

© 2023, NIMA NIKOPOUR, CC-BY-NC-ND 4.0

ENHANCING HIGH-FREQUENCY CURRENCY EXCHANGE RATE FORECASTING:

A COMPARATIVE STUDY OF DEEP LEARNING AND THE AUTOREGRESSIVE

INTEGRATED MOVING AVERAGE MODEL

A Thesis By

NIMA NIKOPOUR

ORCID iD: 0009-0008-5355-8207

California State University, Fullerton

Fall, 2023

__

In partial fulfillment of the degree:

Master of Arts in Economics

Department:

Department of Economics

Approval Committee:

Gabriela Best, Department of Economics, Committee Chair

Pedro Amaral, Department of Economics

Thomas May, Department of Economics

DOI:

10.5281/zenodo.10421119

Keywords:

time-series, forecasting, currency, neural networks, deep learning, econometrics

Abstract:

This research presents a comprehensive evaluation of Deep Learning models for high-frequency

univariate financial time series forecasting. I compare several architectures including Long Short-Term

Memory (LSTM), Convolutional Neural Networks (CNN), an Attention-LSTM hybrid, and a novel

Attention-CNN hybrid. These models are benchmarked against the conventional Autoregressive

Integrated Moving Average (ARIMA) model. Using 15-minute interval data for the AUD/USD

exchange rate, I meticulously assess these models on both one-step ahead and multistep ahead

predictions while maintaining consistent hyperparameters. My findings demonstrate that all Deep

Learning models outperform the ARIMA benchmark, with the novel Attention-CNN hybrid emerging as

the best-performing model. This hybrid offers retail investors a more accurate alternative that requires

minimal data preparation, effectively addressing the complexities of predicting currency exchange rates

in dynamic financial markets.

ii

TABLE OF CONTENTS

LIST OF TABLES .. iii

LIST OF FIGURES .. iv

ACKNOWLEDGMENTS .. v

1. INTRODUCTION AND LITERATURE REVIEW ... 1

 Introduction ... 1

 Literature Review.. 3

2. MODEL DESCRIPTIONS ... 8

 Autoregressive Integrated Moving Average ... 8

 Artificial Neural Networks and Optimization... 9

 Long Short-Term Memory .. 15

 Convolutional Neural Networks ... 18

 Multi-head Attention ... 20

3. DATA AND METHODOLOGY .. 23

 Data ... 23

 Methodology ... 25

 Benchmark ARIMA .. 26

4. RESULTS AND CONCLUSION ... 28

 Results ... 28

 Conclusion .. 31

APPENDIX: ONE-STEP MODEL SUMMARIES AND LOSS PLOTS .. 32

REFERENCES ... 40

iii

LIST OF TABLES

Table Page

1. Results ... 29

iv

LIST OF FIGURES

Figure Page

1. Visualization of a simple ANN .. 10

2. Three-dimensional gradient descent representation ... 12

3. Two-dimensional gradient descent representation.. 13

4. Visualization of stacked LSTM cells .. 16

5. Convolution of a Gaussian curve and a rectangular pulse .. 19

6. Plot of the AUD/USD currency pair from 1999 to 2022 .. 24

7. First difference of the input time series ... 27

8. Plot of multistep ahead Attention-CNN and ARIMA forecasts .. 30

v

ACKNOWLEDGMENTS

I would like to express my gratitude to the chair of my committee, Dr. Gabriela Best. Her

guidance and support have been instrumental in enhancing my understanding of time series forecasting.

I also extend my thanks to Dr. Pedro Amaral for his thorough and constructive feedback on my written

drafts, which significantly contributed to the refinement of my research. I also want to thank Dr. Thomas

May for his assistance with the coding aspects of this research; his expertise in neural networks has

greatly deepened my comprehension of the subject. Additionally, thank you to Dr. Radha Bhattacharya,

the chair of the Economics Department, for her support and encouragement throughout this process.

Finally, I acknowledge the entire California State University Economics Department for creating

an exceptional academic environment. The knowledge and skills I have acquired throughout the

program have been pivotal to my success.

1

CHAPTER 1

INTRODUCTION

The Foreign Exchange market is the deepest and most liquid in the world. The Bank of

International Settlements 2022 Triennial Central Bank Survey of Foreign Exchange reported that

currency exchange markets were trading an average of 7.5 trillion per day as of April 2022 (BIS, 2022).

This market is highly stratified, with much of the activity emanating from large firms and central banks.

Until the late 1990s, they dominated the market and used currency exchange primarily for hedging

purposes. This changed with the advent of online trading platforms, which have allowed retail investors

to enter the market (Sobol & Szemelter, 2020). In 2016, trading conducted by non-institutional investors

grew to constitute 5.5% of the currency exchange market (BIS, 2016). Unlike institutional traders, retail

traders almost exclusively engage in speculative trading (Forman III, 2016). Despite its popularity, most

traders lose money in day trading (Barber et al., 2014; Mahani & Bernhardt, 2007). The difficulty in

making accurate predictions is due to the complex web of relationships currency prices have with the

macroeconomy and psychological factors (Yao & Tan, 2000). Forecasting on long time horizons

requires careful input selection, which can include technical indicators and news and sentiment analysis,

which do not fluctuate at a high frequency within one day (Singh et al., 2022). Input selection is,

therefore, difficult for intraday forecasts. Furthermore, retail investors will not typically have easy

access to real-time high-frequency data, nor will they usually have the computational resources to train

datasets with more variables. Thus, there is a need for accurate univariate models.

The Autoregressive Integrated Moving Average model (ARIMA), used in the Box-Jenkins

methodology, is a conventional method of predicting univariate financial time series. The ARIMA

predicts future values based on lags of the series itself and its error term. While it is a simple and

popular model, it has two major drawbacks. One is that it requires sufficient preprocessing to make the

data stationary; this is the "Integrated" part of the model. Additionally, it can only produce linear

outputs, failing to capture the non-linear movements that currency exchange data often exhibits.

2

Deep Learning (DL), a subset of machine learning, has gained popularity for its robust predictive

capabilities, utilizing artificial neural networks (ANN) inspired by the intricate architectures of the

human brain. These networks contain layers of interconnected nodes, or neurons, designed to process

and transform data. Neural networks typically consist of an input layer that receives the raw data, one or

more hidden layers that progressively abstract features from the input data, and an output layer that

yields the final prediction or decision based on the process. Each connection between neurons has an

associated weight, and the neurons apply mathematical transformations to the input data as it flows

through the network. This depth enables Deep Learning models to discover and represent intricate

patterns and hierarchical features in data. Whereas machine learning relies on manually specified

features, Deep Learning excels at automatically extracting relevant features as part of its learning

process. In contrast to traditional time series forecasting models like ARIMA, Deep Learning can

effectively handle non-stationary data and produce non-linear outputs.

Notable research findings suggest the superiority of Deep Learning models in certain cases, but

there are instances where ARIMA models have outperformed DL models, especially in univariate

settings (Siami-Namini & Siami-Namin, 2018; Kobiela et al., 2022; Shah & Shroff, 2021; Yamak et al.,

2019; Zhang et al., 2022). This variability in results is due to several factors. Firstly, the characteristics

of the time series data significantly influence model performance. DL models tend to excel when dealing

with complex, non-linear, and high-dimensional data, whereas ARIMA models may perform well when

the data exhibits clear temporal patterns and stationarity. Secondly, the choice and fine-tuning of

hyperparameters, such as the number of layers, units, and learning rates, play a pivotal role in DL model

performance since variations in such can lead to different outcomes. Lastly, different studies employ

different forecasting regimes and model architectures, rendering direct comparisons challenging.

This research aims to evaluate multiple Deep Learning models against the conventional ARIMA

model in the context of univariate currency exchange time series. Additionally, this research offers

investors a more accurate alternative to the ARIMA model that also requires less data preparation. To

3

achieve this, I evaluate four DL models against an ARIMA benchmark on both one-step ahead forecasts

and multistep ahead forecasts. I employ three prominent types of Deep Learning architectures: Long

Short-Term Memory (LSTM), which employs gating mechanisms to retain pertinent information while

discarding extraneous data selectively; Convolutional Neural Networks (CNN), which use convolution

operations to map input sequences to output sequences; and multi-head attention, which assigns

weighted importance to values within the sequence to capture temporal dependencies across varying

time horizons. Additionally, I construct hybridizations of these models. I leverage the AUD/USD

currency exchange rate data recorded at 15-minute intervals for this analysis. All Deep Learning models

outperform the ARIMA benchmark, with a novel Attention-CNN hybrid performing best on both one-

step ahead and multistep ahead forecasts.

Literature Review

Generally, Deep learning models have outperformed standard ARIMA models in time series

exchange rate forecasting applications, with Convolutional Neural Networks (CNN) and Recurrent

Neural Network (RNN) based models such as Long Short-Term Memory (LSTM) as the most successful

and recommended architectures (Nemavhola et al., 2021). Deep Learning refers to stacking neural

network layers to increase predictive capabilities. The hierarchical structure of multiple layers allows the

model to learn the underlying patterns of the data through multiple layers of abstraction (LeCun et al.,

2015). The strengths of DL in time series forecasting are that there is no need to define specific model

parameters since they can learn based on the features of the data. Additionally, DL methods can model

non-linear dependencies, while traditional models such as ARIMA can only produce linear outputs.

Moreover, the estimation of Neural Networks does not hinge on stationarity assumptions since the

number of trainable parameters allows neural networks to learn time-variant processes, unlike the

ARIMA, which requires stationarity (Preeti et al., 2019). However, the disadvantage is that the inner

mechanisms are less intuitive to understand than simpler models. This is why many refer to the inner

mechanism of deep neural networks as a "black box." (Pouyanfar et al., 2018)

4

Hu et al. (2021) surveyed Deep Learning methods in currency and stock market forecasting.

They found that 44% of papers were LSTM based, and 20% were CNN based. Additionally, in a review

of currency forecasting methods, Islam et al. (2020) found that 48% of surveyed papers were Neural

Network-based and 5% were ARIMA-based. Of the LSTM research, close price was the most frequent

variable of interest, with many papers focusing on it exclusively. The most cited work in this area is by

Siami-Namini and Siami Namin (2018), who compare an LSTM to an ARIMA on a dataset containing

univariate financial time series, finding that the LSTM outperforms the ARIMA by 85% in rolling

forecasts. This form of forecasting entails making one-step ahead predictions and adding the last

predicted value to the next prediction's input series. This can be characterized as an iterative approach.

However, this method does not fully leverage the capability of Deep Learning models, which can predict

complete sequences at once (direct forecasting). Hamzaçebi et al. (2009) compare the performance of

ANNs under both forecasting regimes, finding that direct forecasts of the entire series yield favorable

results to iterative forecasts.

The success of LSTMs in time series forecasting lies in their ability to model long-term

sequential dependencies. However, CNNs can perform similarly to LSTMs in time series problems, with

the added benefit of significantly lower train time (Mehtab & Sen, 2020; Weyjtjens & De Weerdt,

2021). Dwivedi et al. (2021) evaluated CNN, LSTM, and ARIMA on univariate financial time series.

They find that the CNN and LSTM perform similarly, although the LSTM slightly outperforms the CNN

on the basis of mean squared error and that both DL models outperform the ARIMA, with the CNN

exhibiting the quickest train time.

Attention mechanisms, first proposed by Bahdenau et al. (2014), introduced the idea of

Bahdenau attention in the literature. It followed the work of Cho et al. (2014) and Sutskever et al.

(2014), who used encoder-decoder RNN models in Neural Machine translation. Whereas RNNs take the

whole input vector to predict the output, attention mechanisms learn to select which features of the input

are most important in determining the output. This is most successfully demonstrated in natural

5

language processing (NLP), where the placements of words affect the context of the whole sentence.

Vaswani et al. (2017) further developed this concept in their seminal paper "Attention is All You Need"

which proposed the Transformer architecture, a widely used model in NLP based on Bahdanau style

attention. Researchers have since applied attention-based architectures to other sequential problems,

such as the financial time series. Lara-Benítez et al., 2021, constructed a Transformer that outperformed

CNNs and LSTMs on over 50,000 univariate time series forecasts. They attribute the success of

Transformers to their ability to capture long-term temporal dependencies but also find that

parameterizing these models is more difficult since different parameter choices yield a higher variability

of results than LSTM and CNN models. Transformers and other attention-based models are also shown

to be insensitive to local dependencies in time series forecasting (Li et al., 2019).

Attention is widely used in various hybridized models that combine the long-term capabilities of

attention with the specialties of other types of layers. Abbasimehr and Paki (2021) construct a univariate

time series model where input data is passed through separate LSTM and attention layers and then

concatenated to be further processed through dense layers. This performed the best against both a

regular attention model and an ARIMA model on 16 different datasets. attention hybridizations have

been constructed with CNN layers as well. Pourdaryaei et al. (2023) developed a model that fed the

outputs of CNN layers into an attention layer, achieving better mean absolute percentage error results

than other Deep Learning models on the same electricity consumption dataset. Aoud et al. (2022)

constructed a similar hybridized CNN-Attention model, which outperforms regular CNN models on

short-term univariate electricity consumption. Lastly, Li et al. (2019), as noted before, find that regular

attention-based transformer models are insensitive to local dependencies and thus modify the canonical

Transformer model with CNN layers to capture long and short-term relationships. This model yielded

favorable results for both regular Transformer and ARIMA benchmarks on electricity consumption data.

Neither of these three CNN and attention hybrid models employ a similar architecture as the

Abbasimehr and Paki paper which fed inputs separately to an attention layer and LSTM layer before

6

further processing into the output. Instead, they all directly connected the CNN and attention-based

layers. Furthermore, they consider only electricity consumption data, which has a less stochastic data

generation process than financial time series.

While most literature has found superior performance from DL models against ARIMA, there

are some varied results. Kobiela et al. (2022) found that an ARIMA outperforms LSTM through

multiple time horizons on their dataset. The ARIMA model beat LSTM and a Gated Recurrent Unit

model (a DL model similar in design to LSTMs) models in financial time series forecasting (Yamak et

al., 2019). Similarly, Zhang et al. (2022) found that ARIMA models outperform LSTM models on

monthly and weekly models, while the LSTM outperformed the ARIMA on rolling daily forecasts. Shah

and Shroff (2021) compare an ARIMA to multiple DL architectures, including Transformer and LSTM

in the context of univariate stock price data. Their explanation of the superior performance of the

ARIMA is that financial data is inherently chaotic, making it difficult for Deep Learning models to find

relevant regularities to make accurate predictions. Gers et al. (2001) evaluated LSTMs against

traditional statistical models in simple univariate forecasting tasks of short input lengths. They argued

through their findings that since LSTMs' successes are usually attributed to their ability to capture long-

range dependencies, they are less useful in simple tasks. Thus, they recommend only using LSTMs in

simple forecasts when traditional models fail.

However, these findings do not necessarily mean that LSTMs, or any other DL model, are

incapable of outperforming statistical models in certain instances. ARIMA, for instance, only uses a

handful of parameters, while DL models have thousands or even millions of parameters. With proper

architecture design, the DL models should, at the very least, be able to learn the parameters that ARIMA

would learn. According to the Universal Approximation Theorem, there exists a network that can

approximate any function to another with any non-zero amount of error (Hornik et al., 1989; Cybenko,

1989). While this proves the possibility, it does not guarantee a formula that can reliably approximate

any function onto another. For complex problems, this may entail a model with an infeasible number of

7

layers. Additionally, the ability to approximate one function to another well does not guarantee that

those same parameters would allow the model to generalize well to new functions (Goodfellow et al.,

2016, p. 194). Therefore, the question is not whether DL models can outperform ARIMA. Instead,

research should focus on which model can most efficiently outperform the ARIMA and best generalize

to new data.

8

CHAPTER 2

MODEL DESCRIPTIONS

Autoregressive Integrated Moving Average (ARIMA)

The ARIMA model is a linear model representing the relationship the current observation of a

time series has with a specified order of past values and error terms. It consists of three components: the

Autoregressive component, the Moving Average Component, and the Integrated Component (Hamilton,

1994, p. 43-58).

The Autoregressive (AR) term captures the relationship between the variable of interest and a

number of lagged observations of itself:

𝑌𝑡 = 𝜙1𝑌{𝑡−1} + 𝜙2𝑌{𝑡−2} + ⋯+ 𝜙𝑝𝑌{𝑡−𝑝} + 𝜖𝑡 (1)

Where 𝑌𝑡 is the value of the series at time 𝑡; 𝜙1, 𝜙2, … , 𝜙𝑝 are the parameters of the AR part of the

model; and 𝜖𝑡 is the error term. The coefficients of the AR component represent the influence or weight

of the respective lagged values on the current value of 𝑌𝑡. For instance, 𝜙1 represents the impact of the

preceding value of the series on the current value, an 𝜙2 represents the effect the value from two periods

ago has on the current value.

The Moving Average (MA) term captures the relationship between an observation and the lags

of the error term. The MA(q) component is represented as:

𝑌𝑡 = 𝜖𝑡 + 𝜃1𝜖{𝑡−1} + 𝜃2𝜖{𝑡−2} (2)

𝜃1, 𝜃2, . . 𝜃𝑞 are the parameters of the MA part of the model. The error term, 𝜖𝑡 is assumed to be white

noise. This means that the probability distribution of the term has a zero mean and constant variance.

Additionally, it means that the observations are statistically independent from each other.

The Integrated component refers to the level of differencing that was applied to the data to

achieve stationarity. A fundamental assumption of the ARIMA model is that the time series of interest is

a stationary process. This means that the series has a mean of zero and constant variance. When data is

non-stationary, it often exhibits trends, seasonality, or other systematic patterns that change over time,

9

making it challenging to identify meaningful relationships or make accurate forecasts (Stock & Watson,

2018, p. 519-520). If the series does not exhibit stationarity, differencing can be applied until stationarity

is achieved. This is represented by the following:

𝑦′ = 𝑦𝑡 − 𝑦𝑡−1 (3)

This process removes trend and seasonality in the series which stabilizes the mean (Wang et al., 2019).

If one order of differencing is insufficient in achieving stationary, additional levels of differencing can

be performed. Augmented Dickey-Fuller (ADF) Tests are a standard stationarity testing method. There

exists a unit root in the series defined by Equation 4 if 𝜌 = 1 , this is what gives the series its trend. The

ADF test tests the null hypothesis that the time series has a unit root (Hansen, 2022, p.566-570).

𝑌𝑡 = 𝜌𝑌𝑡−1 + 𝜖𝑡 (4)

Artificial Neural Networks (ANN) and Optimization

Artificial Neural Networks (ANN) constitute a direction of machine learning developed to mirror

the organization of biological neural networks through simple yet large-scale computations. Given a

vector of inputs, ANNs aim to find a set of weights that can ultimately produce a desired output when

applied to the vector. While a simple process, doing such by hand is inefficient. Therefore, ANN

developers aim to construct algorithms to find the optimal weights.

The simple ANN in Figure 1 has an input layer, hidden layer, and output layer, each consisting

of two neurons. The input here is a vector of two values x1 and x2 which are transformed in the hidden

layers to produce a vector of output values o1, and o2. Hidden layers are any layer in between the input

and output layers. In Figure 1, I use a fully connected (also known as a 'dense') layer, which is named as

such since each of its neurons is connected to all preceding and succeeding neurons. The weights are

first initialized to random values following a Gaussian distribution, and the biases are all set to an equal

value, typically 1. The weights represent the strengths of connections between neurons, while the biases

provide neurons with an offset value that influences when they activate, ensuring that they can produce

meaningful outputs even when inputs are near zero. The weights and biases (parameters) transform the

10

inputs into their respective hidden states. These parameters, 𝜃, are what the model attempts to optimize

during training to minimize loss, in other words, the difference between predicted and actual values. A

typical loss function is Mean Squared Error (MSE).

ℒ(𝜃) =
1

𝑛
∑ (�̂� − 𝑦)2

𝑖 (5)

At each layer, the values are passed through an activation function, which introduces non-linearity to the

model's outputs. The sigmoid function and the hyperbolic tangent function Are commonly used

activation functions

𝜎(𝑥) =
1

1+𝑒−𝑥
 (6)

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (7)

Figure 1. Visualization of a simple ANN

𝑊 = [

𝑤11 𝑤12

𝑤21 𝑤22

𝑤31 𝑤32

𝑤41 𝑤42

] (8)

𝐵 = [
𝑏11 𝑏12

𝑏21 𝑏22
] (9)

ℎ1 = 𝑥1𝑤11 + 𝑥2𝑤12 + 𝛽1𝑏11 (10)

11

ℎ2 = 𝑥1𝑤21 + 𝑥2𝑤22 + 𝛽1𝑤12 (11)

𝑜1 = 𝑓(ℎ1)𝑤31 + 𝑓(ℎ2)𝑤32 + 𝛽1𝑏21 (12)

𝑜2 = 𝑓(ℎ1)𝑤41 + 𝑓(ℎ2)𝑤42 + 𝛽2𝑏22 (13)

This transformation is called the forward pass and the outputs from the first forward pass will

almost always differ greatly from the actual values. It is through backpropagation that the model can

optimize the weights. During the backpropagation process, the network uses the Leibniz chain rule to

compute partial derivatives through the model. In other words, backpropagation calculates the effect all

preceding weights have on each output node using partial derivatives. For instance, the model calculates

the effect that 𝑤11 has on total loss (considering only weights for now) by calculating:

𝜕ℒ(𝑊)

𝜕𝑤11
= (

𝜕ℒ(𝑊)

𝜕𝑓(𝑜1)

𝜕𝑓(𝑜1)

𝜕𝑜1

𝜕𝑜1

𝜕𝑓(ℎ1)

𝜕𝑓(ℎ1)

𝜕ℎ1
) + (

𝜕ℒ(𝑊)

𝜕𝑓(𝑜2)

𝜕𝑓(𝑜2)

𝜕𝑜2

𝜕𝑜2

𝜕𝑓(ℎ2)

𝜕𝑓(ℎ2)

𝜕ℎ2
) (14)

 Upon determining the network's weights' partial derivates (gradients), the model uses an

optimization algorithm to update all weights at once. The most popular algorithm is gradient descent,

which can, in this case, be summarized as:

[

𝑤11

𝑡+1

𝑤12
𝑡+1

⋮
𝑤𝑛

𝑡+1]

=

[

𝑤11

𝑡

𝑤12
𝑡

⋮
𝑤𝑛

𝑡]

− 𝜂

[

𝜕ℒ(𝑊)

𝜕𝑤11
𝑡

𝜕ℒ(𝑊)

𝜕𝑤12
𝑡

⋮
𝜕ℒ(𝑊)

𝜕𝑤𝑛
𝑡]

 (15)

This can be generalized for all the model's parameters, 𝜃, as:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇ℒ(𝜃𝑡) (16)

The derived gradients tune the weights towards the direction that minimizes the objective

function. In other words, gradient descent calculates the opposite direction of the gradient at each

iteration. The weight parameters are updated to move in the negative direction of the gradient by a step

of size 𝜂, also known as the learning rate (Drori, 2022, p. 39). Figure 2 and Figure 3 show a simple

simulation of this process where the model learns to minimize the objective function by finding the

gradient of its two weight parameters at each iteration through backpropagation. The gradient descent

12

algorithm, in this case, multiplies the gradient at each point for each weight with the learning rate. This

is subtracted from the previous value of each weight to determine the updated parameters. To increase

both efficiency and precision, the learning rate here exponentially decays so that the model initially

takes larger steps to leave the maxima rapidly but will eventually take smaller steps as it approaches the

minima, so it is less likely to overshoot the optimum weights.

Each iteration of this process is referred to as an epoch. In each epoch, the neural network

undergoes a cycle of forward propagation (the forward pass), where input data is passed through the

network to make predictions, followed by backpropagation, where gradients are computed for all

weights. This is ultimately used for gradient descent. The number of epochs can either be a

predetermined value or a stopping criterion can be set. For instance, the model can be configured to

terminate training if loss has not improved after a certain number of epochs.

Figure 2. Three-dimensional gradient descent representation

13

Figure 3. Two-dimensional gradient descent representation

While the preceding examples consider simple network designs with relatively small inputs, as

models become deeper (more hidden layers) and input sizes increase, the model runs the risk of

experiencing the vanishing gradient problem. This occurs because, with an increasing number of layers,

the gradients need to traverse a longer path during backpropagation. As a result, the gradients can

become increasingly small, making it difficult for the model to update each layer’s weights and biases

effectively.

Traditional gradient descent is computationally inefficient because it considers the whole dataset

each time, so new methods have been introduced to induce faster performance. The most well-known of

which is stochastic gradient descent (SGD):

𝜃𝑡+1 = 𝜃 − 𝜂∇ℒ𝑖(𝜃𝑡) (17)

The SGD algorithm randomly shuffles the train set 𝑥1, … , 𝑥𝑛 for 𝑖 = 1, thereby computing the

gradient at each iteration from a random sample rather than the entire data set. This is useful in Deep

Learning applications where high dimensionality renders traditional gradient descent too time-

consuming (Goodfellow et al., 2016, p. 292).

14

The learning rate, 𝜂, is the size of the step that parameters make at each iteration. Values too

small can result in the model stagnating within local minima, and a value too large can cause the model

to keep overshooting the convergence point. One solution is to use a learning rate scheduler, whereby

the learning rate starts large and exponentially shrinks as it approaches the global minimum, ideally

preventing overshooting as well as stagnation in local minima. In Figure 2 and Figure 3, I set the

learning rate to 0.04 and specified that it should exponentially decay to make smaller steps as it

progressed through training. However, the most popular modern method is the use of Adaptive

Momentum Estimation (Adam), which is computationally efficient and well-suited for non-stationary

and noisy data. Adam maintains an adaptive learning rate for each parameter in the model. By

dynamically adjusting the learning rate based on the history of gradients, Adam strikes a balance

between learning efficiently (making large updates when gradients are large) and maintaining stability

(making smaller updates as the optimization progresses). This algorithm also does not require a

stationary objective function (Kingma and Ba, 2014). The Adam algorithm maintains two key moving

averages within the model. The first moving average is:

𝑚𝑡 = β1 ⋅ 𝑚𝑡−1 + (1 − β1) ⋅ 𝑔𝑡 (18)

This represents the exponentially decaying average of past gradients where 𝑔𝑡 = ∇ℒ(𝜃) is the gradient

w.r.t stochastic objective at timestep 𝑡. It effectively incorporates the momentum effect, aiding the

algorithm in navigating through flat regions and escaping local minima. The second moving average is:

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2 (19)

This represents the exponentially decaying average of the root of the sum of past squared gradients,

which corresponds to the 𝐿2 norm. This moving average plays a role in adjusting learning rates for each

parameter. By considering the 𝐿2 norm of gradients, Adam can differentiate between parameters

associated with large gradients (requiring smaller learning rates for stability) and those with small

gradients (allowing larger learning rates for faster convergence). Both these moving averages are

15

corrected for initialization bias to become �̂� and �̂� and used to calculate to update the parameter update

by way of

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
�̂�𝜃

√𝜃+𝜖
 (20)

where 𝜖 is a small scalar preventing division by 0. Kingma and Ba also detailed AdaMax, a variant of

Adam in the same 2014 paper. While Adam utilizes the L2 norm (Euclidean norm) of past squared

gradients to adapt learning rates, AdaMax employs the infinity norm (maximum norm) to track the

maximum absolute value of past gradients for each parameter,

𝑢𝑡 = 𝑚𝑎𝑥(𝛽2 ⋅ 𝑢𝑡−1, |𝑔𝑡|) (21)

This maximum norm signifies the largest magnitude of a gradient component observed during training.

Scaling each parameter's learning rate based on the maximum gradient magnitude,

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

1−𝛽1
⋅

𝑚𝑡

𝑢𝑡
 (22)

ensures that parameters with larger maximum gradient values receive lower learning rates to maintain

stability, while parameters with smaller maximum gradients can have larger learning rates to facilitate

rapid convergence. This utilization of the infinity norm makes AdaMax particularly robust in situations

where gradients exhibit high variability compared to Adam.

Long Short-Term Memory (LSTM)

Recurrent Neural Networks, when faced with sequential data of longer lengths, are subject to the

vanishing or exploding gradient problems. LSTMs, which are a type of Recurrent Neural Network first

proposed by Hochreiter and Schmidhuber (1997), are the most successful means of addressing the

vanishing and exploding gradients problem posed by traditional RNNs. The backbone of an LSTM's cell

structure is the cell state. Where 𝐶𝑡−1 represents the previous cell's state and 𝐶𝑡 represents the updated

cell state at the end of the sequence. Throughout the process, illustrated in Figure 4, the cell state is

altered through regulated gates, whose activations are regulated by 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 or 𝑡𝑎𝑛ℎ functions. 𝑋𝑡 is the

vector of inputs at the time 𝑡. The vector formulas are:

16

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖 ⊙ �̃� (23)

C̃ = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (24)

ft = σ(Wf ⋅ [ht−1, xt] + bf) (25)

it = σ(Wi ⋅ [ht−1, xt] + bi) (26)

ot = σ(Wo ⋅ [ht−1, xt] + bo) (27)

ht = ot ⊙ tanh(Ct) (28)

Figure 4. Visualization of stacked LSTM cells (Olah, 2015)

The previous cell state, Ct−1, and the previous hidden state, ht−1, are set to initial values, usually

zeros or small random values at first since there is no previous context to inform them at the start of

training. The parameters, which are crucial in affecting the cell's behavior, are also randomly initialized.

The first component of the LSTM cell is the Forget Gate. This gate regulates the flow of information

from the previous cell state, Ct−1, to the current cell state, Ct. Mathematically, the forget gate computes

its output, ft, by applying a sigmoid activation function to a weighted sum of the previous hidden state,

ht−1, and the current input, xt. The forget gate output determines which information from the previous

cell state should be retained and what should be discarded. This process can be expressed by Equation

25. Wf represents the forget gate's weight matrix, and bf is its bias. The sigmoid activation function

17

squeezes the values into a range of 0 to 1, with large positive values approaching one and large negative

values approaching zero.

The input gate and the candidate cell state, �̃�, operate in tandem. The input gate controls what

new information should be added to the cell state, while �̃� calculates a candidate value that could be

incorporated. Similar to the forget gate, the input gate's output, 𝑖𝑡, is computed by applying a sigmoid

activation function to a weighted sum of the previous ht−1 and the current input xt, as shown in

Equation 26. �̃� is determined by applying the hyperbolic tangent (tanh) function to another weighted

sum of the previous hidden state and the current input, as shown in Equation 24. These two components

work together to decide which values should be added to the cell state.

The next step involves updating the current cell state, Ct, by combining the previous cell state

Ct−1 with the information from the Forget Gate ft and the Input Gate Ct−1. This dynamic update is

expressed by Equation 23. Values from the forget gate are element-wise multiplied by corresponding

values from the previous state. Values closer to one retain information from the previous cell state while

values closer to zero diminish their corresponding information in the previous cell state. A similar

interaction occurs between the input gate’s outputs and candidate values which selects which new

information should be added to the current cell state.

This updated cell state can be considered the long-term memory of the LSTM layer up until this

point, it will be used to create the output of the given cell and will be sent to the next cell state to repeat

the same process.

The final architectural elements of the LSTM cell are the output gate, 𝑜𝑡 , and the hidden state, ℎ𝑡.

The output gate, akin to the forget and input gates, calculates its output by applying a sigmoid activation

function to a weighted sum of the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡 shown in Equation

27. The hidden state ℎ𝑡, which is the LSTM cell's output at time step 𝑡, is computed by applying the

hyperbolic tangent activation function to the updated cell state 𝐶𝑡 and element-wise multiplying it by the

output gate's output, as shown in Equation 28. The hidden state represents the information captured by

18

any given cell and is the information that will be sent to further layers in the model which can be used to

influence the final output (Appleyard, 2016; Goodfellow et al., 2016, p. 404-407; Olah, 2015; Yan,

2016).

Convolution Neural Networks (CNN)

Convolutional Neural Networks (LeCun, 1989) have been most popular in their 2-dimensional

applications for image data and their 1-dimensional applications in time series. CNNs are generally

characterized as neural networks that use convolution, rather than regular matrix multiplication, in at

least one layer (Goodfellow, 2016, p.326).

Convolution is a fundamental operation in signal processing and Deep Learning, widely used for

analyzing and processing one-dimensional time series data. Mathematically, it involves sliding a small

window, known as the kernel or filter, along the input time series. At each position of the window,

element-wise multiplication is performed between the kernel and the corresponding elements of the

input. The results of these multiplications are then summed up to produce a single output value. This

process is repeated for each position of the window, generating a new time series called the output

feature map.

((𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)
∞

−∞
⋅ 𝑔(𝑡 − 𝜏) 𝑑𝜏) (29)

Mathematically, the process can be described by Equation 29. Here, 𝑓(𝑡) represents the input

time series data, and 𝑔(𝑡) is the kernel or filter that the CNN uses to extract features from the input data.

The convolution operation, (𝑓 ∗ 𝑔)(𝑡), involves sliding the kernel over the input data and computing

the integral of their element-wise product at each position 𝑡. This integral effectively summarizes how

well the kernel matches a particular segment of the input data at each time step. 𝜏 is a dummy variable

used for integration. A simple example is illustrated in Figure 5, where the rectangular pulse input series

is element-wise multiplied by the values of a Gaussian curve (the kernel built up of a series of learnable

weights), which creates a new series.

19

Figure 5. Convolution of a Gaussian curve and a rectangular pulse.

20

In complex time-series forecasting tasks, the ultimate goal of the convolution is not to directly

predict what weights can approximate the input into the output. Rather, by performing convolution with

various kernels of different shapes and sizes, a 1D CNN can learn to identify and recognize critical

patterns and features that are pertinent to forecasting. These features might encompass trends,

seasonality, or intricate dependencies within the data. Subsequently, the CNN leverages these extracted

features to make forecasts about future values in the financial time series.

The architecture of a deep CNN begins with the input layer feeding into the convolution layer, in

which the aforementioned convolution is applied. The resulting output is fed through an activation layer,

typically a Rectified Linear Unit (ReLu). This replaces negative numbers with zeros. The next layer is

the max pooling layer, which results in a reduction in the size of the previous output; this leaves only the

most relevant information by keeping, for each given sized group of previous outputs, the maximum

value (Zhou & Chellappa, 1988). There can be multiple cycles of convolution to max-pooling layers,

usually decreasing in dimensionality until the model connects to the fully connected layers. CNNs have

shown strong capabilities in understanding temporal dependencies and have been widely used in

problems of time-series classification and forecasting (Goodfellow et al., 2016).

Multi-head Attention

The attention mechanism can be highly effective for extracting a range of features from a single

data stream. This mechanism is constructed using the query, key, and value matrices. The query matrix

is associated with the current state or the specific point in the series that the model aims to predict or

analyze. The key and value pairs, derived from the historical data in the time series, play crucial roles in

this process. The key aids the model in identifying which segments of past data are relevant to the

current query. In contrast, the value provides the actual historical information that the model leverages

for its predictions or analysis.

In a univariate time series context, both the query and the keys are derived from the same single

variable but at different time steps. For instance, if the model is predicting today's exchange rate, the

21

query would be the representation of the current state, and the keys would be representations of the

exchange rates at previous time steps.

Multi-head attention enhances this process by allowing the model to simultaneously focus on

different aspects or patterns within the univariate time series. Each 'head' in a multi-head attention

mechanism can potentially focus on different types of patterns. This ability to concurrently process and

integrate different types of information from the same time series is particularly advantageous in

univariate analysis. It enables the model to develop a more nuanced understanding of the data, capturing

both immediate and long-term influences on the variable of interest. This comprehensive analysis is a

reason why multi-head attention mechanisms have become a preferred choice over traditional models

like LSTMs, especially in complex and rapidly changing domains like financial markets.

The input sequence of length 𝑛 is transformed into three matrices: the key matrix 𝐾, the query

matrix 𝑄 , and the value matrix 𝑉.

𝑋 = [𝑥1, 𝑥2, … , xn] (30)

𝐾 = 𝑋 ⋅ 𝑊𝐾 (31)

𝑄 = 𝑋 ⋅ 𝑊𝑄 (32)

𝑉 = 𝑋 ⋅ 𝑊𝑉 (33)

Where 𝑊𝐾, 𝑊𝑄, and 𝑊𝑉 are learnable weight matrices. Next, the attention mechanism calculates the

attention scores by taking the dot product between the query and key vectors,

𝐴 = 𝑄 ⋅ 𝐾𝑇 (34)

These scores reflect the strength of relationships between different positions in the sequence. To

stabilize the attention competition, the attention scores are scaled by the square root of the key

dimension

𝑆 =
𝐴

√𝑑𝑘
 (35)

The SoftMax function is then applied to the scaled attention scores to obtain the attention weights.

22

This function normalizes the scaled logits derived from Equation 35 by exponentiating each 𝑠𝑖 to ensure

that they are positive and then divide by them the sum of all exponentiated values across the sequence.

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆)𝑖 =
𝑒𝑠𝑖

∑ 𝑒𝑠𝑖𝑁
𝑗=1

 (36)

This normalization step ensures that the resulting values are in the range [0,1] and sum up to 1,

effectively creating a probability distribution over the elements in the sequence. These computed values

from the SoftMax function represent the attention weights, in other words, they represent the importance

of different positions in the sequence for each position. Finally, the attention weights are used to

compute the weighted sum of value vectors. This aggregation captures the relationship between the

positions in the sequence. The whole process can be captured by:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄⋅𝐾𝑇

√𝑑𝑘
) (37)

Each set of (𝑊𝑄 ,𝑊𝐾,𝑊𝑉) matrices is an attention head. multi-head attention models can be

constructed to cast attention to different parts of the sequence in parallel, increasing processing power

and speed. This is achieved by, as before, calculating attention through each attention head indexed by 𝑖

then concatenating the attention head outputs and linearly transforming them with 𝑊𝑂 which is a

learned weight matrix that is trained alongside the rest of the model's parameters. Since the weights of

each attention head are randomly initialized, and thus begin at different starting points during training,

they will ultimately learn different features through the optimization process.

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) +

𝐶𝑜𝑛𝑐𝑎𝑡𝑖∈[#ℎ𝑒𝑎𝑑𝑠] (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑊𝑖
𝑄 , 𝑋𝑊𝑖

𝐾, 𝑋𝑊𝑖
𝑉))𝑊𝑂 (38)

This attention algorithm was introduced by Vaswani et al. (2017).

23

CHAPTER 3

DATA

I use close prices of the Australian Dollar to U.S. Dollar exchange pair from January 27, 1999, to

November 29, 2019. This was sourced from a publicly available dataset on Kaggle.com (Jiménez,

2019). The data observes the close price in 15-minute intervals, totaling 515,200 total observations.

Figure 6 shows a plot of this data.

Deep Learning training requires the data to be divided into input and target variables. To convert

my time series arrays into a usable format, I utilized time-delay embedding to separate sequences of

inputs and outputs. Given a time series array of 𝑥𝑛 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛], I iteratively looped over the

series to create two matrices, one being the input arrays and the other being the target arrays of the

sequences that immediately follow their respective inputs. By setting the stride length to 1, it creates a

series of overlapping windows that can be visualized as:

𝐼𝑛𝑝𝑢𝑡𝑠:

[

𝑥1 𝑥2 𝑥3 𝑥4

𝑥2 𝑥3 𝑥4 𝑥5

𝑥3 𝑥4 𝑥5 𝑥6

⋮ ⋮ ⋮ ⋮
𝑥𝑛−7 𝑥𝑛−6 𝑥𝑛−5 𝑥𝑛−4]

 (39)

𝑇𝑎𝑟𝑔𝑒𝑡𝑠:

[

𝑥5 𝑥6 𝑥7 𝑥8

𝑥6 𝑥7 𝑥8 𝑥9

𝑥7 𝑥8 𝑥9 𝑥10

⋮ ⋮ ⋮ ⋮
𝑥𝑛−3 𝑥𝑛−2 𝑥𝑛−1 𝑥𝑛]

 (40)

This example uses input and output lengths of size four as an example. In my models, I use inputs of

length 96 and either length one or 96 for outputs (there are 96 15-minute intervals in a day).

24

Figure 6. Plot of the AUD/USD currency pair from 1999 to 2022

25

In the example above, the model at each point would attempt to predict the output sequence

based on the corresponding row of inputs. Time delay embedding with overlapping windows has been

shown to increase the precision of parameter estimates as opposed to sampling independent windows

(von Oertzen and Boker, 2010). This is because it maximizes the amount of training examples available

to the model. When making multistep ARIMA predictions, I use an iterative approach since ARIMA

models can only produce one output at a time. This entails making the prediction for the first time step,

appending it to the end of the input series, and removing the first element of the series to make the

subsequent prediction. This continues for a predetermined number of steps until the entire sequence is

predicted. Deep Learning can be trained to make direct multistep predictions where the model outputs

the complete forecast at once rather than by the iterative approach.

Methodology

I use close price data at the end of each 15-minute interval. Close price best reflects the

movement of the data in each period (Ariyo et al., 2014). This is the most common target variable,

according to Islam et al. (2020).

First, I evaluate all the models on a one-step-ahead forecasting strategy, where an input row of

values from one day predicts the next single value. Second, I employ a direct forecasting strategy in

which the model learns to output a one-day length of values in one shot (with the exception of the

ARIMA which, as noted before, still has to use the iterative approach).

The outputs are either of length 1 for one-step forecasts or of length 96 for the direct forecasting

strategy. These corresponding matrices of inputs and their respective outputs are divided into training,

validation, and testing sets, with 80% of the data being used for training, 20% used for testing, and 20%

of the training set being used for validation during training. Conventional wisdom holds that in time

series problems, the validation set should be the tail end of the training set to prevent leakage. This is

called holdout validation. However, Bergmeir and Benitez (2012) tested this assumption on a variety of

methods and determined that in stationary time series data, cross-validation offers more robust model

26

selection, specifically blocked cross-validation, which ensures no overlap between the train and

validation folds. This finding was reiterated by Bergmeir et al. (2014), which found that blocked cross-

validation provided more precision in error estimates than standard holdout validation. Conversely,

Cerquiera et al. (2020) find that while blocked cross-validation works well for stationary time series,

holdout validation works best for non-stationary series. Since my series is non-stationary, I decided to

use holdout validation. I run my Python 3 code on a Google Colab workbook, utilizing their T4 GPUs to

reduce train time. The Deep Learning models are all developed through the TensorFlow library, using

the Keras sequential API. I chose Keras because of its modularity and ease of experimentation.

 I use the AdaMax optimizer and batch sizes of 32 to train the data on 50 epochs. The models are

set to stop early if validation loss does not improve after 50 epochs and to remember the best model

parameters. The outputs of each model are evaluated against the actual values on the basis of MSE,

RMSE, MAE, MAPE, and a custom directional accuracy metric that calculates the ratio of correct

directional movements of each output.

Benchmark ARIMA

For a robust determination of ARIMA parameters, I construct code to search for the ideal AR(p),

I(d), and MA(q) values. This search finds the lowest Akaike information criterion score by testing all (p,

d, q) combinations within the range of 0-2 using the training dataset. The results find that an

ARIMA(1,1,2) is the ideal set of parameters. This means that the next step of the time series is, on

average, most accurately determined by considering the current value of the series and two lags of its

error term. Additionally, the data needs to be differenced once to achieve stationarity. The differenced

series is shown in Figure 7. The full equation is:

𝑌𝑡 = 𝜙1(𝑌𝑡−1 − 𝑌𝑡−2) − 𝜃1𝜖𝑡−1 − 𝜃2𝜖𝑡−2 + 𝜖𝑡 (41)

To then derive my baseline results, I construct code that loops through each row of the test set,

fits the ARIMA(1,1,2) model, and outputs a forecast. This generates a new data frame, shown in Figure

7, of forecasts that I evaluate against each of the corresponding actual values.

27

Figure 7. First difference of the input time series

28

CHAPTER 4

RESULTS AND CONCLUSIONS

Results

According to the results shown in Table 1, all Deep Learning models introduced in this study

consistently outperform the benchmark ARIMA method, and they do so without necessitating any

preliminary data preparation steps such as stationarity testing or differencing. Notably, the incorporation

of attention mechanisms yielded a significant performance boost for CNN models, whereas its impact on

LSTM models was comparatively limited. This divergence in performance can be attributed to the

inherent complexity of both LSTM and attention models, which excel in handling sequential data.

Amalgamating these two intricate models may introduce unnecessary complexity, potentially impeding

their capacity to generalize effectively on new data. Conversely, CNNs, known for their simplicity,

stand to gain more from the integration of a complex sequential component like an attention mechanism.

Another potential factor contributing to this performance difference could be the redundancy in the

capabilities of both LSTM and attention mechanisms, which are both proficient at capturing long-range

dependencies. In contrast, CNN excels at handling short-range dependencies. Therefore, the

hybridization of CNN and attention mechanisms proved more advantageous, especially considering the

relatively small input lengths present in the dataset. The fusion of multi-head attention's long-term and

contextual capabilities with CNN's adeptness in identifying patterns and local dependencies ultimately

yielded the most accurate model in this study.

While this research has demonstrated the superiority of Deep Learning over the benchmark

ARIMA, it is essential to recognize the inherent limitations of univariate forecasting approaches,

particularly in the context of financial time series data. Figure 8 shows that while the Attention-CNN

model captures non-linearities better than the ARIMA model in multistep forecasts, its forecasts rarely

match the movement of actual values. In financial settings with highly stochastic data-generating

processes, it becomes challenging to identify meaningful patterns solely from the univariate time series.

Therefore, even though it has outperformed the benchmark, the model remains inherently limited in its

ability to provide forecasts that are truly valuable or useful for investment purposes.

29

Table 1. Results

 Metrics

Model MSE RMSE MAPE MAE

Directional

Accuracy Train Time

One Step Ahead

ARIMA 2.30𝑒−7 0.00048 0.042 0.00031 47.93%

LSTM 2.13𝑒−7 0.00046 0.042% 0.00031 47.78% 01:31:10

CNN 2.18𝑒−7 0.00047 0.042% 0.00031 47.77% 00:26:47

Attention-LSTM 2.21𝑒−7 0.00047 0.043% 0.00032 47.81% 03:43:14

Attention-CNN 2.13𝑒−7 0.00046 0.041% 0.00031 47.63% 00:46:19

Multistep Ahead

ARIMA 9.36𝑒−6 0.00306 0.286% 0.00212 50.53%

LSTM 9.09𝑒−6 0.00301 0.299% 0.00218 49.01% 01:31:26

CNN 8.86𝑒−6 0.00298 0.285% 0.00211 49.10% 00:28:19

Attention-LSTM 9.12𝑒−6 0.00302 0.296% 0.00218 49.11% 02:46:30

Attention-CNN 8.83𝑒−6 0.00297 0.284% 0.00210 49.10% 00:46:58

30

Figure 8. Plot of multistep ahead Attention-CNN and ARIMA forecasts

31

Conclusion

In summary, this research offers valuable insights into high-frequency univariate financial time

series predictions, demonstrating the superior performance of LSTM, CNN, and attention-based hybrid

models compared to the ARIMA benchmark, underscoring the potential of advanced Deep Learning

techniques in financial forecasting. Furthermore, the study contributes significantly by conducting a

thorough comparison of these models, considering both one-step ahead and multistep ahead forecasts

while meticulously controlling for crucial hyperparameters, providing a nuanced understanding of their

effectiveness in capturing complex financial data patterns. A notable aspect of this research is the

introduction of a novel Attention-CNN hybrid, an innovative approach not previously explored in

financial time series forecasting. This hybridization method, involving input feeding to both the CNN

and attention layers with subsequent concatenation of their outputs before forwarding to dense layers,

holds promise for improving forecasting accuracy in high-frequency financial time series, representing a

promising avenue for further research and application in the field.

32

APPENDIX

ONE-STEP MODEL SUMMARIES AND LOSS PLOTS

One-Step LSTM

33

One-Step CNN

34

One-Step Attention-LSTM

35

One-Step Attention-CNN

36

Multistep Model Summaries and Loss Plots

Multistep LSTM

37

Multistep Attention-LSTM

38

Multistep CNN

39

Multistep Attention-CNN

40

REFERENCES

Abbasimehr, H., & Paki, R. (2022). Improving time series forecasting using LSTM and attention

models. Journal of Ambient Intelligence and Humanized Computing, 13, 1-19.

https://doi.org/10.1007/s12652-020-02761-x

Aouad, M., Hajj, H., Shaban, K., Jabr, R. A., & El-Hajj, W. (2022). A CNN-Sequence-to-Sequence

network with attention for residential short-term load forecasting. Electric Power Systems

Research, 211, 108152. https://doi.org/10.1016/j.epsr.2022.108152

Appleyard, J. (2016, April 6). Optimizing recurrent neural networks in Cudnn 5. NVIDIA Technical

Blog. https://developer.nvidia.com/blog/optimizing-recurrent-neural-networks-cudnn-5/

Ariyo, A. A., Adewumi, A. O., & Ayo, C. K. (2014, March). Stock price prediction using the ARIMA

model. In 2014 UKSim-AMSS 16th International Conference on Computer Modelling and

Simulation (pp. 106-112). IEEE. https://doi.org/10.1109/UKSim.2014.67

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align

and translate. arXiv. https://doi.org/10.48550/arXiv.1409.0473

BIS. (2016). Triennial central bank survey of foreign exchange turnover in 2016. Bank of International

Settlements. https://www.bis.org/publ/rpfx16fx.pdf

BIS. (2022). Triennial central bank survey of foreign exchange and over-the-counter (OTC) derivatives

markets in 2022. Bank of International Settlements.https://www.bis.org/statistics/rpfx22.html

Barber, B. M., Lee, Y.-T., Liu, Y.-J., & Odean, T. (2014). The cross-section of speculator skill:

Evidence from day trading. Journal of Financial Markets, 18, 1–24.

https://doi.org/10.1016/j.finmar.2013.05.006

Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor

evaluation. Information Sciences, 191, 192-213. https://doi.org/10.1016/j.ins.2011.12.028

Bergmeir, C., Costantini, M., & Benítez, J. M. (2014). On the usefulness of cross-validation for

directional forecast evaluation. Computational Statistics & Data Analysis, 76, 132-143.

https://doi.org/10.1016/j.csda.2014.02.001

Cerqueira, V., Torgo, L., & Mozetič, I. (2020). Evaluating time series forecasting models: An empirical

study on performance estimation methods. Machine Learning, 109, 1997-2028.

https://doi.org/10.1007/s10994-020-05910-7

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y.

(2014). Learning phrase representations using RNN encoder-decoder for statistical machine

translation. arXiv. https://doi.org/10.48550/arXiv.1406.1078

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control,

Signals and Systems, 2(4), 303-314. https://doi.org/10.1007/BF02551274

Drori, I. (2022). The science of deep learning. Cambridge University Pres

41

Dwivedi, S. A., Attry, A., Parekh, D., & Singla, K. (2021, February). Analysis and forecasting of time-

series data using S-ARIMA, CNN and LSTM. In 2021 International Conference on Computing,

Communication, and Intelligent Systems (ICCCIS) (pp. 131-136). IEEE.

https://doi.org/10.1109/icccis51004.2021.9397134.

Forman, J. (2016). The retail spot foreign exchange market structure and participants. SSRN Electronic

Journal. https://dx.doi.org/10.2139/ssrn.2753823

Gers, F. A., Eck, D., & Schmidhuber, J. (2001, August). Applying LSTM to time series predictable

through time-window approaches. In Artificial Neural Networks - ICANN 2001 (pp. 669-676).

Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44668-0_93

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press

Hamilton, J. D. (1994). Time series analysis. Princeton University Press

Hamzaçebi, C., Akay, D., & Kutay, F. (2009). Comparison of direct and iterative artificial neural

network forecast approaches in multi-periodic time series forecasting. Expert Systems with

Applications, 36(2), 3839–3844. https://doi.org/10.1016/j.eswa.2008.02.042

Hansen, B. (2022). Econometrics. Princeton University Press

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-

1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal

approximators. Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8

Hu, Z., Zhao, Y., & Khushi, M. (2021). A survey of forex and stock price prediction using deep

learning. Applied System Innovation, 4(1), 9. https://doi.org/10.3390/asi4010009

Islam, M. S., Hossain, E., Rahman, A., Hossain, M. S., & Andersson, K. (2020). A review on recent

advancements in forex currency prediction. Algorithms, 13(8), 186.

https://doi.org/10.3390/a13080186

Jiménez, D. F. (2019). Forex currencies [Data set]. Kaggle.

https://doi.org/10.34740/KAGGLE/DSV/820558

Kim, S., & Kang, M. (2019). Financial series prediction using attention LSTM. arXiv.

https://doi.org/10.48550/arXiv.1902.10877

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv.

https://doi.org/10.48550/arXiv.1412.6980

Kobiela, D., Krefta, D., Król, W., & Weichbroth, P. (2022). Arima vs LSTM on NASDAQ stock

exchange data. Procedia Computer Science, 207, 3836–3845.

https://doi.org/10.1016/j.procs.2022.09.445

42

Lara-Benítez, P., Gallego-Ledesma, L., Carranza-García, M., & Luna-Romera, J. M. (2021). Evaluation

of the transformer architecture for univariate time series forecasting. In E. Alba, G. Luque, F.

Chicano, C. Cotta, D. Camacho, M. Ojeda-Aciego, S. Montes, A. Troncoso, J. Riquelme, & R.

Gil-Merino (Eds.), Advances in Artificial Intelligence: 19th Conference of the Spanish

Association for Artificial Intelligence, CAEPIA 2020/2021 (pp. 106-115). Springer International

Publishing. https://doi.org/10.1007/978-3-030-85713-4_11

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D.

(1989). Backpropagation applied to handwritten ZIP code recognition. Neural

Computation, 1(4), 541-551. https://doi.org/10.1162/neco.1989.1.4.541

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y. X., & Yan, X. (2019). Enhancing the locality

and breaking the memory bottleneck of transformer on time series forecasting. Advances in

Neural Information Processing Systems, 32. https://doi.org/10.48550/arXiv.1907.00235

Mahani, R. S., & Bernhardt, D. (2004). Financial speculators’ underperformance: Learning, self-

selection, and provision of liquidity. The Journal of Finance, 62, 1313-1340.

https://doi.org/10.1111/j.1540-6261.2007.01237.x

Mehtab, S., & Sen, J. (2020). Stock price prediction using CNN and LSTM-based deep learning models.

In 2020 International Conference on Decision Aid Sciences and Application (DASA) (pp. 447-

453). https://doi.org/10.1109/dasa51403.2020.9317207

Nemavhola, A., Chibaya, C., & Ochara, N. M. (2021). Application of the LSTM - deep neural networks

- in forecasting foreign currency exchange rates. 2021 3rd International Multidisciplinary

Information Technology and Engineering Conference (IMITEC).

https://doi.org/10.1109/imitec52926.2021.9714685

Olah, C. (2015, August 27). Understanding LSTM networks. Colah’s blog.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Pourdaryaei, A., Mohammadi, M., Mubarak, H., Abdellatif, A., Karimi, M., Gryazina, E., & Terzija, V.

(2024). A new framework for electricity price forecasting via multi-head self-attention and

CNN-based techniques in the competitive electricity market. Expert Systems with

Applications, 235, 121207. https://doi.org/10.1016/j.eswa.2023.121207

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M. L., Chen, S. C., Iyengar, S.

S. (2018). A survey on Deep Learning. ACM Computing Surveys, 51(5), 1–36.

https://doi.org/10.1145/3234150

Preeti, Bala, R., & Singh, R. P. (2019). Financial and non-stationary time series forecasting using LSTM

recurrent neural network for short and long horizon. 2019 10th International Conference on

Computing, Communication and Networking Technologies (ICCCNT).

https://doi.org/10.1109/icccnt45670.2019.8944624

Shah, V., & Shroff, G. (2021). Forecasting Market Prices using DL with Data Augmentation and Meta-

learning: ARIMA still wins!. arXiv. https://doi.org/10.48550/arXiv.2110.10233

43

Siami-Namini, S., Tavakoli, N., & Siami Namin, A. (2018). A comparison of Arima and LSTM in

forecasting time series. 2018 17th IEEE International Conference on Machine Learning and

Applications (ICMLA). https://doi.org/10.1109/icmla.2018.00227

Singh, T., Kalra, R., Mishra, S., Satakshi, & Kumar, M. (2022). An efficient real-time stock prediction

exploiting incremental learning and deep learning. Evolving Systems, 14(6), 919–937.

https://doi.org/10.1007/s12530-022-09481-x

Sobol, I., & Szmelter, M. (2020). Retail investors in the foreign exchange market. Prace Naukowe

Uniwersytetu Ekonomicznego we Wrocławiu, 64(6), 168-181.

https://doi.org/10.15611/pn.2020.6.13

Stock, J. H., & Watson, M. W. (2003). Introduction to econometrics. Pearson

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural

networks. Advances in Neural Information Processing Systems, 27.

https://doi.org/10.48550/arXiv.1409.3215

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin,

I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.

https://doi.org/10.48550/arXiv.1706.03762

Von Oertzen, T., & Boker, S. M. (2010). Time delay embedding increases estimation precision of

models of intraindividual variability. Psychometrika, 75, 158-175.

https://doi.org/10.1007/s11336-009-9137-9

Wang, S., Li, C., & Lim, A. (2019). Why are the ARIMA and SARIMA not sufficient. arXiv.

https://doi.org/10.48550/arXiv.1904.07632

Weytjens, H., & De Weerdt, J. (2020). Process outcome prediction: CNN vs. LSTM (with attention). In:

A. Del Río Ortega, H. Leopold, & F. M. Santoro (Eds.), Business process management

workshops (pp. 321–333). https://doi.org/10.1007/978-3-030-66498-5_24

Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019). A comparison between Arima, LSTM, and GRU for

time series forecasting. In Proceedings of the 2019 2nd International Conference on Algorithms,

Computing and Artificial Intelligence (pp. 49-55). https://doi.org/10.1145/3377713.3377722

Yan, S. (2017, November 15). Understanding LSTM and its diagrams. Medium.

https://blog.mlreview.com/understanding-lstm-and-its-diagrams-37e2f46f1714

Yao, J., & Tan, C. L. (2000). A case study on using neural networks to perform technical forecasting of

forex. Neurocomputing, 34(1–4), 79–98 https://doi.org/10.1016/s0925-2312(00)00300-3

Zhang, R., Song, H., Chen, Q., Wang, Y., Wang, S., & Li, Y. (2022). Comparison of Arima and LSTM

for prediction of hemorrhagic fever at different time scales in China. PLoS One, 17(1).

https://doi.org/10.1371/journal.pone.0262009

Zhou, & Chellappa. (1988, July). Computation of optical flow using a neural network. In IEEE 1988

International Conference on Neural Networks (pp. 71-78). IEEE.

https://doi.org/10.1109/ICNN.1988.23914

	Enhancing High-Frequency Currency Exchange Rate Forecasting: A Comparative Study of Deep Learning and the Autoregressive Integrated Moving Average Model
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	CHAPTER 1
	INTRODUCTION
	Literature Review

	CHAPTER 2
	Model Descriptions
	Autoregressive Integrated Moving Average (ARIMA)
	Artificial Neural Networks (ANN) and Optimization
	Long Short-Term Memory (LSTM)
	Convolution Neural Networks (CNN)
	Multi-head Attention

	CHAPTER 3
	Data
	Methodology
	Benchmark ARIMA

	CHAPTER 4
	Results and Conclusions
	Results
	Conclusion

	Appendix
	One-Step Model Summaries and Loss Plots
	One-Step LSTM
	One-Step CNN
	One-Step Attention-LSTM
	One-Step Attention-CNN
	Multistep Model Summaries and Loss Plots
	Multistep LSTM
	Multistep Attention-LSTM
	Multistep CNN
	Multistep Attention-CNN

	REFERENCES

