Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Topological Logics with Connectedness over Euclidean Spaces

Published:01 June 2013Publication History
Skip Abstract Section

Abstract

We consider the quantifier-free languages, Bc and Bc°, obtained by augmenting the signature of Boolean algebras with a unary predicate representing, respectively, the property of being connected, and the property of having a connected interior. These languages are interpreted over the regular closed sets of Rn (n ≥ 2) and, additionally, over the regular closed semilinear sets of Rn. The resulting logics are examples of formalisms that have recently been proposed in the Artificial Intelligence literature under the rubric Qualitative Spatial Reasoning. We prove that the satisfiability problem for Bc is undecidable over the regular closed semilinear sets in all dimensions greater than 1, and that the satisfiability problem for Bc and Bc° is undecidable over both the regular closed sets and the regular closed semilinear sets in the Euclidean plane. However, we also prove that the satisfiability problem for Bc° is NP-complete over the regular closed sets in all dimensions greater than 2, while the corresponding problem for the regular closed semilinear sets is ExpTime-complete. Our results show, in particular, that spatial reasoning is much harder over Euclidean spaces than over arbitrary topological spaces.

References

  1. Areces, C., Blackburn, P., and Marx, M. 2000. The computational complexity of hybrid temporal logics. Logic J. IGPL 8, 653--679.Google ScholarGoogle ScholarCross RefCross Ref
  2. Balbiani, P., Tinchev, T., and Vakarelov, D. 2007. Modal logics for region-based theories of space. Fundamenta Informaticae 81, 29--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bennett, B. 1994. Spatial reasoning with propositional logic. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, 51--62.Google ScholarGoogle ScholarCross RefCross Ref
  4. Biacino, L. and Gerla, G. 1991. Connection structures. Notre Dame J. Formal Logic 32, 242--247.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bochnak, J., Coste, M., and Roy, M.-F. 1998. Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36, Springer.Google ScholarGoogle Scholar
  6. Bourbaki, N. 1966. General Topology, Part 1. Hermann, Paris, Addison-Wesley, Reading, MA.Google ScholarGoogle Scholar
  7. Clarke, B. L. 1981. A calculus of individuals based on connection. Notre Dame J. Formal Logic 23, 204--218.Google ScholarGoogle ScholarCross RefCross Ref
  8. Clarke, B. L. 1985. Individuals and points. Notre Dame J. Formal Logic 26, 61--75.Google ScholarGoogle ScholarCross RefCross Ref
  9. Cohn, A. and Renz, J. 2008. Qualitative spatial representation and reasoning. In Handbook of Knowledge Representation, F. van Hermelen, V. Lifschitz, and B. Porter Eds., Elsevier, 551--596.Google ScholarGoogle Scholar
  10. Cohn, A., Bennett, B., Gooday, J., and Gotts, N. 1997. Qualitative spatial representation and reasoning with the region connection calculus. Geoinformatica 1, 3, 275--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Davis, E. 2006. The expressivity of quantifying over regions. J. Logic Computation 16, 891--916.Google ScholarGoogle ScholarCross RefCross Ref
  12. de Laguna, T. 1922. Point, line and surface as sets of solids. J. Philosophy 19, 449--6.Google ScholarGoogle ScholarCross RefCross Ref
  13. Dimov, G. and Vakarelov, D. 2006a. Contact algebras and region-based theory of space: A proximity approach, I. Fundamenta Informaticae 74, 2--3, 209--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dimov, G. and Vakarelov, D. 2006b. Contact algebras and region-based theory of space: A proximity approach, II. Fundamenta Informaticae 74, 2--3, 251--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dornheim, C. 1998. Undecidability of plane polygonal mereotopology. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, 342--353.Google ScholarGoogle Scholar
  16. Düntsch, I. and Winter, M. 2005. A representation theorem for Boolean contact algebras. Theor. Comput. Sci. 347, 498--512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Egenhofer, M. and Franzosa, R. 1991. Point-set topological spatial relations. Int. J. Geograph. Info. Syst. 5, 161--174.Google ScholarGoogle ScholarCross RefCross Ref
  18. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., and Zakharyaschev, M. 2005. Combining spatial and temporal logics: Expressiveness vs. complexity. J. Artif. Intell. Res. 23, 167--243. Google ScholarGoogle ScholarCross RefCross Ref
  19. Gödel, K. 1933. Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse eines mathema- tischen Kolloquiums 4, 39--40.Google ScholarGoogle Scholar
  20. Goranko, V. and Passy, S. 1992. Using the universal modality: Gains and questions. J. Logic Comput. 2, 5--30.Google ScholarGoogle ScholarCross RefCross Ref
  21. Griffiths, A. 2008. Computational properties of spatial logics in the real plane. Ph.D. thesis, School of Computer Science, University of Manchester.Google ScholarGoogle Scholar
  22. Grzegorczyk, A. 1951. Undecidability of some topological theories. Fundamenta Mathematicae 38, 137--152.Google ScholarGoogle ScholarCross RefCross Ref
  23. Hilbert, D. 1909. Grundlagen der Geometrie. B.G. Teubner, Leipzig and Berlin.Google ScholarGoogle Scholar
  24. Kontchakov, R., Pratt-Hartmann, I., Wolter, F., and Zakharyaschev, M. 2008a. On the computational complexity of spatial logics with connectedness constraints. In Proceedings of the International Conference on Logic Programming, Artificial Intelligence and Reasoning. Lecture Notes on Artificial Intelligence, vol. 5330. Springer, 574--589. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kontchakov, R., Pratt-Hartmann, I., Wolter, F., and Zakharyaschev, M. 2008b. Topology, connectedness, and modal logic. In Advances in Modal Logic, vol. 7, College Publications, London, 151--176.Google ScholarGoogle Scholar
  26. Kontchakov, R., Pratt-Hartmann, I., Wolter, F., and Zakharyaschev, M. 2010a. Spatial logics with connectedness predicates. Logical Methods Comput. Sci. 6, 3:7, 1--43.Google ScholarGoogle Scholar
  27. Kontchakov, R., Pratt-Hartmann, I., and Zakharyaschev, M. 2010b. Interpreting topological logics over Euclidean spaces. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning. AAAI Press, 534--544.Google ScholarGoogle Scholar
  28. Kontchakov, R., Nenov, Y., Pratt-Hartmann, I., and Zakharyaschev, M. 2011. On the decidability of connectedness constraints in 2D and 3D Euclidean spaces. In Proceedings of the International Joint Conference on Artificial Intelligence. AAAI Press, 957--962. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Koppelberg, S. 1989. Handbook of Boolean Algebras. Vol. 1, North-Holland.Google ScholarGoogle Scholar
  30. Kripke, S. 1963. Semantical analysis of modal logic I: Normal modal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9, 67--96.Google ScholarGoogle ScholarCross RefCross Ref
  31. Kuratowski, C. 1928. Sur la structure des frontières communes á deux régions. Fundamenta Mathematicae 12, 20--42.Google ScholarGoogle ScholarCross RefCross Ref
  32. Lutz, C. and Wolter, F. 2006. Modal logics of topological relations. Logical Methods Comput. Sci. 2, 2:5, 1--41.Google ScholarGoogle Scholar
  33. McKinsey, J. and Tarski, A. 1944. The algebra of topology. Ann. Math. 45, 141--191.Google ScholarGoogle ScholarCross RefCross Ref
  34. Nebel, B. 1995. Computational properties of qualitative spatial reasoning: First results. In Proceedings of the Annual German Conference on Artificial Intelligence. Lecture Notes in Computer Science, vol. 981, Springer, 233--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Newman, M. 1964. Elements of the Topology of Plane Sets of Points. Cambridge University Press.Google ScholarGoogle Scholar
  36. Nutt, W. 1999. On the translation of qualitative spatial reasoning problems into modal logics. In Proceedings of the Annual German Conference on Artificial Intelligence. Lecture Notes in Computer Science, vol. 1701, Springer, 113--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Orlov, I. 1928. The calculus of compatibility of propositions. Mathematics of the USSR, Sbornik 35, 263--286. (In Russian).Google ScholarGoogle Scholar
  38. Post, E. 1946. A variant of a recursively unsolvable problem. Bull. AMS 52, 264--268.Google ScholarGoogle ScholarCross RefCross Ref
  39. Pratt, I. and Lemon, O. 1997. Ontologies for plane, polygonal mereotopology. Notre Dame J. Formal Logic 38, 2, 225--245.Google ScholarGoogle ScholarCross RefCross Ref
  40. Pratt-Hartmann, I. 2002. A topological constraint language with component counting. J. Applied Non-Classical Logics 12, 441--467.Google ScholarGoogle ScholarCross RefCross Ref
  41. Pratt-Hartmann, I. 2007. First-order mereotopology. In Handbook of Spatial Logics, M. Aiello, I. Pratt-Hartmann, and J. van Benthem Eds., Springer, 13--97.Google ScholarGoogle Scholar
  42. Randell, D., Cui, Z., and Cohn, A. 1992. A spatial logic based on regions and connection. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, 165--176.Google ScholarGoogle Scholar
  43. Renz, J. 1998. A canonical model of the region connection calculus. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, 330--341.Google ScholarGoogle Scholar
  44. Renz, J. and Nebel, B. 1997. On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus. In Proceedings of the International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 522--527.Google ScholarGoogle Scholar
  45. Renz, J. and Nebel, B. 1999. On the complexity of qualitative spatial reasoning. Artif. Intell. 108, 69--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Renz, J. and Nebel, B. 2001. Efficient methods for qualitative spatial reasoning. J. Artif. Intell. Res. 15, 289--318. Google ScholarGoogle ScholarCross RefCross Ref
  47. Schaefer, M., Sedgwick, E., and Štefankovič, D. 2003. Recognizing string graphs in NP. J. Comput. Syst. Sci. 67, 365--380. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Shehtman, V. 1999. “Everywhere” and “Here”. J. Applied Non-Classical Logics 9, 369--379.Google ScholarGoogle ScholarCross RefCross Ref
  49. Smith, T. and Park, K. 1992. An algebraic approach to spatial reasoning. Int. J. Geograph. Info. Syst. 6, 177--192.Google ScholarGoogle ScholarCross RefCross Ref
  50. Tarski, A. 1959. What is elementary geometry? In The Axiomatic Method, with Special Reference to Geometry and Physics, L. Henkin and P. Suppes Eds., North-Holland, 16--29.Google ScholarGoogle Scholar
  51. Tinchev, T. and Vakarelov, D. 2010. Logics of space with connectedness predicates: Complete axiomatizations. In Advances in Modal Logic. Vol. 8, College Publications, London, 434--453.Google ScholarGoogle Scholar
  52. Vakarelov, D. 2007. Region-based theory of space: Algebras of regions, representation theory, and logics. In Mathematical Problems from Applied Logic II, D. Gabbay, S. Goncharov, and M. Zakharyaschev Eds., Springer, 267--348.Google ScholarGoogle Scholar
  53. van Benthem, J. and Bezhanishvili, G. 2007. Modal logics of space. In Handbook of Spatial Logics, M. Aiello, I. Pratt-Hartmann, and J. van Benthem Eds., Springer, 217--298.Google ScholarGoogle Scholar
  54. Whitehead, A. N. 1929. Process and Reality. Macmillan, New York.Google ScholarGoogle Scholar
  55. Wolter, F. and Zakharyaschev, M. 2000. Spatial reasoning in RCC-8 with Boolean region terms. In Proceedings of the European Conference on Artificial Intelligence. IOS Press, 244--248.Google ScholarGoogle Scholar

Index Terms

  1. Topological Logics with Connectedness over Euclidean Spaces

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computational Logic
        ACM Transactions on Computational Logic  Volume 14, Issue 2
        June 2013
        366 pages
        ISSN:1529-3785
        EISSN:1557-945X
        DOI:10.1145/2480759
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 June 2013
        • Accepted: 1 November 2012
        • Revised: 1 October 2012
        • Received: 1 October 2011
        Published in tocl Volume 14, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader