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Abstract

The notions of passivity and positive realness are fundamental ptsnireclassical control theory, but the use of the terms has varied.
For LTI systems, these two concepts capture the same essentialtpropdynamical systems, that is, a system with this property does
not generate its own energy but only stores and dissipates energfegupp the environment. This paper summarizes the connection
between these two concepts for continuous and discrete time LTI sysBaysnd that, relationships are provided between classes of
strictly passive systems and classes of positive real systems. Tleegereral framework of dissipativity is introduced to connect passivity
and positive realness and also to survey other energy-based r@gigtiameworks of passivity indices and conic systems are discussed
to connect to passivity and dissipativity. After surveying relevant exjstesults, some clarifying results are presented. These involve
connections between classes of passive systems and finitd-gaitability as well as asymptotic stability. Additional results are given to
clarify some of the more subtle conditions between classes of these syaiehstability results. This paper surveys existing connections
between classes of passive and positive real systems and pros#idis that clarify more subtle connections between these concepts.

1 INTRODUCTION (1984). The third class is that of positive real and stripthg-

itive real systems, which are characterized by a frequency-
h_based input-output relationship, see e.g. Anderson (1967)
Hitz and Anderson (1969), Tao and loannou (1990), Wen
1988b), and Haddad and Bernstein (1994). It is noted in

illems (1972b) that, for the continuous time case, these
relationships “are all derivable from the same principled a
are part of the same scientific discipline”. However, it i$ no
clear that such connections have been fully exploited, al-
though recently Haddad and Chellaboina (2008) provided an
xcellent exposition of some such connections. The goals of
his paper are to (1) review the classical notions of patysivi
dissipativity, and positive realness; (2) summarize egst
relationships between these classes of systems with appro-
priate references; and (3) provide original results toifglar
these relationships. These are broad research areas and en-
tire surveys have been devoted to passivity and dissipativi
* The support of the National Science Foundation under the CPS Rather than attempting to survey all major contributions to

In our recent research we have pursued constructive tec
nigues based on passivity theory to design networked-abntr
systems which can tolerate time delay and data loss, se
e.g. Kottenstette and Antsaklis (2007b) and McCourt and
Antsaklis (2012). As a result we have had to rediscover and
clarify key relationships between three classes of systems
The first class is passive and strictly passive systemshwhic
are characterized by a time-based input-output relatipnsh
see e.g. Zames (1966a,b) and Desoer and Vidyasagar (1975
The second class is dissipative systems, which satisfyea tim
based property that relates an input-output energy supply
function to a state-based storage function, see e.g. Wllem
(1972a), Hill and Moylan (1980), and Goodwin and Sin
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2 Brief Review of Energy-based Control

Passive

<

Passivity, dissipativity, and positive realness have eida
portant history in energy-based control. There have been nu

SIP

Strictly Strictly

Positive ; s L merous papers written on these topics as this is an important
Real wut L, @) Output 2 (1) area of linear and nonlinear control. Instead of surveying
= Passive | “suaple | Passive Stable the breadth of all these topics, this paper focuses on rela-
L (SP)  \=sop/ (SOP) tionships between topics. The following provides a brief re
yapunov

view of the relevant foundational works in these areas. This
is followed by a survey of recent results to demonstrate the
diverse use of these notions in modern control.

Stable

Fig. 1. This Venn Diagram shows relationships between passivity, 2.1 ~ Classical Results
positive realness, ankl; stability for continuous and discrete time

LTI systems. The notion of passivity originated in electrical circuietry

where circuits made up of only passive components were

known to be stable. It was also known that any two pas-

sive circuits could be interconnected in feedback or in par-
_ . ) _ . allel and the resulting circuit would still be passive, sag e
invariant (LTI) case to emphasize the connection to posi- Anderson and Vongpanitlerd (1973). This compositionality
tive real systems, as this notion only applles to LTI systems property greatly reduces the analysis required to dematestr
Some of the basic results covered in this paper are summastapility for a network of circuits. The property of passjvi
rized in Fig. 1. The foundatlongallrellat|ons_h|p is that, fail L itself is an energy-based characterization of the inppatu
systems, the property of passivity is equivalent to the prop penavior of dynamical systems. A passive system is one that
erty of positive realness. Under mild technical assumption  gtores and dissipates energy without generating its owa. Th
these systems are Lyapunov stable. For LTI systestnit notion of stored energy can be either a traditional physical
passivityis equivalent to strict positive realness. For asymp- notion of energy, as it is with many physical systems, or a
totically stable systems, strongly positive real is eqleiit  generalized energy, see Anderson and Vongpanitlerd (1973)
to strictly input passwe&lP). While the flgurg shows that 314 Desoer and Vidyasagar (1975). Passivity and dissipa-
SOPsystems are passive ardd" (I3) stable it should be ity were formalized for general nonlinear state space sy
noted tha_lt this relationship is sufficient only. Systemd tha tems in Willems (1972a,b). These papers provided results
are passive and;" (I3') stable are not necessari§OR for passivity, specifically that passive systems were stabl
This fact will pe demons;rated' with a counterexample. An- 544 that the passivity property was preserved when systems
other connection from Fig. 1 is that systems that are both ere combined in feedback or parallel. Specific forms of dis-
SIPand L3" (I;') stable must b&8OF Other relationships  gipativity for nonlinear control affine systems were stadie
will be covered that relat8IP, strictly output passiveSOB,  fyrther in Hill and Moylan (1976), Hill and Moylan (1977),
and very strictly passive/SF) to notions of stability and of 5 Hill and Moylan (1980). Dissipativity was studied for
state strict passivity. Some preliminary results from s more general nonlinear systems in continuous time in Lin

per were presented in Kottenstette and Antsaklis (201®. Th 1995) and Lin (1996) and in discrete time in Lin (1996)
current paper expands on those connections and presents agyq Lin and Byrnes (1994).

ditional clarifying results. An application of these rdsubo
passivity-based pairing in MIMO systems can be found in

Kottenstette et al. (2014). As the focus of this survey is on the relationship between

passive systems and positive real systems, the Positide Rea
Lemma is of special importance. This is also known as
the KYP Lemma which originated in Kalman (1963) using
This paper is organized as follows. A brief review of some results from Yakubovich (1962) and Popov (1961). This
relevant literature is included in Section 2. This includes Was extended to multi-variable systems in Anderson (1967)
selection of classical results that have been importaritao t With an alternative proof given in Rantzer (1996). Latesthi
field as well as recent results for this area. Section 3 pesvid lemma would be used to develop linear matrix inequality
definitions of the energy-based properties used in thismpape (LMI) methods to demonstrate passivity for linear systems,
This section begins with some mathematical preliminaries See Boyd et al. (1994).

and then moves on to define passivity, dissipativity, peesiti

realness, and passivity indices. Section 4 includes some baA particularly valuable survey paper, Kokotovic and Arcak
sic stability results for passivity and dissipativity arfeen (2001), covered the history of constructive nonlinear oant
moves into some fundamental results involving passive andwith a focus on passivity and dissipativity. From the same
positive real systems. The main results of the paper aregive time period a tutorial style paper, Ortega et al. (2001); pro
in Section 5. Concluding remarks are provided in Section 6. vided a strong motivation for passivity-based control and
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more generally energy-based control. A more recent ref- systems. These notions were studied for the more general
erence highlighting advances in energy-based methods isframework of dissipativity for switched systems in continu
Ebenbauer et al. (2009). In Willems (2007), the classical ous time in Zhao and Hill (2008) and discrete time in Liu
work in dissipativity was reassessed from an updated per-and Hill (2011). The problem of passification of switched
spective. Strong introductions to passivity can be found in systems was studied in Li and Zhao (2013). The related no-
the textbooks Khalil (2002) and van der Schaft (1999). The tion of passivity indices for switched systems was studied
more general framework of dissipativity is thoroughly cov- in McCourt and Antsaklis (2010). Dissipativity was consid-
ered in Bao and Lee (2007), Haddad and Chellaboina (2008),ered for the more general class of hybrid systems in Teel
and Brogliato et al. (2007). (2010) and the class of left continuous systems in Haddad
and Hui (2009).
2.2 Recent Progress

Another area that has been well studied is the connection
For passivity and dissipativity, progress has been made re-between passivity and adaptive control. This area is based
cently in numerous areas. While passivity based control hason applying backstepping to systems in order to adaptively
traditionally been applied to electrical circuits, see. &g- passivate and control them, see e.g. Kanellakopoulos 1991
derson and Vongpanitlerd (1973), and robotic manipulators Kokotovic et al. (1992) and Seron et al. (1995). Recent work
see e.g. Spong et al. (2006), recently these approaches havia this area has focused on applications in flight controhas i
been expanded to chemical processes, where passivity caffarrell et al. (2005) and Farrell et al. (2009). These method
be used to design robust controllers as in Bao et al. (2003)have also been applied to power rectifiers in Escobar et al.
and Bao and Lee (2007). Passivity methods have been useq2001) and hydraulic actuators Wang and Li (2012).
in temperature control in buildings as in Mukherjee et al.
(2012), where the transient and steady state control perfor | 4¢1y it should be mentioned that there has been recent

mance can be improved. Another application area is in Frei- o "on passivity for sampled data systems. This work in
dovich et al. (2009) where passivity was used to design sta-ihjs area has taken two distinct approaches. The first ap-
ble gaits for walking robots. Passivity has also been used yoach is to study conditions under which passivity is guar-
as a design tool for coordination in multi-agent systems in gnteed when a continuous time system is discretized by the
Chopra and Spong (2006b) and Arcak (2007). Recently pas-anpication of the ideal sampler and zero-order hold as in de

sivity has been used in multi-agent robotic systems with |5 sen (2000) and Oishi (2010). The second approach is to
switching topology to maintain connectedness and establis ¢ompensate for a potential loss of passivity due to the zero-
closed-loop stability Franchi et al. (2011), Giordano et al grqer hold as in Stramigioli et al. (2002a), Costa-Castello

(2013). Other uses of passivity in distributed control sys- 4 Fossas (2006), and Kottenstette and Antsaklis (2007b).

tems including network congestion control and collabweati A rejated problem is the study of maintaining passivity de-
robotic manipulation can be found in Wen (2013). While spite quantization as in Zhu et al. (2012).

passivity and dissipativity have a long history in stapilit
of large-scale systems (see e.g. Moylan and Hill (1978) or
Haddad and Hui (2004)), these methods are still being de-
veloped as in Ordez-Hurtado et al. (2013) where the prob-
lem of stability in large-scale systems with time-varying i
terconnections is studied. 3.1 Mathematical Preliminaries

3 Definitions of Energy-Based Properties

One p?rt|culqr ellpphcatlon area tﬁat hash seen recent growthryig haner covers both the continuous time and discrete time
Is in telemanipulation systems where a human user operateg.;qes When it is clear which time series is relevant or sult

a robotic arm remotely and is aided by tactile feedback. The apply to both continuous and discrete time, the time series
use of passivity in this field began with the work in Anderson is denotedr". In continuous time this i§~ — R; while for

and Spong (1988) using the wave variable transformation yis rete time7 = Z+. The space of signals of dimension
from Fettweis (1986). This approach was greatly expanded . i, finite energy in continuous time i3 and iy in
through numerous papers, see €.g. Nlemeygr and SIOtIn‘nﬁiiscrete time. When the context is clear, the general space
(1991, 2004), Stramigioli et al. (2002b), Secchietal. @00 2, il be used to denote either. A continuous time signal
Chopra et al. (2008), Hirche and Buss (2012). The study of z:T — R™isinH (z € H) if the signal has finite.;’-
telemanipulation has led to promising approaches for con- . 2
trol of passive systems over a network, see e.g. Chopra an o0
Spong (2006a), Kottenstette and Antsaklis (2007b), Ketten 2|2 = / xT (H)z(t)dt < co. (1)
stette et al. (2011), and Hirche et al. (2009). 0

orm,

Likewise, a discrete time signal : 7 — R™ is in H
In switched and hybrid systems, nonlinear control methods (z e %) if the signal has finité*-norm,
from passivity and dissipativity have received attention i
recent years. Passivity has been considered for continuous oo
time systems in Zefran et al. (2001) and discrete time in Be- lz)2 = Z 27 ())z(i) < oo. 2)
mporad et al. (2005) and Bemporad et al. (2008) switched P
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The extended signal spacesy’ and (3, can be defined
by introducing the truncation operator. The truncation of a
continuous time signat(¢) to time 7', indicatedzr(t), is

z(t), t< T,
xT@)::{O(Z>>T

The truncation operator is

o (z(), i<T,

in discrete time. A continuous time signal: 7 — R™ is
in H, if
T
x| = / eT(t)x(t)dt < oo, YT E€T. (3)
0

Likewise, a discrete time signal: 7 — R™ is in H, if
T-1
lzrll3 = 3" aT(@)z(i) < oo, VT ET.  (4)
=0

The inner product of signalg andu over the interva(0, 7]
in continuous time is denoted

(w, uyr = / yT(B)u(t)dt. 5)

Similarly the inner product over the discrete time interval
{0,1,...,T — 1} is denoted

T-1

(youyr =Yy (D)uli).

0

(6)

A systemH is a relation ont.. Foru € H., the symbol
Hu denotes an image of underH (Zames (1966a)). Fur-
thermoreH u(t) denotes the value df« at continuous time
t while Hu(i) denotes the value ofu at discrete time.
The following two definitions coveL3® stability in contin-
uous time andj* stability in discrete time.

Definition 1 A continuous time dynamical systefi :
He — He is LY stable if

we Ll = Hue LY.

Definition 2 A discrete time dynamical systefh: H,. —
H. is 15" stable if

uely = Huely.
For both continuous and discrete time finite-gdift (I5*)

stability can be defined by the following input-output condi
tion. For all timesl” € 7 and for all inputsu € #H, a system

H is finite-gain LG* (15*) stable if there exist > 0 and 8
such that

[(Hu)r|l2 < vllurll2 + B. (7)

The notion of finite-gain stability can be used to show sta-
bility of feedback interconnections using the small gaierth
orem, see e.g. van der Schaft (1999) or Isidori (1999). The
small gain theorem has an important relationship to the pas-
sivity theorem for feedback interconnections that was first
given in Anderson (1972). There has been some effort re-
cently to combine the benefits of the passivity theorem and
small gain theorem, see e.g. Griggs et al. (2007) or Forbes
and Damaren (2010).

Another notion related to finite-gain is that of a system gein
non-expansivévan der Schaft (1999)). A system mn-

expansivef there exist constants > 0 and 3 such that

|(Hw)r |5 < 4% [lurl3 + 8. ®)
Remark 1 ((van der Schaft 1999, p. 4), (Kottenstette and
Antsaklis 2007b, Remark 1)) A continuous time (discrete
time) systenH is non-expansivéf it is finite-gain L5* (13")
stable.

For the remainder of the paper, when results involviog-
expansiveor finite-gain L3* (I5*)-stability arise, the notion
of finite-gain L5* (I5*)-stability will be used without loss of
generality.

This paper focuses ooT| systems that are real and causal
with m inputs andmn outputs. A system in continuous time
can be described by a proper squarex m) transfer func-
tion matrix H (s). This system can be equivalently described

by a minimal state space representam)é {4, B, C, D},
with statex € R™, inputu € R™, and outputy € R™, that
can be written

i(t) = Az (t) + Bu(t), Q)
y(t) = Cx(t) + Du(t) (10)

where
H(s)=C(sI — A)~'B+D. (11)

Remark 2 A proper continuous time LTI systdi(s) is L}*
stable if and only if all poles have negative real part (Aktsa
lis and Michel 2006, Theorem 9.5 p.488). This is referred to
as uniform BIBO stability. Equivalently, the minimal state
space realizatior® is asymptotically stable (Antsaklis and
Michel 2006, Theorem 9.4 p.487).

A discrete timeLT| system can be described by a proper
square f{n x m) transfer function matrixt (z). This sys-

tem has an equivalent minimal state space realizétipﬁA:
{A, B, C, D}, with statex € R", inputu € R™, and
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outputy € R™, that can be written

z(k +1) =Ax(k) + Bu(k), (12)
y(k) =Cx(k) + Du(k) (13)

where
H(z)=C(2I — A)~'B+D. (14)

Remark 3 A discrete time LTI systetH (z) is 15 stable if

iii) strictly output passivéSOB if 3¢ > 0 and33 such that
(Hu,u)r > e[| (Hu)7|3 - 8, (21)

iv) very strictly passivgVSP) if 3¢ > 0,§ > 0 and 35
such that

(Hu,u)r > dllur |3 + el (Hu)rlz - 8, (22)

and only if all poles have magnitude less than one (i.e. they Reémark 4 There have been many subtle differences in the

are inside the unit circle of the complex plane) (Antsaklis naming of these definitions in the literature. In some refer-
and Michel 2006, Theorem 10.17 p.508). Again, this result €nces (Desoer and Vidyasagar (1975), for examstegtly

is known as uniform BIBO stability. Equivalently, the cor-

responding minimal state space realizati@h is asymp-

input passivewas referred to astrictly passive This will
be avoided astrictly passiveoften refers tostate strictly

totically stable (Antsaklis and Michel 2006, Theorem 10.16 Passive Other references (e.g. Khalil (2002)) use the terms

p.508).

While the focus of this paper is diT| systems, many results
in passivity and dissipativity are applicable to generai-no

input strictly passiveand output strictly passivehowever,
these are equivalent to the definitionssifictly input pas-
sive and strictly output passivgrovided here.

linear systems. These more general results will be denotedRemark 5 If H is linear and initial conditions are assumed
when appropriate. When considering nonlinear systems in {0 b€ zero, thep can be set equal to zero without loss of gen-
continuous time, it is assumed that the system is of the form, erality in regards to passivity. When initial conditionsearot

o(t) = f(x(t), u(t)),
y(t) = h(z(t),u(t))
where it is assumed thdt-, -) is locally Lipschitz inx and

£(0,0) =0, h(0,0) = 0. Likewise, discrete time nonlinear
systems are of the form,

w(k+1) =f(2(k), u(k)),

(15)
(16)

(17)
(18)

where f(-,-) is locally Lipschitz inz and f(0,0) = 0,
h(0,0) = 0.

3.2 Passive Systems

A system is passive if it only stores and dissipates energy

zero,3 is a generalized measure of initially stored energy. If
H is causal and finite-gairLy* (I5*) stable then the notion
of positivegiven in (Desoer and Vidyasagar 1975, p.174) is
equivalent tapassivegiven here (assumingf«(0) = 0).

Passivity is preserved when two passive systems are com-
bined in either feedback or parallel, see Willems (1972a) or
in the textbooks Khalil (2002) or van der Schaft (1999). This
provides valuable stability results for small and large in-
terconnections of dynamical systems. An important related
problem is to determine conditions under which a system
can be made passive so that these stability results may be
applied. The necessary conditions for passivating a nonlin
ear system can be found for continuous time in Byrnes et al.
(1991) and for discrete time in Byrnes and Lin (1994).

3.3 Dissipative Systems

without generating its own energy. This is captured by anin- The property of dissipativity is a generalization of paigiv
equality where the energy supplied to the system by its envi- that relates internally stored energy of a system to a gener-
ronment,(Hw, u)7, is an upper bound on the loss of stored  ajized energy supply function(u, ). The internally stored
energy,—f. From an alternative perspective, the maximum energy is measured by an energy storage fundtian) that

energy that can be extracted from a system\Hu, u)r, is
bounded above by the constafitthat represents initially
stored energy.

Definition 3 Consider a continuous or discrete time LTI
systemH : ‘H. — H.. Considering all inputs: € H. and
alltimesT € T, H is
i) passivef 35 such that
<HU7U>T 2 _57 (19)
i) strictly input passivéSIP) if 3§ > 0 and33 such that

(Hu,u)r > 8|lurll3 — 8, (20)

is analogous to a Lyapunov function. As a measure of en-
ergy, V(x) must be non-negativé/(z) > 0,Vz. Without
loss of generality, it is assumed that= 0 is an equilibrium
andV(z) = 0 at this point. As with passivity, the discus-
sion of dissipativity can be generalized to nonlinear syste
however for simplicity we will focus on the linear time in-
variant case. FdrTI systems it can be assumed without loss
of generality thatl’(z) has a quadratic form, see Willems
(1972b) or Khalil (2002),

V(z) = 2" Pz, (23)
whereP = PT > 0. The following definitions cover dissi-
pativity and (@, S, R)-dissipativity in continuous time and
discrete time.
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Definition 4 (Willems (1972a)) A continuous time systEm
is dissipative with respect to the energy supply rdte y) if
there exists a non-negative storage functiofx) (23), such
that for all input signalsu € R™, all trajectoriesz € R",
and all t; > t; the following inequality holds

Vi(a(t)) < Vi(tr)) + / Cs(ut)y(t)dt.  (24)

t1

Additionally, the syster® is (Q, S, R)-dissipative (Hill and
Moylan (1976)) if it is dissipative with respect to

s(u,y) =y " Qy+2y" Su+u' Ru, (25)

whereQ = Q" andR = R'.

Dissipativity can be defined in discrete time with supply
rate s(u,y) and energy storage functiovi(z), such that
V(z) > 0forall z andV(x) =0 for z = 0,
V(z) =z Px. (26)
Definition 5 (Goodwin and Sin 1984, Appendix C) A dis-
crete time systers, is dissipative with respect to the supply
rate s(u, y) iff there exists a matrix® = PT > 0, such that

for all x € R™, all timesl,j € T s.t.l > j > 0, and all
input functionsu € H.

-1
V(z[l]) < V(z[j]) + Zs(u[z’]vym, holds.  (27)

Additionally, the systenk is (Q, S, R)-dissipative if it is
dissipative with respect to supply rate (25) wh€Je= QT
andR = R".

Passivity and some related definitions can be given with

respect to the definition df@, S, R)-dissipativity.

Lemma 1 (Kottenstette and Antsaklis (2010)) Consider a
minimal continuous time systermor a discrete time system
¥, that is (Q, S, R)-dissipative. This system

i) is passive iff the system is

(0, %I, 0)-dissipative (28)

i) is strictly input passive ifld > 0 such that the systemis

(0, %I, —4¢1)-dissipative (29)

i) is strictly output passive iffie > 0 such that the system
is

(—el, %I, 0)-dissipative (30)

iv) is very strictlyiff 3e > 0,6 > 0 such that the system is

1 T
(—el, =I,—61)-dissipative

5 (1)

v) is finite-gain L3 (I3*) stableiff 35 > 0 such that the
system is

(—1I,0,421)-dissipative (32)
Remark 6 The reason that these conditions are necessary
and sufficient is that the systemisand X, are minimal
realizations off (s) and H (z) respectively. This implies they
are controllable and observable and therefore satisfyegith
(Hill and Moylan 1976, Theorem 1) or (Hill and Moylan
1980, Theorem 16).

From the above discussion the following two lemmas can
be stated in continuous and discrete time. These results rep
resent a generalization of the Positive Real Lemma (KYP
Lemma) from necessary and sufficient conditions for pas-
sivity to necessary and sufficient conditions for (Q,S,R)-

dissipativity.

Lemma 2 For continuous time LTI systems (9)-(10), a nec-
essary and sufficient test for (Q,S,R)-dissipativity, (24h
(25), is that3P = PT > 0 such that the following LMI is
satisfied:

ATP+PA-Q PB-S _

R <0, (33)
(PB—9)T -R
in which
Q=C"QC (34)
S=C"S+CTQD (35)
R=D"QD+ (D'S+S"D)+R. (36)

Lemma 3 (Goodwin and Sin 1984, Lemma C.4.2) For dis-
crete time LTI systems (12)-(13), a necessary and suffi-
cient test for (Q,S,R)-dissipativity, (27) with (25), isath
3P = PT > 0 such that the following LMI is satisfied:

ATPA—-P—-Q A"PB-S
<0,

T NT » T - (37)
(ATPB-S)T —R+B'PB

in whichQ, S, and R are specified by (34), (35), and (36),
respectively.
The matrix inequalities covered in this paper are lineaha t

decision variableP) so they can be solved using traditional
LMI optimization methods, see Boyd et al. (1994).

3.4 Positive Real Systems

The property of positive realness is a condition on the trans
fer function of aL Tl system. A minimal transfer function
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with this property must be BIBO stable, minimum phase,

Lemma 4 ((Anderson 1967, Theorem 3), (Anderson and

and have relative degree of zero or one. Positive realnessvVongpanitlerd 1973, p.218)) Léf(s) be anm x m matrix

can be shown by an equivalent frequency based condition.

Definition 6 ((Anderson and Vongpanitlerd 1973, p.51)(Tao
and loannou 1988, Definition 1.1)(Haddad and Chellaboina
2008, Definition 5.18)) Consider a continuous time LTI sys-
tem represented by amn x m rational and proper transfer
function matrix H (s). This system is positive real (PR) if
the following conditions are satisfied:

i) All elements off (s) are analytic inRe[s] > 0.
ii) H(s) is real for all real positive values of.
i)y H'(s*)+ H(s) >0 for Re[s] > 0.

FurthermoreH (s) is strictly positive real (SPR) e > 0 s.t.
H(s — €) is positive real. Finally,H (s) is strongly positive
real if H (s) is strictly positive real and) + DT > 0 where

D 2 H(x).

It should be noted that the definition BRimplies that the
poles ofH (s) are in the closed left-half plane, i.e. a minimal
internal realization of the system is Lyapunov stable. The
definition of SPRimplies that the poles off (s) are in the
open left-half plane, i.e. the system Ig" stable with a
minimal internal realization that is asymptotically s&bl
The conditions folPR and SPRcan be verified directly or
the test can be simplified to a frequency domain condition.

Theorem 1 ((Willems 1972b, Theorem 1)(Anderson and
Vongpanitlerd 1973, p.216)(Haddad and Chellaboina 2008,
Theorem 5.11)) LetH (s) be a square, proper, and real
rational transfer function.H(s) is positive real iff the
following conditions hold:

i) All elements of (s) are analytic inRe[s] > 0.
i) H(—jw) + H(jw) > 0, Vw € R for which jw is not
a pole for any element df (s).
iif) Any pure imaginary polejw, of any element off(s)
is a simple pole, and the associated residue matrix

H, 2 lim,_, ., (s — jw.)H(s) is nonnegative definite
Hermitian (i.e.H, = H} > 0).

A similar test is given for strict positive realness.

Theorem 2 (Tao and loannou 1988, Theorem 2.1) IE&ts)
be am x m, real rational transfer function and suppose
H(s) is non-singular. Ther (s) is strictly positive real iff
the following conditions hold:

i) All elements of (s) are analytic inRe[s] > 0.
i) H(jw)+ H"(—jw) > 0 for Vw € R.
iii) Either lim,,_,oo[H (jw)+H ' (—jw)] = D+DT > 0or
if D+DT > 0thenlim,, o w?[H (jw)+H T (—jw)] >
0.

To finish the discussion on continuous time positive real

of real proper rational functions of a complex variablel et
Y. be a minimal realization of{ (s). ThenH (s) is positive
real iff there exists®? = PT > 0 s.t.

ATP+PA PB-CT

- <0 (38)
(PB—-C")T —(D" + D)

Lemma 5 (Sun et al. 1994, Lemma 2.3) Léf(s) be an
m x m matrix of real proper rational functions of a complex
variable s. Let ¥ be a minimal realization of{(s). Then
H(s) is strongly positive real iff there exis® = PT > 0
s.t. 3 is asymptotically stable and

ATP+PA PB-CT
(PB—-C")T —(D" + D)

< 0. (39)

This section up to this point covered continuous time pasiti
real systems. A similar presentation can be made for discret
time systems.

Definition 7 (Hitz and Anderson (1969), Xiao and Hill
(1999), (Haddad and Chellaboina 2008, Definition 13.16)
(Tao and loannou 1990, Definition 2.4, 2.5)) A square
transfer function matrix (z) of real rational functions is

a positive real matrix if:

i) all the entries ofH (=) are analytic in|z| > 1 and
i)y H,=H(z)+ H"(2*) >0, V|z| > 1.

FurthermoreH (z) is strictly positive real iHp (0 < p < 1)
s.t. H(pz) is positive real.

Remark 7 For the discrete time case, there is no need to
define strongly positive real. The definition of strictly pos

itive real implies that(D + D7) > 0 where D 2 H(o0).

This satisfies the analogous definition for strongly positiv
real for discrete time systems, see (Lee and Chen 2000, Re-
mark 4). The terms “strictly positive real” and “strongly
positive real” may be used interchangeably for discreteetim
systems.

The test for a discrete time positive real system can be sim-
plified to a frequency test as follows:

Theorem 3 ((Hitz and Anderson 1969, Lemma 2), (Had-
dad and Chellaboina 2008, Theorem 13.26)) Egt:) be a
square, real rationain x m transfer function matrixH (z)

is positive real iff the following conditions hold:

i) No entry of H(z) has a pole inz| > 1.

systems, we state the Positive Real Lemma and the Strict i) H(e’%)+ H'(e77%) > 0, V0 € [0, 27], in whiche’? is

Positive Real Lemma.

not a pole of any entry off (z).
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iii) If e/ is a pole of any entry ofi(z) it is at most a Definition 8 (Bao and Lee (2007)) A continuous time LTI
system (9)-(10) simultaneously has output feedback piassiv
5 i ) o (OFP) indexp and input feed-forward passivity (IFP) index
e’?)G(z) is nonnegative definite. v if there exists a non-negativié(z) such that the following

) N ~__inequality holds, for alt; andt, such thatt; < ¢o,
The test for a strictly positive real system can be simplified

to a frequency test as follows:

simple pole, and the residue mati, 2 lim__, ;o(2—

ta

V(a(ts)) < V(x(t +/ I+pv)u’ (Hy(t)— (42
Theorem 4 (Tao and loannou 1990, Theorem 2.2) [E&tz) (elt)) < Vialin)) t1 (o (0u(0) “2
be a square, real rationaln x m transfer function matrix oy’ (t)y(t)fmﬁ (t)u(t)|dt. (43)
in which H(z) + HT(z*) has rankm almost everywhere

in the complex-plane. H(z) is strictly positive real iff the

following conditions hold:

i) No entry of H(z) has a pole inz| > 1. As&/vith di_ssip_:;ltivity, th?re are necgzs_ary e;]n?dsufici&siste
iy H(e?) + HT(e79%) > el > 0, V0 € [0,27], Je > 0. to determine if a _s;et 0] pr_:lsswlty indices holds for a given
system. The continuous time test is given in the following

i N a.T
Finally, we state the Positive Real Lemma and the Strictly corollary (to Lemma 2), which assumé¥z) = z* Px.

Positive Real Lemma for the discrete time case.
Corollary 1 For continuous time LTI systems, a necessary
Lemma 6 (Hitz and Anderson 1969, Lemma 3) LEt2) and sufficient test for Definition 8 to hold is tha =
be ann x n matrix of real, proper, and rational transfer ~PT < 0 such that (33) is satisfied in whio) = —pI,
functions and leE, be a minimal stable realization ¢f (z). S=3(1+pv)landR = —vl.
ThenH (z) is positive real iff there exist® = PT > 0 s.t.
An alternative generalization of passivity is in the conjs-s
tems framework that was introduced in Zames (1966a,b).
<0. (40) This framework provides analysis tools, based on operator
theory, that can be used to assess the input-output behavior
of system. It has been shown that this is a general framework
Lemma 7 ((Lee and Chen 2000, Corollary 2)(Haddad and with stability results that generalize both the passivityad-

ATPA-P ATPB - CT
(ATPB-C"T —(D" + D)+ B"PB

Bernstein 1994, Lemma 4.2)) L&t(z) be ann x n matrix rem and the small gain theorem. This original work on conic
of real, proper, and rational transfer functions and [gt systems has been extended in Teel (1996). The framework
be an asymptotically stable realization Bf(z). ThenH (z) has also been applied to networked systems to guarantee
is strictly positive real iff there exist® = PT > 0 s.t. stability despite large time delay, see Hirche et al. (2009)
ATPA-P ATPB-CT The following defines the notion of an “interior” conic sys-

<0. (41) tem as opposed to “exterior” conic systems. As a reminder,
a systemH is a mapping from input, € H. to output
y € He, whereH, = L5 or H =13},

(ATPB—-CT)T —(D" + D)+ B"PB

3.5 Passivity Indices and Conic Systems Definition 9 (Zames (1966a)) An interior conic systéfns

) ) one whose inpui(t) € U C H. and outputy(t) € Y C H.
An alternative energy-based analysis framework for dynam- are constrained to lie within a conic region of the inner
ical systems is in the passivity index framework (Bao and product space’ x Y. This cone is defined by the slope of
Lee (2007)). While passivity is only a binary property, & the center of the coneand its radiusr. When a system is
system is passive or not, passivity indices capture thd leve j, sych a cone, the input and output satisfy the following

of passivity present in a dynamical system. These indicesinequality,VT € [0, 00) and for zero initial conditions,
can be used to extend feedback stability properties from the

assivity theorem or small gain theorem to systems that are
got pas)s/ive or do not have%inite gain. g lyz () = cur t)ll2 < rllur @)l (44)

The concept of indices came from applying earlier work of

conic systems (Zames (1966a,b)) to state space representafFhe distinction ofinterior conic versusexterior conicis
tions. Early work on indices includes Safonov et al. (1987) important when defining cones usingndr. Interior conic

and Wen (1988a). A detailed overview of passivity indices systems are ones that lie within a cone that does not cross
can be found in Bao and Lee (2007). While the current paper the vertical axis. When a cone spans the vertical axis, the
focuses on the LTI case, passivity indices can be defined forcone cannot be defined with any finite or infinitelnstead,
general nonlinear systems. The indices will be presented inthe notion of exterior conic must be used. These systems are
continuous time but the discrete time case follows simjlarl  defined as ones that lie outside of a cone defineddnydr.
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An alternative characterization of a conic region is by the e.g. Bao and Lee (2007). While positive definiteness of the

slope of the upper bountl and lower bound:. For inte- storage functiorV is not required for passivity, it is required

rior conic systems, these values can be relatedandc by for stability asV is used as the Lyapunov function Khalil

the expressiondy = ¢+ r anda =c—r or ¢ = ”T“’ and (2002).

r= b‘T“ Similar relationships can be found for the exterior

conic case. By using this alternative definition, the distin  For some of the remaining stability results, the notion of

tion between interior conic and exterior conic is unneagssa  state strictly passivevill be defined. This notion is defined

using a storage function because the property is dependent

Definition 10 (McCourt and Antsaklis (2009)) A system is On the internal state.

a conic system in the cone definedtgnd a if and only

if the following inequality holdsyT € [0, cc) and for zero ~ Definition 11 (Khalil (2002)) A LTI system in continuous

initial conditions, time is state strictly passivéor strictly passivein Khalil
(2002)) if there exists a continuous storage functidfy) =

5 9 z" Pz > 0,Vz # 0, and a constant > 0 that satisfies the
lyr (®)lz + allur@)]2.  (45) following inequalityvz and Vvt € T,

S| =

L+ D), u(®)r 2

(y(), u(®))r = V(2(T)) = V(x(0) + afz(t)r|3. (46)

It is important to note that this definition differs slightly
from the one in Zames (1966a). While this early definition
specifies thab > a always, the definition given here does This definition can be applied to discrete time systems by
not enforce the same condition. This is done to remove the changing the time series used.
requirement that interior or exterior conic must be spetifie
and to simplify the presentation to a single definition of Rather than presenting all stability results formallyytiaei|
conic systems. In the case of interior conic systems, theinstead be summarized here with appropriate references. In
two frameworks are identical. In the case of exterior conic light of the relationships shown in this paper, stabilitylwi
systems, the role of andb are simply reversed. For more be stated for passive and dissipative systems with results f
information on deriving this single definition from the two positive real systems following. The stability results|vié
previous definitions, refer to McCourt and Antsaklis (2009) stated in continuous time while most results follow for dis-
This subtle change strengthens the relationship to passivi crete time as shown in Goodwin and Sin (1984). It should be
indices. noted that unlike Theorem 5, positive definitenesk 0f) is

not needed in the following results, see e.g. (Khalil (2002)
Remark 8 (McCourt and Antsaklis (2009)) A system with

passivity indicegp and v is conic with upper bound = - (1) A SOPsystem is finite-gairL} stable (van der Schaft
and lower boundz = v. The converse is also true, i.e. a (1999), Khalil (2002)).

conic system in the corle, b] has passivity indicep = (2) A system with minimal realizatiort that is state
andv = a. strictly passive is asymptotically stable (Khalil (20Q02))

(3) A (@, S, R)-dissipative system witlp) < 0 is L* sta-

- . o ble (Hill and Moylan (1977)).
4 Preliminary Results for Passivity, Dissipativity, and

Positive Realness G Y,
1
4.1 Summary of Stability Results
+
This section covers the classical results for stability @ G, <U—ZQ<—rz
sive, positive real, and dissipative systems. As statdibgar *

passive and positive real systems are stable. _ _ _ )
Fig. 2. The negative feedback interconnection of systémand

Ga.

Theorem 5 (van der Schaft (1999), Khalil (2002), Good-

win and Sin (1984)) Consider a minimal representation of While these energy based properties can be used to show

an LTI system in continuous or discrete time. If this sys- stability of a single system, the benefit of this analysis ap-

tem is positive real, or passive with positive definite sjera  proach becomes more apparent when applied to the feed-

functionV () then it is Lyapunov stable. back interconnection of two syster@§ andGs, Fig. 2. The
following list summarizes these results.

Remark 9 Theorem 5 assumes the representation is mini-

mal so it must be controllable and observable. Passive or (1) The feedback interconnection of two passive systems

positive real realizations that are not minimal may still be forms a closed loop system that is passive. It is also
Lyapunov stable with an alternative condition. One such stable if the two storage functions are positive definite
condition is an observability or detectability conditicsge (Khalil (2002)).

9
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(2) The feedback interconnection of two state strictly pas- for the imaginary part of the frequency responseHifis
sive systems is asymptotically stable (Khalil (2002)). SOP then the constamtin the definition may be found by
(3) The feedback interconnection of tw&lP systems is the following inequality:
L7 stable (van der Schaft (1999)).
(4) The feedback interconnection of tv&OP systems is nf Re{H (jw)}
L3 stable (van der Schaft (1999)). U<es wel0,00) Re{H (jw)}2 + In{H (jw)}2 (50)
(5) The feedback interconnection of tweéQ,S, R)-
dissipative systems forms a closed loop system that is for the continuous time case. Similarly for discrete timsea
(Q, S, R)-dissipative. The closed loop system can be
shown to belL3* stable under certain conditions (Hill
and Moylan (1977)).

H(e’) = Re{H(e/)} + jIm{H (")} (51)

. . i0 o _ -0) . .
One important note about these results is that they are not'en z\'h'crflol:“et{hg (reéal)} art gﬁr{{e (efrej u};enlg V\:QIsChor?seSan 4
exclusive toLTI systems. While this paper focuses on the I {*HW )} = 1 {2( ~i0)} for th?a imayinarp art of
LTI case to connect passivity and positive realness, passivity,[;]ne fre(euenc_ res monsee The constafdr (2% sat>i/sﬁe5'
and dissipativity can be more generally defined for nonlinea q y resp : '
systems and the stability results are still valid. .
’ ’ 0<e< min Re{H(e-79)}
€ - -
~ oelo,r] Re{H (e79)}2 + Im{H (e7?)}?

(52)
4.2 Preliminary Results on Passivity and Positive Realness

- , . for the discrete time case.
Preliminary results related to the properties of passiityl

positive realness are cover_ed in this section. The foll_gwin Proof: Since a strictly output passive system has a finite
result from Desoer and Vidyasagar (1975) summarizes integrable (summable) impulse response Q”O°é.h2(t)dt <

series of frequency-based conditions that are equivatent t o0 (3%, h2]i] < o0)) then the condition foSOP(21) can
passivity or strict input passivity. be Wri'ét:eon as

Theorem 6 (Desoer and Vidyasagar 1975, p.174-175) Con- o o oo i o
sider a LTI systen#/ which has a minimal realizatiof / H(jw)|U(jw)| dee/ |H (jw)"|U (jw)|"dw
(X.) that is asymptotically stable. - e (53)

. : . . for the continuous time case or
(i) If H is a continuous time system then

(@) H is passive ifff (jw) +H' (—jw) > 0, Yw € R. L , 7 , ,
(b) H is strictly input passive iffié > 0 s.t. H(ENU(E)Pd0 > e [ |H()?|U ()0
‘ T . . o B
H(jw) + H' (—jw) > 61, Vw e R, (47) for the discrete time case. (53) can be written in the foliayvi

simplified form:
(i) If H is a discrete time system then

i ive i 0 —350 00
(a) [Ié |237T]|?asswe iffif (e7%) + HT(e=7%) > 0, V0 € / Re{ H (ju)} U (ju) [Pdw > (55)
(b) H is strictly input passive ifid > 0 s.t. R
| | ¢ [ (elH()} + m{H )}V ()P
H(? + H(e77%) > 61, V0 € [0,2n]. (48) —o0

in which (50) clearly satisfies (55). Similarly (54) can be

While there are existing results for frequency based condi- written in the following simplified form:

tions for passivity and strict input passivity, there isait
established test for strict output passivity. One such cond

tion is proposed in the following theorem. / Re{H (’))}|U (%) |2d6 > (56)
Theorem 7 Consider a single-input single-output LTI " 76\ 2 j6\12 J0\|2
strictly output passive system with transfer functiéifs) € _W(Re{H(e )37+ Im{H(e))U ()] do

(H(2)), real impulse responsk(t) (k(k)), and correspond-
ing frequency response: in which (52) clearly satisfies (561

H(jw) =Re{H (jw)} + jIm{H (jw)} (49) The frequency based conditions for passivity and striaiinp
passivity (Theorem 6) are closely related to the frequency
in whichRe{H (jw)} = Re{H(—jw)} for the real part of based conditions for positive realness and strong positive
the frequency response afid{H (jw)} = —Im{H(—jw)} realness.

10
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Remark 10 It is important to note that the valuein (50)
or (52) corresponds to the OFP indexn (42). In (Bao and

Proof:ii = i
Since, is asymptotically stable then all poles are strictly

Lee 2007, p.29), an alternative method of calculating the inside the unit circle, therefore Theorem 4-i is satisfieelxiN
OFP index is given for minimum phase linear systems. We (59) clearly satisfies Theorem 4-ii.
did not pose such constraints on the system when calculatingi — ii:

this value using (50) or (52).

Lemma 8 Let H(s) (with a corresponding minimal real-
ization 3J) be am x m, real rational transfer function that
is non-singular. Then the following are equivalent:

i) H(s) is strongly positive real

i) X is asymptotically stable and strictly input passive s.t.

H(jw) + H' (—jw) >0 >0, Vw eR  (57)

Proof: ii = i:

Since X is asymptotically stable then all poles are in the
open left half plane, therefore Theorem 2-i is satisfied.tNex
(57) clearly satisfies Theorem 2-ii. Also, (57) implies that

D+ D' > 61 > 0 which satisfies 2-iii which satisfies the
final condition to be strictly positive real and also strgng|
positive real as noted in Definition 6.

i = i

First we note that Theorem 2-i impliés will be asymptot-
ically stable. Next, from Definition 6 we note thag; > 0
S.t.

HT(—joo) + H(joo) = D"+ D > 6,1 >0
Lastly, we assume thatj; < 0 s.t.
H'(—jw) + H(jw) > oI, Yw(—00,00)  (58)

however this contradicts Theorem 2-ii therefai® > 0

s.t. (568) is satisfied which implies (57) is satisfied in which

0= min{§1,52} >0.1

Remark 11 Note that Lemma 8-ii is equivalent ¥ being
asymptotically stable and (s) being strictly input passive
as stated in Theorem 6-b.

The previous lemma is now provided for discrete time sys-

tems. As that the definition for strictly positive real and

strongly positive real are equivalent in discrete time,-con

nections involving strongly positive real are not needed.

Lemma 9 Let H(z) (with a corresponding minimal real-
izationX,) be a square, real rationaln x m transfer func-
tion matrix in whichH(z) + H"(z*) has rankm almost
everywhere in the complexplane. Then the following are
equivalent:

i) H(z) is strictly positive real

i) X, is asymptotically stable and strictly input passive s.t.

H(e%) + H (e79%) > 61, Vo € [0,27]  (59)

11

First we note that Theorem 4-i impliés, will be asymptot-
ically stable. Finally Theorem 4-ii clearly satisfies (5I.

5 Main Results
5.1 Connection Between Passive and Positive Real

This first part of this section focuses on the relationshigps b
tween classes of passive and positive real systems. The fol-
lowing lemma covers the connection between passive and
positive real for continuous timeTI systems. Recall that
positive realness is defined for square transfer functioars t
are assumed to have zero initial conditions so the conmectio
is shown for zero initial conditions. The next result is the
connection between strongly positive real and strictlyuinp
passive for asymptotically stable systems. The relatipnsh
between strictly passive and strictly positive real is rmt-c
ered but the reader is directed to Haddad and Chellaboina
(2008) or Khalil (2002) for these details. The remainder of
this subsection covers these connections for the discnege t
case.

Lemma 10 Let H(s) be anm x m matrix of real, proper,
and rational transfer functions of a complex variafleLet
¥ be a minimal realization off (s). Denoteh(t) as the
m x m impulse response matrix df(s) from which the
outputy(t) can be computed by,

y(t) = /0 h(t — T)u(r)dr.

Then the following statements are equivalent:

i) The transfer functiornH (s) is positive real.
ii) There existsP = PT > 0 to satisfy the Positive Real
Lemma (38) .
iii)y The systen® is (0, 11, 0)-dissipative, i.e3P = PT >
0 s.t. (33) is satisfied.
iv) The system is passive, iVl

T
/ y" (t)u(t)dt > 0,
0
for zero initial conditions.

Proof: i) < ii): Stated in Lemma 4.

i) < iv): Remark 5 states that iv) is an equivalent test for
passivity and Corollary 2 states that iii) is an equivalest t
for passivity when(Q, S, R) = (0, 11,0).

i) = iii): A passive systemH(s) is also passive iff
kH(s) is passive forvk > 0. Therefore (33) forkH (s)
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in which© = {4, B,kC,kD} and(Q, S, R) = (0, 31,0),
Q=0,5=%CT, R=%DT+ D).

passive). Thus i§(0) = 0 then

T > 2
I R A D / yT(Ou(t)dt > elly(®)]3.
(PB—kc™T k(DT 4+ D)| ~ .
Remark 13 In order for the equivalence between strongly
positive real and strictly input passive to be stated, the
strictly input passive system must also have finite gain (i.e
3 is asymptotically stable). For example the realization for
H(s)=1+1 2={4=0,B=1,C=1,D=1},6=1
is strictly input passive but is not asymptotically stablew-
everH(s) =<2 S ={A=-a,B=(b—a),C=D=

~ s+a?

which for k£ = 2 satisfies (38).

iif) == ii): The converse argument can be made in which
a positive real systenH (s) is positive real iff kH(s) is
positive realvk > 0 in which we choosé: = ;. B

Remark 12 The key to the proof was connecting the work of ) R . . .
Anderson and Vongpanitlerd (1973), Desoer and Vidyasagar 1}, = min{1, /} is both strictly input passive and asymp-
(1975) and Hill and Moylan (1980). Doing so highlights totically stable for alla, b > 0.

the connection between positive real system theory and dis-

sipative system theory. This connection was partially made Proof: i) <> ii): Stated in Lemma 5.

previously in (Willems 1972b, Theorem 1) and Desoer and ii) < iv): Stated in Lemma 8.

Vidyasagar (1975). Similar connections are discussed re- iii) < iv): Stated in Lemma 18

cently in Haddad and Chellaboina (2008) which relied on
Parseval's Theorem. The benefit of the approach in the cur-

rent paper is that it does not rely on Parseval’s Theorem strictly input passive then it is also strictly-output pass

which cannot be applied to systems with poles on the imag-(van der Schaft 1999, Remark 2.3.5) , the converse how-

inary axis. As a result, the connection between passive sys- X - . .
tems and positive real systems holds for systems with polesever’ is not always true (i.nfy., Re{H (jw)} is zero for

Remark 14 It is known that if anL5* ({7*) stable system is

on the imaginary axis. Finally, it should be noted that thés r strictly proper (strictly output passive) systems). It baen

sult was given previously with a different proof in Brogtiat
et al. (2007).

Lemma 11 Let H(s) be anm x m matrix of real, proper,
and rational transfer functions of a complex variablelLet
Y. be a minimal realization ofi (s). Furthermore we denote
h(t) as anm x m impulse response matrix &f (s) in which
the outputy(t) is computed as follows:

t
y(t) = / h(t — T)u(r)dr
0
Then the following statements are equivalent:

i) The transfer functiorf (s) is strongly positive real.

ii) There existsP = PT > 0 to satisfy the strict Positive
Real Lemma (39).

iii)y ¥ is asymptotically stable anD, 5, —d1)-dissipative,
i.e. 3P = PT > 0 such that (33) is satisfied, i.e. the
system is strictly input passive aid* stable.

iv) 3 is asymptotically stable, and for zero initial condi-
tions (0) = 0),

/O Ty 0ult) > Slut)

in which § = inf_ . <,<oo Re{H (jw)} for the single
input single output case.

Furthermore, iii) implies that fo(Q, S, R) = (—el, $1,0)
theredP = PT > 0 s.t. (33) is also satisfied (strictly output
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shown for the continuous time case (van der Schaft 1999,
Theorem 2.2.14) and discrete time case ((Kottenstette and
Antsaklis 2007b, Theorem 1) and (Goodwin and Sin 1984,
Lemma C.2.1-(iii))) that a strictly output passive systam i
passive andLy" (I7*) stable but it remains to be shown if
the converse is true or not true. Indeed, we can show that
an infinite number of continuous time and discrete time lin-
ear time invariant systems do exist which are both passive
and L3 (I17*) stable and are neither strictly output passive
nor strictly input passive. This is demonstrated in Remark
15 using the following theorem.

Theorem 8 Let H : H. — H. (in whichy = Hu, y(0) =

0, and for the case when a state-space description exists
for H that it is zero-state observable (= 0 implies that

the statex = 0) and there exists a positive definite storage
function 8(x) > 0,z # 0,5(0) = 0) have the following
properties:

a) [lyrll2 < yllurll2
(y,u)r > —dljur3 _

¢) There exists a non-zero norm inpusuch that(y, u)r =
—0llur||3 and|[lyr (|3 > 6%|lurf3 for & < 1.

Then the following systerfl;, in which the outputy, is
computed using; = y + du has the following properties:

I. H, is passive.
Il. Hyis LY (I3') stable.
Ill. H; is not strictly output passive (also not strictly input
passive )
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Proof: 8-1: Solving for the inner-product between andu denoteh[k] as anm x m impulse response matrix &f (z)
we have in which the outpuy[k] is computed as follows:
(v, wyr = (y,u)r + dllurll3 > (=0 +9)|jur|3 =0 k

8-l: Solving for the extended-two-norm fgr we have . .
Then the following statements are equivalent:

2 2 2 2 2
= |l(y +9 < +6 . . y
el = 1y + 6url3 < lyrl3 + 6%url3 ) H(s)is positive redl,

Iy)rlls < (v° +6%)lurll3 ii) There existsP = PT > 0 to satisfy the discrete time
Positive Real Lemma (41).
iy With @ = R =0, S = 31 there3P = PT > 0 s.t. (37)
8-Ill: From 8-I, the solution for the inner-product between is satisfied.
y1 and u can be substituted in Assumption c) to give, iv) For zero initial conditions ¢[0] = 0), H(z) is passive
(y1,u)r = (=6 +9)|lur|3 = 0.

It is obvious that no constait> 0 exists such that >y (@)ui) > 0.
=0

=0> 2 =
(r,wr =02 dljurl; =0 Lemma 13 Let H(z) be anm x m matrix of real rational
transfer functions of variable. Let X, be a minimal real-
ization of H(z) which is Lyapunov stable. Furthermore we
denoteh[k] as anm x m impulse response matrix &f(z)
in which the outpuy[k] is computed as follows:

since it is assumed théti||3 > 0, henceH, is not strictly-
input passive. In a similar manner, noting that the added re-
striction holds||yr||3 = 6%||lur|3 for the same input func-
tion v when (y, u)r = —d||ur||3, it is obvious that no con-
stante > 0 exists such that

(i, ubr = 0= e (y)7[3 = 0 ylk] = D hlk — iJuli]
0> e(lyrll3 — 6*[lurl3)

Then the following statements are equivalent:
holds.l
i) H(z) is strictly positive real.
Remark 15 Theorem 8 shows that a system that is passive ii) There existsP = PT > 0 to satisfy the discrete time

and L% stable is not necessari§OP. The continuous time Strict Positive Real Lemma (41).
systemH (s) given by iii) X, is asymptotically stable, and fap =0, R = —41,
S =11,3P = P" > 0,and35 > 0 s.t. (37) is
w? satisfied.
H(s) = T oms ol (61) iv) X, is asymptotically stable, and for zero initial condi-

tions [0] = 0), H(z) is strictly input passive s.t.

for w,, > 0 satisfies the assumptions of the theorem required -

of a systent/ in whichd =  and an input-sinusoid(t) = T, (s 12
g Du(i) > 0l|u()||5.

sin(v/3wyt) is a null-inner-product sinusoid such that = y (Eu(®) 2 3u(@l;

Hy(s) = 1 + H(s)= 1 + wy (62) 5.2 Connections Between Classes of Passive Systems

8 8 24 2w,s + w2
_ _ ) ) This section clarifies some subtle connections between
is both passive and.;" stable but neither strictly-output  cjasses of passive systems. These connections involve pas-
passive nor strictly-input passive. sivity, state strict passivitySIP, SOP andVSPas well as
L7 stability and asymptotic stability. This section focuses
This section will be finished with the connections between on the continuous timeTI case but the more general non-
passivity and positive real in discrete time. The proofs are Jinear case is also true. These results are original and addi
omitted as they closely follow the continuous time case.  tjonal background is cited when appropriate. Some results
rely on the inverse of a continuous time syst&hexisting
Lemma 12 Let H(z) be anm x m matrix of real rational and being causal. A necessary condition for this to be true
transfer functions of variable. Let ¥, be a minimal real- for LTI systems is that the system has relative degree zero
ization of H(z) which is Lyapunov stable. Furthermore we (Antsaklis and Michel (2006)).

13
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Theorem 9 A system i&/SPif and only if it isSIPand L3*
stable.

Proof: Necessity:VSPimplies SIP and SOP. Since SOP
implies L, stability, VSPimplies SIPand L. stable.

Sufficiency: If X is SIP, there exists, > 0 and a constant
31 such that

(u,y) > v(u,u)r + P1.

Additionally, if ¥ is £, stable, then there exists> 0 and
a constant3, such that

(v, y)7 < v{u,u)r + Ba.

Thus, there exist constards > 0,¢e2 > 0 andv—e; —eay >
0, such that

(w,y)r — e1{u, u)r — €2(y, y)r
=(u,y)r — v{u,u)r + (v — e1)(u, u)7 — €2(y, y)r
>p1 4 (v — e1){(u, u)r — e2(y(u, u)r + B2)
=/ —ef2 + (v —e1 — e27)(u, u)r
>B1 — e2fs.

Defining B £ B1 — exf32, the result is that(u,y)r —
e1(u, u)r — €2 (y,y)r > B, thusx is VSP H

Remark 16 One direction of the previous theorem was

shown in van der Schaft (1999). The result was given here

to show thatSIP and L3* stable is an equivalent definition
for VSP.

Remark 17 Based on Lemma 8 and Theorem 9, we can
say that VSP is equivalent to strongly positive realness for
system given by (11).

The following result provides an equivalent definition for
VSPusing the inverse of the system.

Theorem 10 Suppose the inverse of a continuous time sys-
tem exists. This system \6SPif and only if it isSOPand
its inverseX—! is £, stable.

Proof: Sufficiency: If the systenx is SOP, then there exist
p > 0 andpy < 0 such that

(w,y)T — p{y, ) >P2. (63)

Further, if the inverse system—! is £, stable, then there
existy > 0 andj3; > 0 such that

(w,u)r <¥(y,y)r + 1. (64)

14

Fore; > 0 ande; > 0 such thatp — e — €3y > 0, we can
obtain the following relation from (63) and (64), where

<U, y>T — € <u> u>T - €2<y’ y>T
=(u,y)r — p(y, )1 + (p — €2){y, y)r — e1{u, u)r
>Bo+ (p — €2)(y, y) — e1(V{y, y)7 + B1)
=B —e1f1 + (p—e2 — 7)Y, Y)r
>B2 — €151.

Definings = f2—e¢1 61 < 0, we obtain(u, y)r—e; (u, u)p—
ea(y,y)r > B. Therefore, the system is VSP.

Necessity: If¥ is VSR then there exisp > 0 andv > 0
and a constan < 0 such that

(w,y)r > B+ p(y, y)r + v{u, u)r.

The following relation holds

5y (u,uyr > (u, y)r-

12
<%wT+§

Thus, we can derive that

1 v
— - - - > 8.
(3, — Py yr = 5{wur 2B
For VSP systems, we havpr < 1. Thus, 5 — p > 0.

Therefore, we obtain

(w,u)r < ¥(y,y)r +0,
wherey = 5 —22 > gandb = —22 > 0. Thus, the system
¥~ lis £, stable.®

The final result of this section is a stronger connection be-
tween strictly passive and asymptotically stableStP sys-
tems.

Theorem 11 For SIP systems, a systel is state strictly
passive if and only if it is asymptotically stable.

Proof: Necessity: It is obvious that a state strictly passive
system is asymptotically stable. By setting= 0, we have

V < —azTx <0, and the equality holds if and only if =

0. This condition can be used to show théfz) is positive
definite as in ((Khalil 2002, Lemma 6.7)). Therefolé(x)

is a Lyapunov function, and the system is asymptotically
stable.

Sufficiency: 3 is SIP which implies there exist;(z) > 0
andé > 0 such that

uly — 1%} (x) > SuTu.
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Since ¥ is asymptotically stable, there also exists a
Lyaponuv functionV,(z) > 0 such that

Va(z) < —azT .
Apply V(x) = Vi(x) + Va(x) > 0 as another storage func-
tion for the system, we can obtain

V(z) = Vi(z) + Va(z) < uly — ouTu— azTz,
thus the system is state strictly passive as welbks
5.3 Relationships Involving Passivity Indices

As stated earlier, passivity indices are a generalization o
passivity. This is clear from making the substitutior= 0

and v = 0 in the LMI for passivity indices in Corollary

1. TheLMI reduces to the Positive Real Lemma (38). As
shown previously (Theorem 6), the Positive Real Lemma is
necessary and sufficient for a system to be passive or positiv
real.

Remark 18 Systems that have passivity indices are also
(Q, S, R)-dissipative withQ = —pI, S = 1(1 + pv),
and R = —vI. This can be seen by comparing the defini-
tion of passivity indices (42) to the definition @, S, R)-
dissipativity, (24).

With the relationship to dissipativity made, it is possilde
further compare the passivity index framework to classes of
passive systems. A system with bgtland v non-negative

is a passive system. When= 0 and is strictly positive,

the system is strictly output passive. Likewise, whesa 0
andv is strictly positive the system is strictly input passive.
Passivity indices can be used to assess stability of ingilid
systems as well as systems in feedback.

Theorem 12 A system with OFP index and IFP indexv
is L3 (I3*) stable ifp > 0. Additionally, this system iSOP
if v > 0 andVSPif v > 0.

Theorem 13 (McCourt and Antsaklis (2010)) Consider the
interconnection (Fig. 2) of two systems that are either both
continuous time or both discrete time. Assume thathas
indices(p1, 1) andGs has indiceg p2, v2). If the following
matrix is positive definite,

3(p11 — pan)l
(p2 + 1)1

(p1 + o)1
%(plyl — pave)l

A= >0, (65)

the interconnection i€.5" stable.

6 Conclusions

This paper surveys relationships between various energy-

been written on the classical results from passivity and dis
sipativity theory, the current paper focuses instead on re-
sults that(1) demonstrate relationships between frameworks
and(2) provide new insight into the details of energy-based
analysis. The fundamental connections between definitions
of passive and positive real, and their stability results, a
summarized in Fig. 1. These connections are valid for con-
tinuous time or discrete time LTI systems. The connection
between these two classes of systems is demonstrated using
dissipativity theory rather than using Parseval's Theorem
Dissipativity is a generalization of these notions that ban
applied to a large class of systems assuming an appropriate
energy supply rate can be determined. The paper also sur-
veys the energy-based frameworks of passivity indices and
conic systems. As was shown, for systems with a state space
representation, the frameworks are identical. Either @an b
used as a framework that is more general than passivity but
more easily applied than dissipativity.

Other than clarifying the connection between passivity and
positive realness, the main results section of the paper pro
vides other connections as well. This includes a connection
between strongly positive real and strictly input passive a

a connection tad., stable systems. This also includes clar-
ifying connections between state strict passivity, classfe
input-output strictly passive systems, ahgl stable passive
systems. Finally, connections were made between the frame-
works of passivity indices and conic systems with passivity
and dissipativity. While some of these results are original
contributions, others are previously known but shown using
original proofs. The results in this paper are provided &o-cl

ify the subtle connections between these important classes
of systems.
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