Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3133956.3134077acmconferencesArticle/Chapter ViewAbstractPublication PagesccsConference Proceedingsconference-collections
research-article

Machine Learning Models that Remember Too Much

Published:30 October 2017Publication History

ABSTRACT

Machine learning (ML) is becoming a commodity. Numerous ML frameworks and services are available to data holders who are not ML experts but want to train predictive models on their data. It is important that ML models trained on sensitive inputs (e.g., personal images or documents) not leak too much information about the training data.

We consider a malicious ML provider who supplies model-training code to the data holder, does \emph{not} observe the training, but then obtains white- or black-box access to the resulting model. In this setting, we design and implement practical algorithms, some of them very similar to standard ML techniques such as regularization and data augmentation, that "memorize" information about the training dataset in the model\textemdash yet the model is as accurate and predictive as a conventionally trained model. We then explain how the adversary can extract memorized information from the model. We evaluate our techniques on standard ML tasks for image classification (CIFAR10), face recognition (LFW and FaceScrub), and text analysis (20 Newsgroups and IMDB). In all cases, we show how our algorithms create models that have high predictive power yet allow accurate extraction of subsets of their training data.

Skip Supplemental Material Section

Supplemental Material

References

  1. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning with differential privacy. In CCS, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Algorithmia. https://algorithmia.com, 2017.Google ScholarGoogle Scholar
  3. Amazon Machine Learning. https://aws.amazon.com/machine-learning, 2017.Google ScholarGoogle Scholar
  4. G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and G. Felici. Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers. IJSN, 10(3):137--150, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Backes, P. Berrang, M. Humbert, and P. Manoharan. Membership privacy in MicroRNA-based studies. In CCS, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro. A security analysis of Amazon's Elastic Compute cloud service. In SAC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an untrusted cloud with haven. TOCS, 33(3):8, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):39--71, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector machines. In ICML, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. BigML. https://bigml.com, 2017.Google ScholarGoogle Scholar
  11. D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-performance secure multi-party computation for data mining applications. IJIS, 11(6):403--418, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classification over encrypted data. In NDSS, 2015. Google ScholarGoogle ScholarCross RefCross Ref
  13. C. Bucilua, R. Caruana, and A. Niculescu-Mizil. Model compression. In KDD, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Bugiel, S. Nürnberger, T. Pöppelmann, A.-R. Sadeghi, and T. Schneider. AmazonIA: When elasticity snaps back. In CCS, 2011.Google ScholarGoogle Scholar
  15. W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Compressing convolutional neural networks in the frequency domain. In KDD, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for privacy preserving distributed data mining. ACM SIGKDD Explorations Newsletter, 4(2):28--34, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273--297, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classification. In KDD, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. DeepDetect. https://www.deepdetect.com, 2015--2017.Google ScholarGoogle Scholar
  20. S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, et al. Lasagne: First release. http://dx.doi.org/10.5281/zenodo.27878, 2015.Google ScholarGoogle Scholar
  21. T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang. M2R: Enabling stronger privacy in MapReduce computation. In USENIX Security, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. W. Du, Y. S. Han, and S. Chen. Privacy-preserving multivariate statistical analysis: Linear regression and classification. In ICDM, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12(Jul):2121--2159, 2011.Google ScholarGoogle Scholar
  24. C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust traceability from trace amounts. In FOCS, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit confidence information and basic countermeasures. In CCS, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. Privacy in pharmacogenetics: An end-to-end case study of personalized Warfarin dosing. In USENIX Security, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Google Cloud Prediction API, 2017.Google ScholarGoogle Scholar
  28. J. Graham-Cumming. How to beat an adaptive spam filter. In MIT Spam Conference, 2004.Google ScholarGoogle Scholar
  29. S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In ICLR, 2016.Google ScholarGoogle Scholar
  30. Haven OnDemand. https://www.havenondemand.com, 2017.Google ScholarGoogle Scholar
  31. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. Google ScholarGoogle ScholarCross RefCross Ref
  32. N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLOS Genetics, 2008. Google ScholarGoogle ScholarCross RefCross Ref
  33. G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07--49, University of Massachusetts, Amherst, October 2007.Google ScholarGoogle Scholar
  34. indico. https://indico.io, 2016.Google ScholarGoogle Scholar
  35. T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In ECML, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Keras. https://keras.io, 2015.Google ScholarGoogle Scholar
  37. Kernel.org Linux repository rooted in hack attack. https://www.theregister.co.uk/2011/08/31/linux_kernel_security_breach/, 2011.Google ScholarGoogle Scholar
  38. M. Kloft and P. Laskov. Online anomaly detection under adversarial impact. In AISTATS, 2010.Google ScholarGoogle Scholar
  39. H. Krawczyk, R. Canetti, and M. Bellare. HMAC: Keyed-hashing for message authentication. https://tools.ietf.org/html/rfc2104, 1997.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.Google ScholarGoogle Scholar
  41. A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers for face verification. In ICCV, 2009. Google ScholarGoogle ScholarCross RefCross Ref
  43. S. Lahiri. Complexity of word collocation networks: A preliminary structural analysis. In Proc. Student Research Workshop at the 14th Conference of the European Chapter of the Association for Computational Linguistics, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  44. K. Lang. NewsWeeder: Learning to filter netnews. In ICML, 1995.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. G. B. H. E. Learned-Miller. Labeled faces in the wild: Updates and new reporting procedures. Technical Report UM-CS-2014-003, University of Massachusetts, Amherst, May 2014.Google ScholarGoogle Scholar
  46. Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436--444, 2015. Google ScholarGoogle ScholarCross RefCross Ref
  47. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11):2278--2324, 1998. Google ScholarGoogle ScholarCross RefCross Ref
  48. Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio. Neural networks with few multiplications. In ICLR, 2016.Google ScholarGoogle Scholar
  49. Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology, 15(3), 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. D. Lowd. Good word attacks on statistical spam filters. In CEAS, 2005.Google ScholarGoogle Scholar
  51. D. Lowd and C. Meek. Adversarial learning. In KDD, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for sentiment analysis. In Proc. 49th Annual Meeting of the ACL: Human Language Technologies, 2011.Google ScholarGoogle Scholar
  53. L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. JMLR, 9(Nov):2579--2605, 2008.Google ScholarGoogle Scholar
  54. Microsoft Azure Machine Learning. https://azure.microsoft.com/en-us/services/machine-learning, 2017.Google ScholarGoogle Scholar
  55. MLJAR. https://mljar.com, 2016--2017.Google ScholarGoogle Scholar
  56. MXNET. http://mxnet.io, 2015--2017.Google ScholarGoogle Scholar
  57. J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting signature learning by training maliciously. In RAID, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Nexosis. http://www.nexosis.com, 2017.Google ScholarGoogle Scholar
  59. H.-W. Ng and S. Winkler. A data-driven approach to cleaning large face datasets. In ICIP, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  60. J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.Google ScholarGoogle Scholar
  61. O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani, and M. Costa. Oblivious multi-party machine learning on trusted processors. In USENIX Security, 2016.Google ScholarGoogle Scholar
  62. B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proc. ACL, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. N. Papernot, P. McDaniel, A. Sinha, and M. Wellman. Towards the science of security and privacy in machine learning. https://arxiv.org/abs/1611.03814, 2016.Google ScholarGoogle Scholar
  64. M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet classification using binary convolutional neural networks. In ECCV, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  65. B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao, N. Taft, and J. Tygar. Antidote: Understanding and defending against poisoning of anomaly detectors. In IMC, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and M. Russinovich. VC3: Trustworthy data analytics in the cloud using SGX. In S&P, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In CCS, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine learning models. In S&P, 2017. Google ScholarGoogle ScholarCross RefCross Ref
  69. P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural networks applied to visual document analysis. In ICDAR, 2003. Google ScholarGoogle ScholarCross RefCross Ref
  70. Theano Development Team. Theano: A Python framework for fast computation of mathematical expressions. https://arxiv.org/abs/1605.02688, 2016.Google ScholarGoogle Scholar
  71. S. Torres-Arias, A. K. Ammula, R. Curtmola, and J. Cappos. On omitting commits and committing omissions: Preventing git metadata tampering that (re)-introduces software vulnerabilities. In USENIX Security, 2016.Google ScholarGoogle Scholar
  72. V. Vapnik. The Nature of Statistical Learning Theory. Springer Science & Business Media, 2013.Google ScholarGoogle Scholar
  73. J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning. Managing security of virtual machine images in a cloud environment. In CCSW, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Y. Zhai, L. Yin, J. Chase, T. Ristenpart, and M. Swift. CQSTR: Securing cross-tenant applications with cloud containers. In SoCC, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking generalization. In ICLR, 2017.Google ScholarGoogle Scholar

Index Terms

  1. Machine Learning Models that Remember Too Much

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CCS '17: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security
      October 2017
      2682 pages
      ISBN:9781450349468
      DOI:10.1145/3133956

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 30 October 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CCS '17 Paper Acceptance Rate151of836submissions,18%Overall Acceptance Rate1,261of6,999submissions,18%

      Upcoming Conference

      CCS '24
      ACM SIGSAC Conference on Computer and Communications Security
      October 14 - 18, 2024
      Salt Lake City , UT , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader