC’15). 6494--6499.Google ScholarGoogle Scholar
  29. Kannan Srinivasan, Maria A. Kazandjieva, Saatvik Agarwal, and Philip Levis. 2008. The beta-factor-factor: Measuring wireless link burstiness. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys’08). ACM, New York, NY, 29--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Stanislowski, X. Vilajosana, Q. Wang, T. Watteyne, and K. S. J. Pister. 2014. Adaptive synchronization in IEEE802.15.4e Networks. IEEE Trans. Industr. Inform. 10, 1 (Feb 2014), 795--802.Google ScholarGoogle ScholarCross RefCross Ref
  31. R. Tavakoli, M. Nabi, T. Basten, and K. Goossens. 2015. Enhanced time-slotted channel hopping in WSNs using non-intrusive channel-quality estimation. In Proceedings of the 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems (MASS’15). 217--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Rasool Tavakoli, Majid Nabi, Twan Basten, and Kees Goossens. 2016. An experimental study of cross-technology interference in in-vehicle wireless sensor networks. In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM’16). ACM, New York, NY, 195--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. Thubert, M. R. Palattella, and T. Engel. 2015. 6TiSCH centralized scheduling: When SDN meet IoT. In Proceedings of the 2015 IEEE Conference on Standards for Communications and Networking (CSCN’15). 42--47.Google ScholarGoogle Scholar
  34. P. Thubert, T. Watteyne, M. R. Palattella, X. Vilajosana, and Q. Wang. 2013. IETF 6TSCH: Combining IPv6 connectivity with industrial performance. In Proceedings of the 2013 7th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. 541--546. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S. J. Pister. 2014. A realistic energy consumption model for TSCH networks. IEEE Sens. J. 14, 2 (Feb. 2014), 482--489.Google ScholarGoogle ScholarCross RefCross Ref
  36. Qin Wang, Xavier Vilajosana, and Thomas Watteyne. 2017. 6top Protocol (6P). Internet-Draft draft-ietf-6tisch-6top-protocol-07. Internet Engineering Task Force. Retrieved from https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-6top-protocol-07.Google ScholarGoogle Scholar
  37. Thomas Watteyne, Ankur Mehta, and Kris Pister. 2009. Reliability through frequency diversity: Why channel hopping makes sense. In Proceedings of the 6th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN’09). ACM, New York, NY, 116--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. T. Watteyne, J. Weiss, L. Doherty, and J. Simon. 2015. Industrial IEEE802.15.4e networks: Performance and trade-offs. In Proceedings of the 2015 IEEE International Conference on Communications (ICC’15). 604--609.Google ScholarGoogle Scholar

Index Terms

  1. Dependable Interference-Aware Time-Slotted Channel Hopping for Wireless Sensor Networks

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader