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Abstract: 

This research presents a comprehensive evaluation of Deep Learning models for high-frequency 

univariate financial time series forecasting. I compare several architectures including Long Short-Term 

Memory (LSTM), Convolutional Neural Networks (CNN), an Attention-LSTM hybrid, and a novel 

Attention-CNN hybrid. These models are benchmarked against the conventional Autoregressive 

Integrated Moving Average (ARIMA) model. Using 15-minute interval data for the AUD/USD 

exchange rate, I meticulously assess these models on both one-step ahead and multistep ahead 

predictions while maintaining consistent hyperparameters. My findings demonstrate that all Deep 

Learning models outperform the ARIMA benchmark, with the novel Attention-CNN hybrid emerging as 

the best-performing model. This hybrid offers retail investors a more accurate alternative that requires 

minimal data preparation, effectively addressing the complexities of predicting currency exchange rates 

in dynamic financial markets. 
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CHAPTER 1 

INTRODUCTION  

The Foreign Exchange market is the deepest and most liquid in the world. The Bank of 

International Settlements 2022 Triennial Central Bank Survey of Foreign Exchange reported that 

currency exchange markets were trading an average of 7.5 trillion per day as of April 2022 (BIS, 2022). 

This market is highly stratified, with much of the activity emanating from large firms and central banks. 

Until the late 1990s, they dominated the market and used currency exchange primarily for hedging 

purposes. This changed with the advent of online trading platforms, which have allowed retail investors 

to enter the market (Sobol & Szemelter, 2020). In 2016, trading conducted by non-institutional investors 

grew to constitute 5.5% of the currency exchange market (BIS, 2016). Unlike institutional traders, retail 

traders almost exclusively engage in speculative trading (Forman III, 2016). Despite its popularity, most 

traders lose money in day trading (Barber et al., 2014; Mahani & Bernhardt, 2007). The difficulty in 

making accurate predictions is due to the complex web of relationships currency prices have with the 

macroeconomy and psychological factors (Yao & Tan, 2000). Forecasting on long time horizons 

requires careful input selection, which can include technical indicators and news and sentiment analysis, 

which do not fluctuate at a high frequency within one day (Singh et al., 2022). Input selection is, 

therefore, difficult for intraday forecasts. Furthermore, retail investors will not typically have easy 

access to real-time high-frequency data, nor will they usually have the computational resources to train 

datasets with more variables. Thus, there is a need for accurate univariate models.  

The Autoregressive Integrated Moving Average model (ARIMA), used in the Box-Jenkins 

methodology, is a conventional method of predicting univariate financial time series. The ARIMA 

predicts future values based on lags of the series itself and its error term. While it is a simple and 

popular model, it has two major drawbacks. One is that it requires sufficient preprocessing to make the 

data stationary; this is the "Integrated" part of the model. Additionally, it can only produce linear 

outputs, failing to capture the non-linear movements that currency exchange data often exhibits.  
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Deep Learning (DL), a subset of machine learning, has gained popularity for its robust predictive 

capabilities, utilizing artificial neural networks (ANN) inspired by the intricate architectures of the 

human brain. These networks contain layers of interconnected nodes, or neurons, designed to process 

and transform data. Neural networks typically consist of an input layer that receives the raw data, one or 

more hidden layers that progressively abstract features from the input data, and an output layer that 

yields the final prediction or decision based on the process. Each connection between neurons has an 

associated weight, and the neurons apply mathematical transformations to the input data as it flows 

through the network. This depth enables Deep Learning models to discover and represent intricate 

patterns and hierarchical features in data. Whereas machine learning relies on manually specified 

features, Deep Learning excels at automatically extracting relevant features as part of its learning 

process. In contrast to traditional time series forecasting models like ARIMA, Deep Learning can 

effectively handle non-stationary data and produce non-linear outputs.  

Notable research findings suggest the superiority of Deep Learning models in certain cases, but 

there are instances where ARIMA models have outperformed DL models, especially in univariate 

settings (Siami-Namini & Siami-Namin, 2018; Kobiela et al., 2022; Shah & Shroff, 2021; Yamak et al., 

2019; Zhang et al., 2022). This variability in results is due to several factors. Firstly, the characteristics 

of the time series data significantly influence model performance. DL models tend to excel when dealing 

with complex, non-linear, and high-dimensional data, whereas ARIMA models may perform well when 

the data exhibits clear temporal patterns and stationarity. Secondly, the choice and fine-tuning of 

hyperparameters, such as the number of layers, units, and learning rates, play a pivotal role in DL model 

performance since variations in such can lead to different outcomes. Lastly, different studies employ 

different forecasting regimes and model architectures, rendering direct comparisons challenging. 

This research aims to evaluate multiple Deep Learning models against the conventional ARIMA 

model in the context of univariate currency exchange time series. Additionally, this research offers 

investors a more accurate alternative to the ARIMA model that also requires less data preparation. To 
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achieve this, I evaluate four DL models against an ARIMA benchmark on both one-step ahead forecasts 

and multistep ahead forecasts. I employ three prominent types of Deep Learning architectures: Long 

Short-Term Memory (LSTM), which employs gating mechanisms to retain pertinent information while 

discarding extraneous data selectively; Convolutional Neural Networks (CNN), which use convolution 

operations to map input sequences to output sequences; and multi-head attention, which assigns 

weighted importance to values within the sequence to capture temporal dependencies across varying 

time horizons. Additionally, I construct hybridizations of these models. I leverage the AUD/USD 

currency exchange rate data recorded at 15-minute intervals for this analysis. All Deep Learning models 

outperform the ARIMA benchmark, with a novel Attention-CNN hybrid performing best on both one-

step ahead and multistep ahead forecasts.  

Literature Review  

Generally, Deep learning models have outperformed standard ARIMA models in time series 

exchange rate forecasting applications, with Convolutional Neural Networks (CNN) and Recurrent 

Neural Network (RNN) based models such as Long Short-Term Memory (LSTM) as the most successful 

and recommended architectures (Nemavhola et al., 2021). Deep Learning refers to stacking neural 

network layers to increase predictive capabilities. The hierarchical structure of multiple layers allows the 

model to learn the underlying patterns of the data through multiple layers of abstraction (LeCun et al., 

2015). The strengths of DL in time series forecasting are that there is no need to define specific model 

parameters since they can learn based on the features of the data. Additionally, DL methods can model 

non-linear dependencies, while traditional models such as ARIMA can only produce linear outputs. 

Moreover, the estimation of Neural Networks does not hinge on stationarity assumptions since the 

number of trainable parameters allows neural networks to learn time-variant processes, unlike the 

ARIMA, which requires stationarity (Preeti et al., 2019). However, the disadvantage is that the inner 

mechanisms are less intuitive to understand than simpler models. This is why many refer to the inner 

mechanism of deep neural networks as a "black box." (Pouyanfar et al., 2018) 
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Hu et al. (2021) surveyed Deep Learning methods in currency and stock market forecasting. 

They found that 44% of papers were LSTM based, and 20% were CNN based. Additionally, in a review 

of currency forecasting methods, Islam et al. (2020) found that 48% of surveyed papers were Neural 

Network-based and 5% were ARIMA-based. Of the LSTM research, close price was the most frequent 

variable of interest, with many papers focusing on it exclusively. The most cited work in this area is by 

Siami-Namini and Siami Namin (2018), who compare an LSTM to an ARIMA on a dataset containing 

univariate financial time series, finding that the LSTM outperforms the ARIMA by 85% in rolling 

forecasts. This form of forecasting entails making one-step ahead predictions and adding the last 

predicted value to the next prediction's input series. This can be characterized as an iterative approach. 

However, this method does not fully leverage the capability of Deep Learning models, which can predict 

complete sequences at once (direct forecasting). Hamzaçebi et al. (2009) compare the performance of 

ANNs under both forecasting regimes, finding that direct forecasts of the entire series yield favorable 

results to iterative forecasts.  

The success of LSTMs in time series forecasting lies in their ability to model long-term 

sequential dependencies. However, CNNs can perform similarly to LSTMs in time series problems, with 

the added benefit of significantly lower train time (Mehtab & Sen, 2020; Weyjtjens & De Weerdt, 

2021). Dwivedi et al. (2021) evaluated CNN, LSTM, and ARIMA on univariate financial time series. 

They find that the CNN and LSTM perform similarly, although the LSTM slightly outperforms the CNN 

on the basis of mean squared error and that both DL models outperform the ARIMA, with the CNN 

exhibiting the quickest train time.  

Attention mechanisms, first proposed by Bahdenau et al. (2014), introduced the idea of 

Bahdenau attention in the literature. It followed the work of Cho et al. (2014) and Sutskever et al. 

(2014), who used encoder-decoder RNN models in Neural Machine translation. Whereas RNNs take the 

whole input vector to predict the output, attention mechanisms learn to select which features of the input 

are most important in determining the output. This is most successfully demonstrated in natural 
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language processing (NLP), where the placements of words affect the context of the whole sentence. 

Vaswani et al. (2017) further developed this concept in their seminal paper "Attention is All You Need" 

which proposed the Transformer architecture, a widely used model in NLP based on Bahdanau style 

attention. Researchers have since applied attention-based architectures to other sequential problems, 

such as the financial time series. Lara-Benítez et al., 2021, constructed a Transformer that outperformed 

CNNs and LSTMs on over 50,000 univariate time series forecasts. They attribute the success of 

Transformers to their ability to capture long-term temporal dependencies but also find that 

parameterizing these models is more difficult since different parameter choices yield a higher variability 

of results than LSTM and CNN models. Transformers and other attention-based models are also shown 

to be insensitive to local dependencies in time series forecasting (Li et al., 2019).  

Attention is widely used in various hybridized models that combine the long-term capabilities of 

attention with the specialties of other types of layers. Abbasimehr and Paki (2021) construct a univariate 

time series model where input data is passed through separate LSTM and attention layers and then 

concatenated to be further processed through dense layers. This performed the best against both a 

regular attention model and an ARIMA model on 16 different datasets. attention hybridizations have 

been constructed with CNN layers as well. Pourdaryaei et al. (2023) developed a model that fed the 

outputs of CNN layers into an attention layer, achieving better mean absolute percentage error results 

than other Deep Learning models on the same electricity consumption dataset. Aoud et al. (2022) 

constructed a similar hybridized CNN-Attention model, which outperforms regular CNN models on 

short-term univariate electricity consumption. Lastly, Li et al. (2019), as noted before, find that regular 

attention-based transformer models are insensitive to local dependencies and thus modify the canonical 

Transformer model with CNN layers to capture long and short-term relationships. This model yielded 

favorable results for both regular Transformer and ARIMA benchmarks on electricity consumption data. 

Neither of these three CNN and attention hybrid models employ a similar architecture as the 

Abbasimehr and Paki paper which fed inputs separately to an attention layer and LSTM layer before 
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further processing into the output. Instead, they all directly connected the CNN and attention-based 

layers. Furthermore, they consider only electricity consumption data, which has a less stochastic data 

generation process than financial time series. 

While most literature has found superior performance from DL models against ARIMA, there 

are some varied results. Kobiela et al. (2022) found that an ARIMA outperforms LSTM through 

multiple time horizons on their dataset. The ARIMA model beat LSTM and a Gated Recurrent Unit 

model (a DL model similar in design to LSTMs) models in financial time series forecasting (Yamak et 

al., 2019). Similarly, Zhang et al. (2022) found that ARIMA models outperform LSTM models on 

monthly and weekly models, while the LSTM outperformed the ARIMA on rolling daily forecasts. Shah 

and Shroff (2021) compare an ARIMA to multiple DL architectures, including Transformer and LSTM 

in the context of univariate stock price data. Their explanation of the superior performance of the 

ARIMA is that financial data is inherently chaotic, making it difficult for Deep Learning models to find 

relevant regularities to make accurate predictions. Gers et al. (2001) evaluated LSTMs against 

traditional statistical models in simple univariate forecasting tasks of short input lengths. They argued 

through their findings that since LSTMs' successes are usually attributed to their ability to capture long-

range dependencies, they are less useful in simple tasks. Thus, they recommend only using LSTMs in 

simple forecasts when traditional models fail.  

However, these findings do not necessarily mean that LSTMs, or any other DL model, are 

incapable of outperforming statistical models in certain instances. ARIMA, for instance, only uses a 

handful of parameters, while DL models have thousands or even millions of parameters. With proper 

architecture design, the DL models should, at the very least, be able to learn the parameters that ARIMA 

would learn. According to the Universal Approximation Theorem, there exists a network that can 

approximate any function to another with any non-zero amount of error (Hornik et al., 1989; Cybenko, 

1989). While this proves the possibility, it does not guarantee a formula that can reliably approximate 

any function onto another. For complex problems, this may entail a model with an infeasible number of 
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layers. Additionally, the ability to approximate one function to another well does not guarantee that 

those same parameters would allow the model to generalize well to new functions (Goodfellow et al., 

2016, p. 194). Therefore, the question is not whether DL models can outperform ARIMA. Instead, 

research should focus on which model can most efficiently outperform the ARIMA and best generalize 

to new data.  
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CHAPTER 2 

MODEL DESCRIPTIONS 

Autoregressive Integrated Moving Average (ARIMA) 

The ARIMA model is a linear model representing the relationship the current observation of a 

time series has with a specified order of past values and error terms. It consists of three components: the 

Autoregressive component, the Moving Average Component, and the Integrated Component (Hamilton, 

1994, p. 43-58).  

The Autoregressive (AR) term captures the relationship between the variable of interest and a 

number of lagged observations of itself: 

𝑌𝑡 =  𝜙1𝑌{𝑡−1} + 𝜙2𝑌{𝑡−2} + ⋯+ 𝜙𝑝𝑌{𝑡−𝑝} + 𝜖𝑡 (1) 

Where 𝑌𝑡 is the value of the series at time 𝑡; 𝜙1, 𝜙2, … , 𝜙𝑝 are the parameters of the AR part of the 

model; and 𝜖𝑡 is the error term. The coefficients of the AR component represent the influence or weight 

of the respective lagged values on the current value of 𝑌𝑡. For instance, 𝜙1 represents the impact of the 

preceding value of the series on the current value, an 𝜙2 represents the effect the value from two periods 

ago has on the current value.  

The Moving Average (MA) term captures the relationship between an observation and the lags 

of the error term. The MA(q) component is represented as: 

𝑌𝑡 = 𝜖𝑡 + 𝜃1𝜖{𝑡−1} + 𝜃2𝜖{𝑡−2} (2) 

𝜃1, 𝜃2, . . 𝜃𝑞  are the parameters of the MA part of the model. The error term, 𝜖𝑡 is assumed to be white 

noise. This means that the probability distribution of the term has a zero mean and constant variance. 

Additionally, it means that the observations are statistically independent from each other. 

The Integrated component refers to the level of differencing that was applied to the data to 

achieve stationarity. A fundamental assumption of the ARIMA model is that the time series of interest is 

a stationary process. This means that the series has a mean of zero and constant variance. When data is 

non-stationary, it often exhibits trends, seasonality, or other systematic patterns that change over time, 
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making it challenging to identify meaningful relationships or make accurate forecasts (Stock & Watson, 

2018, p. 519-520). If the series does not exhibit stationarity, differencing can be applied until stationarity 

is achieved. This is represented by the following: 

𝑦′ = 𝑦𝑡 − 𝑦𝑡−1 (3) 

This process removes trend and seasonality in the series which stabilizes the mean (Wang et al., 2019). 

If one order of differencing is insufficient in achieving stationary, additional levels of differencing can 

be performed. Augmented Dickey-Fuller (ADF) Tests are a standard stationarity testing method. There 

exists a unit root in the series defined by Equation 4 if 𝜌 = 1 , this is what gives the series its trend. The 

ADF test tests the null hypothesis that the time series has a unit root (Hansen, 2022, p.566-570).  

𝑌𝑡 = 𝜌𝑌𝑡−1 + 𝜖𝑡 (4) 

Artificial Neural Networks (ANN) and Optimization 

Artificial Neural Networks (ANN) constitute a direction of machine learning developed to mirror 

the organization of biological neural networks through simple yet large-scale computations. Given a 

vector of inputs, ANNs aim to find a set of weights that can ultimately produce a desired output when 

applied to the vector. While a simple process, doing such by hand is inefficient. Therefore, ANN 

developers aim to construct algorithms to find the optimal weights.  

The simple ANN in Figure 1 has an input layer, hidden layer, and output layer, each consisting 

of two neurons. The input here is a vector of two values x1 and x2 which are transformed in the hidden 

layers to produce a vector of output values o1, and o2. Hidden layers are any layer in between the input 

and output layers. In Figure 1, I use a fully connected (also known as  a 'dense') layer, which is named as 

such since each of its neurons is connected to all preceding and succeeding neurons. The weights are 

first initialized to random values following a Gaussian distribution, and the biases are all set to an equal 

value, typically 1. The weights represent the strengths of connections between neurons, while the biases 

provide neurons with an offset value that influences when they activate, ensuring that they can produce 

meaningful outputs even when inputs are near zero. The weights and biases (parameters) transform the 



10 

 

inputs into their respective hidden states. These parameters, 𝜃, are what the model attempts to optimize 

during training to minimize loss, in other words, the difference between predicted and actual values. A 

typical loss function is Mean Squared Error (MSE). 

ℒ(𝜃) =
1

𝑛
∑ (𝑦̂ − 𝑦)2

𝑖  (5) 

At each layer, the values are passed through an activation function, which introduces non-linearity to the 

model's outputs. The sigmoid function and the hyperbolic tangent function Are commonly used 

activation functions 

𝜎(𝑥) =
1

1+𝑒−𝑥
 (6) 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (7) 

   

Figure 1. Visualization of a simple ANN 

𝑊 =  [

𝑤11 𝑤12

𝑤21 𝑤22

𝑤31 𝑤32

𝑤41 𝑤42

] (8) 

𝐵 = [
𝑏11 𝑏12

𝑏21 𝑏22
] (9) 

ℎ1 = 𝑥1𝑤11 + 𝑥2𝑤12 + 𝛽1𝑏11  (10) 
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ℎ2 = 𝑥1𝑤21 + 𝑥2𝑤22 + 𝛽1𝑤12 (11) 

𝑜1 = 𝑓(ℎ1)𝑤31 + 𝑓(ℎ2)𝑤32 + 𝛽1𝑏21  (12) 

𝑜2 = 𝑓(ℎ1)𝑤41 + 𝑓(ℎ2)𝑤42 + 𝛽2𝑏22 (13) 

This transformation is called the forward pass and the outputs from the first forward pass will 

almost always differ greatly from the actual values. It is through backpropagation that the model can 

optimize the weights. During the backpropagation process, the network uses the Leibniz chain rule to 

compute partial derivatives through the model. In other words, backpropagation calculates the effect all 

preceding weights have on each output node using partial derivatives. For instance, the model calculates 

the effect that 𝑤11 has on total loss (considering only weights for now) by calculating:  

𝜕ℒ(𝑊)

𝜕𝑤11
= (

𝜕ℒ(𝑊)

𝜕𝑓(𝑜1)
  

𝜕𝑓(𝑜1)

𝜕𝑜1
  

𝜕𝑜1

𝜕𝑓(ℎ1)
  

𝜕𝑓(ℎ1)

𝜕ℎ1
) + (

𝜕ℒ(𝑊)

𝜕𝑓(𝑜2)
  

𝜕𝑓(𝑜2)

𝜕𝑜2
  

𝜕𝑜2

𝜕𝑓(ℎ2)
  

𝜕𝑓(ℎ2)

𝜕ℎ2
)  (14) 

 Upon determining the network's weights' partial derivates (gradients), the model uses an 

optimization algorithm to update all weights at once. The most popular algorithm is gradient descent, 

which can, in this case, be summarized as:  

[
 
 
 
𝑤11

𝑡+1

𝑤12
𝑡+1

⋮
𝑤𝑛

𝑡+1]
 
 
 
=

[
 
 
 
𝑤11

𝑡

𝑤12
𝑡

⋮
𝑤𝑛

𝑡 ]
 
 
 
− 𝜂

[
 
 
 
 
 
𝜕ℒ(𝑊)

𝜕𝑤11
𝑡

𝜕ℒ(𝑊)

𝜕𝑤12
𝑡

⋮
𝜕ℒ(𝑊)

𝜕𝑤𝑛
𝑡 ]

 
 
 
 
 

  (15) 

This can be generalized for all the model's parameters, 𝜃,  as: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇ℒ(𝜃𝑡)  (16) 

The derived gradients tune the weights towards the direction that minimizes the objective 

function. In other words, gradient descent calculates the opposite direction of the gradient at each 

iteration. The weight parameters are updated to move in the negative direction of the gradient by a step 

of size 𝜂, also known as the learning rate (Drori, 2022, p. 39). Figure 2 and Figure 3 show a simple 

simulation of this process where the model learns to minimize the objective function by finding the 

gradient of its two weight parameters at each iteration through backpropagation. The gradient descent 
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algorithm, in this case, multiplies the gradient at each point for each weight with the learning rate. This 

is subtracted from the previous value of each weight to determine the updated parameters. To increase 

both efficiency and precision, the learning rate here exponentially decays so that the model initially 

takes larger steps to leave the maxima rapidly but will eventually take smaller steps as it approaches the 

minima, so it is less likely to overshoot the optimum weights. 

Each iteration of this process is referred to as an epoch. In each epoch, the neural network 

undergoes a cycle of forward propagation (the forward pass), where input data is passed through the 

network to make predictions, followed by backpropagation, where gradients are computed for all 

weights. This is ultimately used for gradient descent. The number of epochs can either be a 

predetermined value or a stopping criterion can be set. For instance, the model can be configured to 

terminate training if loss has not improved after a certain number of epochs.   

 

Figure 2. Three-dimensional gradient descent representation 
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Figure 3. Two-dimensional gradient descent representation 

While the preceding examples consider simple network designs with relatively small inputs, as 

models become deeper (more hidden layers) and input sizes increase, the model runs the risk of 

experiencing the vanishing gradient problem. This occurs because, with an increasing number of layers, 

the gradients need to traverse a longer path during backpropagation. As a result, the gradients can 

become increasingly small, making it difficult for the model to update each layer’s weights and biases 

effectively.  

Traditional gradient descent is computationally inefficient because it considers the whole dataset 

each time, so new methods have been introduced to induce faster performance. The most well-known of 

which is stochastic gradient descent (SGD): 

𝜃𝑡+1 = 𝜃 − 𝜂∇ℒ𝑖(𝜃𝑡)   (17) 

The SGD algorithm randomly shuffles the train set 𝑥1, … , 𝑥𝑛 for 𝑖 = 1, thereby computing the 

gradient at each iteration from a random sample rather than the entire data set. This is useful in Deep 

Learning applications where high dimensionality renders traditional gradient descent too time-

consuming (Goodfellow et al., 2016, p. 292).  
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The learning rate, 𝜂, is the size of the step that parameters make at each iteration. Values too 

small can result in the model stagnating within local minima, and a value too large can cause the model 

to keep overshooting the convergence point. One solution is to use a learning rate scheduler, whereby 

the learning rate starts large and exponentially shrinks as it approaches the global minimum, ideally 

preventing overshooting as well as stagnation in local minima. In Figure 2 and Figure 3, I set the 

learning rate to 0.04 and specified that it should exponentially decay to make smaller steps as it 

progressed through training. However, the most popular modern method is the use of Adaptive 

Momentum Estimation (Adam), which is computationally efficient and well-suited for non-stationary 

and noisy data. Adam maintains an adaptive learning rate for each parameter in the model. By 

dynamically adjusting the learning rate based on the history of gradients, Adam strikes a balance 

between learning efficiently (making large updates when gradients are large) and maintaining stability 

(making smaller updates as the optimization progresses). This algorithm also does not require a 

stationary objective function (Kingma and Ba, 2014).  The Adam algorithm maintains two key moving 

averages within the model. The first moving average is: 

𝑚𝑡 = β1 ⋅ 𝑚𝑡−1 + (1 − β1) ⋅ 𝑔𝑡     (18) 

This represents the exponentially decaying average of past gradients where 𝑔𝑡 = ∇ℒ(𝜃) is the gradient 

w.r.t stochastic objective at timestep 𝑡. It effectively incorporates the momentum effect, aiding the 

algorithm in navigating through flat regions and escaping local minima. The second moving average is: 

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2   (19) 

This represents the exponentially decaying average of the root of the sum of past squared gradients, 

which corresponds to the 𝐿2 norm. This moving average plays a role in adjusting learning rates for each 

parameter. By considering the 𝐿2 norm of gradients, Adam can differentiate between parameters 

associated with large gradients (requiring smaller learning rates for stability) and those with small 

gradients (allowing larger learning rates for faster convergence). Both these moving averages are 
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corrected for initialization bias to become 𝑚̂ and 𝑣̂ and used to calculate to update the parameter update 

by way of 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑚̂𝜃

√𝜃+𝜖
   (20) 

where 𝜖 is a small scalar preventing division by 0. Kingma and Ba also detailed AdaMax, a variant of 

Adam in the same 2014 paper. While Adam utilizes the L2 norm (Euclidean norm) of past squared 

gradients to adapt learning rates, AdaMax employs the infinity norm (maximum norm) to track the 

maximum absolute value of past gradients for each parameter, 

𝑢𝑡 = 𝑚𝑎𝑥(𝛽2 ⋅ 𝑢𝑡−1, |𝑔𝑡|)    (21) 

This maximum norm signifies the largest magnitude of a gradient component observed during training. 

Scaling each parameter's learning rate based on the maximum gradient magnitude, 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

1−𝛽1
⋅

𝑚𝑡

𝑢𝑡
   (22) 

ensures that parameters with larger maximum gradient values receive lower learning rates to maintain 

stability, while parameters with smaller maximum gradients can have larger learning rates to facilitate 

rapid convergence. This utilization of the infinity norm makes AdaMax particularly robust in situations 

where gradients exhibit high variability compared to Adam.  

Long Short-Term Memory (LSTM) 

Recurrent Neural Networks, when faced with sequential data of longer lengths, are subject to the 

vanishing or exploding gradient problems. LSTMs, which are a type of Recurrent Neural Network first 

proposed by Hochreiter and Schmidhuber (1997), are the most successful means of addressing the 

vanishing and exploding gradients problem posed by traditional RNNs. The backbone of an LSTM's cell 

structure is the cell state. Where 𝐶𝑡−1 represents the previous cell's state and 𝐶𝑡 represents the updated 

cell state at the end of the sequence. Throughout the process, illustrated in Figure 4, the cell state is 

altered through regulated gates, whose activations are regulated by 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 or 𝑡𝑎𝑛ℎ functions. 𝑋𝑡 is the 

vector of inputs at the time 𝑡. The vector formulas are: 
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𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖 ⊙ 𝐶̃ (23) 

C̃ = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)  (24) 

ft = σ(Wf  ⋅ [ht−1, xt] + bf)   (25) 

it = σ(Wi ⋅ [ht−1, xt] + bi)   (26) 

ot = σ(Wo ⋅ [ht−1, xt] + bo)  (27) 

ht = ot ⊙ tanh(Ct) (28) 

 

Figure 4. Visualization of stacked LSTM cells (Olah, 2015) 

The previous cell state, Ct−1, and the previous hidden state, ht−1, are set to initial values, usually 

zeros or small random values at first since there is no previous context to inform them at the start of 

training. The parameters, which are crucial in affecting the cell's behavior, are also randomly initialized. 

The first component of the LSTM cell is the Forget Gate. This gate regulates the flow of information 

from the previous cell state, Ct−1, to the current cell state, Ct. Mathematically, the forget gate computes 

its output, ft, by applying a sigmoid activation function to a weighted sum of the previous hidden state, 

ht−1, and the current input, xt. The forget gate output determines which information from the previous 

cell state should be retained and what should be discarded. This process can be expressed by Equation 

25.  Wf represents the forget gate's weight matrix, and bf is its bias. The sigmoid activation function 
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squeezes the values into a range of 0 to 1, with large positive values approaching one and large negative 

values approaching zero.  

The input gate and the candidate cell state, 𝐶̃, operate in tandem. The input gate controls what 

new information should be added to the cell state, while 𝐶̃ calculates a candidate value that could be 

incorporated. Similar to the forget gate, the input gate's output, 𝑖𝑡, is computed by applying a sigmoid 

activation function to a weighted sum of the previous ht−1 and the current input xt, as shown in 

Equation 26. 𝐶̃ is determined by applying the hyperbolic tangent (tanh) function to another weighted 

sum of the previous hidden state and the current input, as shown in Equation 24. These two components 

work together to decide which values should be added to the cell state.  

The next step involves updating the current cell state, Ct, by combining the previous cell state 

Ct−1 with the information from the Forget Gate ft and the Input Gate Ct−1. This dynamic update is 

expressed by Equation 23. Values from the forget gate are element-wise multiplied  by corresponding 

values from the previous state. Values closer to one retain information from the previous cell state while 

values closer to zero diminish their corresponding information in the previous cell state. A similar 

interaction occurs between the input gate’s outputs and candidate values which selects which new 

information should be added to the current cell state.  

This updated cell state can be considered the long-term memory of the LSTM layer up until this 

point, it will be used to create the output of the given cell and will be sent to the next cell state to repeat 

the same process.  

The final architectural elements of the LSTM cell are the output gate, 𝑜𝑡 , and the hidden state, ℎ𝑡. 

The output gate, akin to the forget and input gates, calculates its output by applying a sigmoid activation 

function to a weighted sum of the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡 shown in Equation 

27. The hidden state ℎ𝑡, which is the LSTM cell's output at time step 𝑡, is computed by applying the 

hyperbolic tangent activation function to the updated cell state 𝐶𝑡 and element-wise multiplying it by the 

output gate's output, as shown in Equation 28. The hidden state represents the information captured by 



18 

 

any given cell and is the information that will be sent to further layers in the model which can be used to 

influence the final output (Appleyard, 2016; Goodfellow et al., 2016, p. 404-407; Olah, 2015; Yan, 

2016).  

Convolution Neural Networks (CNN) 

Convolutional Neural Networks (LeCun, 1989) have been most popular in their 2-dimensional 

applications for image data and their 1-dimensional applications in time series. CNNs are generally 

characterized as neural networks that use convolution, rather than regular matrix multiplication, in at 

least one layer (Goodfellow, 2016, p.326).  

Convolution is a fundamental operation in signal processing and Deep Learning, widely used for 

analyzing and processing one-dimensional time series data. Mathematically, it involves sliding a small 

window, known as the kernel or filter, along the input time series. At each position of the window, 

element-wise multiplication is performed between the kernel and the corresponding elements of the 

input. The results of these multiplications are then summed up to produce a single output value. This 

process is repeated for each position of the window, generating a new time series called the output 

feature map. 

((𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)
∞

−∞
⋅ 𝑔(𝑡 − 𝜏) 𝑑𝜏) (29) 

Mathematically, the process can be described by Equation 29. Here, 𝑓(𝑡) represents the input 

time series data, and 𝑔(𝑡) is the kernel or filter that the CNN uses to extract features from the input data. 

The convolution operation, (𝑓 ∗  𝑔)(𝑡), involves sliding the kernel over the input data and computing 

the integral of their element-wise product at each position 𝑡. This integral effectively summarizes how 

well the kernel matches a particular segment of the input data at each time step.  𝜏 is a dummy variable 

used for integration. A simple example is illustrated in Figure 5, where the rectangular pulse input series 

is element-wise multiplied by the values of a Gaussian curve (the kernel built up of a series of learnable 

weights), which creates a new series. 
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Figure 5. Convolution of a Gaussian curve and a rectangular pulse. 
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In complex time-series forecasting tasks, the ultimate goal of the convolution is not to directly 

predict what weights can approximate the input into the output. Rather, by performing convolution with 

various kernels of different shapes and sizes, a 1D CNN can learn to identify and recognize critical 

patterns and features that are pertinent to forecasting. These features might encompass trends, 

seasonality, or intricate dependencies within the data. Subsequently, the CNN leverages these extracted 

features to make forecasts about future values in the financial time series. 

The architecture of a deep CNN begins with the input layer feeding into the convolution layer, in 

which the aforementioned convolution is applied. The resulting output is fed through an activation layer, 

typically a Rectified Linear Unit (ReLu). This replaces negative numbers with zeros. The next layer is 

the max pooling layer, which results in a reduction in the size of the previous output; this leaves only the 

most relevant information by keeping, for each given sized group of previous outputs, the maximum 

value (Zhou & Chellappa, 1988). There can be multiple cycles of convolution to max-pooling layers, 

usually decreasing in dimensionality until the model connects to the fully connected layers. CNNs have 

shown strong capabilities in understanding temporal dependencies and have been widely used in 

problems of time-series classification and forecasting (Goodfellow et al., 2016).  

Multi-head Attention 

The attention mechanism can be highly effective for extracting a range of features from a single 

data stream. This mechanism is constructed using the query, key, and value matrices. The query matrix 

is associated with the current state or the specific point in the series that the model aims to predict or 

analyze. The key and value pairs, derived from the historical data in the time series, play crucial roles in 

this process. The key aids the model in identifying which segments of past data are relevant to the 

current query. In contrast, the value provides the actual historical information that the model leverages 

for its predictions or analysis. 

In a univariate time series context, both the query and the keys are derived from the same single 

variable but at different time steps. For instance, if the model is predicting today's exchange rate, the 
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query would be the representation of the current state, and the keys would be representations of the 

exchange rates at previous time steps. 

Multi-head attention enhances this process by allowing the model to simultaneously focus on 

different aspects or patterns within the univariate time series. Each 'head' in a multi-head attention 

mechanism can potentially focus on different types of patterns. This ability to concurrently process and 

integrate different types of information from the same time series is particularly advantageous in 

univariate analysis. It enables the model to develop a more nuanced understanding of the data, capturing 

both immediate and long-term influences on the variable of interest. This comprehensive analysis is a  

reason why multi-head attention mechanisms have become a preferred choice over traditional models 

like LSTMs, especially in complex and rapidly changing domains like financial markets. 

The input sequence of length 𝑛 is transformed into three matrices: the key matrix 𝐾, the query 

matrix 𝑄 , and the value matrix 𝑉.  

𝑋 = [𝑥1, 𝑥2, … , xn]  (30) 

𝐾 = 𝑋 ⋅ 𝑊𝐾 (31) 

𝑄 = 𝑋 ⋅ 𝑊𝑄 (32) 

𝑉 = 𝑋 ⋅ 𝑊𝑉 (33) 

Where 𝑊𝐾, 𝑊𝑄, and 𝑊𝑉 are learnable weight matrices. Next, the attention mechanism calculates the 

attention scores by taking the dot product between the query and key vectors, 

𝐴 = 𝑄 ⋅ 𝐾𝑇 (34) 

These scores reflect the strength of relationships between different positions in the sequence. To 

stabilize the attention competition, the attention scores are scaled by the square root of the key 

dimension 

𝑆 =
𝐴

√𝑑𝑘
  (35) 

The SoftMax function is then applied to the scaled attention scores to obtain the attention weights.  
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This function normalizes the scaled logits derived from Equation 35 by exponentiating each 𝑠𝑖 to ensure 

that they are positive and then divide by them the sum of all exponentiated values across the sequence.  

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆)𝑖 = 
𝑒𝑠𝑖

∑ 𝑒𝑠𝑖𝑁
𝑗=1

 (36) 

This normalization step ensures that the resulting values are in the range [0,1] and sum up to 1, 

effectively creating a probability distribution over the elements in the sequence. These computed values 

from the SoftMax function represent the attention weights, in other words, they represent the importance 

of different positions in the sequence for each position. Finally, the attention weights are used to 

compute the weighted sum of value vectors. This aggregation captures the relationship between the 

positions in the sequence. The whole process can be captured by: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄⋅𝐾𝑇

√𝑑𝑘
)  (37) 

Each set of (𝑊𝑄 ,𝑊𝐾,𝑊𝑉) matrices is an attention head. multi-head attention models can be 

constructed to cast attention to different parts of the sequence in parallel, increasing processing power 

and speed. This is achieved by, as before, calculating attention through each attention head indexed by 𝑖 

then concatenating the attention head outputs and linearly transforming them with 𝑊𝑂 which is a 

learned weight matrix that is trained alongside the rest of the model's parameters. Since the weights of 

each attention head are randomly initialized, and thus begin at different starting points during training, 

they will ultimately learn different features through the optimization process.  

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) +

𝐶𝑜𝑛𝑐𝑎𝑡𝑖∈[#ℎ𝑒𝑎𝑑𝑠] (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑊𝑖
𝑄 , 𝑋𝑊𝑖

𝐾, 𝑋𝑊𝑖
𝑉))𝑊𝑂 (38) 

This attention algorithm was introduced by Vaswani et al. (2017). 
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CHAPTER 3 

DATA 

I use close prices of the Australian Dollar to U.S. Dollar exchange pair from January 27, 1999, to 

November 29, 2019. This was sourced from a publicly available dataset on Kaggle.com (Jiménez, 

2019). The data observes the close price in 15-minute intervals, totaling 515,200 total observations. 

Figure 6 shows a plot of this data. 

Deep Learning training requires the data to be divided into input and target variables. To convert 

my time series arrays into a usable format, I utilized time-delay embedding to separate sequences of 

inputs and outputs. Given a time series array of  𝑥𝑛 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛],  I iteratively looped over the 

series to create two matrices, one being the input arrays and the other being the target arrays of the 

sequences that immediately follow their respective inputs. By setting the stride length to 1, it creates a 

series of overlapping windows that can be visualized as: 

𝐼𝑛𝑝𝑢𝑡𝑠: 

[
 
 
 
 

𝑥1 𝑥2 𝑥3 𝑥4

𝑥2 𝑥3 𝑥4 𝑥5

𝑥3 𝑥4 𝑥5 𝑥6

⋮ ⋮ ⋮ ⋮
𝑥𝑛−7 𝑥𝑛−6 𝑥𝑛−5 𝑥𝑛−4]

 
 
 
 

  (39) 

𝑇𝑎𝑟𝑔𝑒𝑡𝑠: 

[
 
 
 
 

𝑥5 𝑥6 𝑥7 𝑥8

𝑥6 𝑥7 𝑥8 𝑥9

𝑥7 𝑥8 𝑥9 𝑥10

⋮ ⋮ ⋮ ⋮
𝑥𝑛−3 𝑥𝑛−2 𝑥𝑛−1 𝑥𝑛 ]

 
 
 
 

  (40) 

This example uses input and output lengths of size four as an example. In my models, I use inputs of 

length 96 and either length one or 96 for outputs (there are 96 15-minute intervals in a day).  
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Figure 6. Plot of the AUD/USD currency pair from 1999 to 2022 
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In the example above, the model at each point would attempt to predict the output sequence 

based on the corresponding row of inputs. Time delay embedding with overlapping windows has been 

shown to increase the precision of parameter estimates as opposed to sampling independent windows 

(von Oertzen and Boker, 2010). This is because it maximizes the amount of training examples available 

to the model. When making multistep ARIMA predictions, I use an iterative approach since ARIMA 

models can only produce one output at a time. This entails making the prediction for the first time step, 

appending it to the end of the input series, and removing the first element of the series to make the 

subsequent prediction. This continues for a predetermined number of steps until the entire sequence is 

predicted. Deep Learning can be trained to make direct multistep predictions where the model outputs 

the complete forecast at once rather than by the iterative approach.  

Methodology 

I use close price data at the end of each 15-minute interval. Close price best reflects the 

movement of the data in each period (Ariyo et al., 2014). This is the most common target variable, 

according to Islam et al. (2020).  

First, I evaluate all the models on a one-step-ahead forecasting strategy, where an input row of 

values from one day predicts the next single value. Second, I employ a direct forecasting strategy in 

which the model learns to output a one-day length of values in one shot (with the exception of the 

ARIMA which, as noted before, still has to use the iterative approach).  

The outputs are either of length 1 for one-step forecasts or of length 96 for the direct forecasting 

strategy. These corresponding matrices of inputs and their respective outputs are divided into training, 

validation, and testing sets, with 80% of the data being used for training, 20% used for testing, and 20% 

of the training set being used for validation during training.  Conventional wisdom holds that in time 

series problems, the validation set should be the tail end of the training set to prevent leakage. This is 

called holdout validation. However, Bergmeir and Benitez (2012) tested this assumption on a variety of 

methods and determined that in stationary time series data, cross-validation offers more robust model 
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selection, specifically blocked cross-validation, which ensures no overlap between the train and 

validation folds. This finding was reiterated by Bergmeir et al. (2014), which found that blocked cross-

validation provided more precision in error estimates than standard holdout validation. Conversely, 

Cerquiera et al. (2020) find that while blocked cross-validation works well for stationary time series, 

holdout validation works best for non-stationary series. Since my series is non-stationary, I decided to 

use holdout validation. I run my Python 3 code on a Google Colab workbook, utilizing their T4 GPUs to 

reduce train time. The Deep Learning models are all developed through the TensorFlow library, using 

the Keras sequential API. I chose Keras because of its modularity and ease of experimentation.  

 I use the AdaMax optimizer and batch sizes of 32 to train the data on 50 epochs. The models are 

set to stop early if validation loss does not improve after 50 epochs and to remember the best model 

parameters. The outputs of each model are evaluated against the actual values on the basis of MSE, 

RMSE, MAE, MAPE, and a custom directional accuracy metric that calculates the ratio of correct 

directional movements of each output.  

Benchmark ARIMA  

For a robust determination of ARIMA parameters, I construct code to search for the ideal AR(p), 

I(d), and MA(q) values. This search finds the lowest Akaike information criterion score by testing all (p, 

d, q) combinations within the range of 0-2 using the training dataset. The results find that an 

ARIMA(1,1,2) is the ideal set of parameters. This means that the next step of the time series is, on 

average, most accurately determined by considering the current value of the series and two lags of its 

error term. Additionally, the data needs to be differenced once to achieve stationarity. The differenced 

series is shown in Figure 7. The full equation is:  

𝑌𝑡 = 𝜙1(𝑌𝑡−1 − 𝑌𝑡−2) − 𝜃1𝜖𝑡−1 − 𝜃2𝜖𝑡−2 + 𝜖𝑡  (41) 

To then derive my baseline results, I construct code that loops through each row of the test set, 

fits the ARIMA(1,1,2) model, and outputs a forecast. This generates a new data frame, shown in Figure 

7,  of forecasts that I evaluate against each of the corresponding actual values.
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Figure 7. First difference of the input time series   
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CHAPTER 4 

RESULTS AND CONCLUSIONS 

Results 

According to the results shown in Table 1, all Deep Learning models introduced in this study 

consistently outperform the benchmark ARIMA method, and they do so without necessitating any 

preliminary data preparation steps such as stationarity testing or differencing. Notably, the incorporation 

of attention mechanisms yielded a significant performance boost for CNN models, whereas its impact on 

LSTM models was comparatively limited. This divergence in performance can be attributed to the 

inherent complexity of both LSTM and attention models, which excel in handling sequential data. 

Amalgamating these two intricate models may introduce unnecessary complexity, potentially impeding 

their capacity to generalize effectively on new data. Conversely, CNNs, known for their simplicity, 

stand to gain more from the integration of a complex sequential component like an attention mechanism. 

Another potential factor contributing to this performance difference could be the redundancy in the 

capabilities of both LSTM and attention mechanisms, which are both proficient at capturing long-range 

dependencies. In contrast, CNN excels at handling short-range dependencies. Therefore, the 

hybridization of CNN and attention mechanisms proved more advantageous, especially considering the 

relatively small input lengths present in the dataset. The fusion of multi-head attention's long-term and 

contextual capabilities with CNN's adeptness in identifying patterns and local dependencies ultimately 

yielded the most accurate model in this study. 

While this research has demonstrated the superiority of Deep Learning over the benchmark 

ARIMA, it is essential to recognize the inherent limitations of univariate forecasting approaches, 

particularly in the context of financial time series data. Figure 8 shows that while the Attention-CNN 

model captures non-linearities better than the ARIMA model in multistep forecasts, its forecasts rarely 

match the movement of actual values. In financial settings with highly stochastic data-generating 

processes, it becomes challenging to identify meaningful patterns solely from the univariate time series. 

Therefore, even though it has outperformed the benchmark, the model remains inherently limited in its 

ability to provide forecasts that are truly valuable or useful for investment purposes.
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Table 1. Results 

 Metrics 

Model MSE RMSE MAPE MAE 

Directional 

Accuracy Train Time 

One Step Ahead       

ARIMA 2.30𝑒−7 0.00048 0.042 0.00031 47.93%  

LSTM 2.13𝑒−7 0.00046 0.042% 0.00031 47.78% 01:31:10 

CNN 2.18𝑒−7 0.00047 0.042% 0.00031 47.77% 00:26:47 

Attention-LSTM 2.21𝑒−7 0.00047 0.043% 0.00032 47.81% 03:43:14 

Attention-CNN 2.13𝑒−7 0.00046 0.041% 0.00031 47.63% 00:46:19 

Multistep Ahead       

ARIMA 9.36𝑒−6 0.00306 0.286% 0.00212 50.53%  

LSTM 9.09𝑒−6 0.00301 0.299% 0.00218 49.01% 01:31:26 

CNN 8.86𝑒−6 0.00298 0.285% 0.00211 49.10% 00:28:19 

Attention-LSTM 9.12𝑒−6 0.00302 0.296% 0.00218 49.11% 02:46:30 

Attention-CNN 8.83𝑒−6 0.00297 0.284% 0.00210 49.10% 00:46:58 
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Figure 8. Plot of multistep ahead Attention-CNN and ARIMA forecasts    
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Conclusion 

In summary, this research offers valuable insights into high-frequency univariate financial time 

series predictions, demonstrating the superior performance of LSTM, CNN, and attention-based hybrid 

models compared to the ARIMA benchmark, underscoring the potential of advanced Deep Learning 

techniques in financial forecasting. Furthermore, the study contributes significantly by conducting a 

thorough comparison of these models, considering both one-step ahead and multistep ahead forecasts 

while meticulously controlling for crucial hyperparameters, providing a nuanced understanding of their 

effectiveness in capturing complex financial data patterns. A notable aspect of this research is the 

introduction of a novel Attention-CNN hybrid, an innovative approach not previously explored in 

financial time series forecasting. This hybridization method, involving input feeding to both the CNN 

and attention layers with subsequent concatenation of their outputs before forwarding to dense layers, 

holds promise for improving forecasting accuracy in high-frequency financial time series, representing a 

promising avenue for further research and application in the field. 
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APPENDIX 

ONE-STEP MODEL SUMMARIES AND LOSS PLOTS 

One-Step LSTM 
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One-Step CNN 
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One-Step Attention-LSTM 
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One-Step Attention-CNN 
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Multistep Model Summaries and Loss Plots 

Multistep LSTM  

 



37 

 

Multistep Attention-LSTM 
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Multistep CNN 

 



39 

 

Multistep Attention-CNN 
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