
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Detecting Kernel Refcount Bugs with
Two-Dimensional Consistency Checking

Xin Tan, Yuan Zhang, and Xiyu Yang, Fudan University;
Kangjie Lu, University of Minnesota; Min Yang, Fudan University

https://www.usenix.org/conference/usenixsecurity21/presentation/tan

Detecting Kernel Refcount Bugs with Two-Dimensional Consistency Checking

Xin Tan1, ¶, Yuan Zhang1, ¶, Xiyu Yang1, Kangjie Lu2, and Min Yang1

1School of Computer Science, Fudan University, China
2Department of Computer Science & Engineering, University of Minnesota, USA

¶co-first authors

Abstract
In the Linux kernel, reference counting (refcount) has be-

come a default mechanism that manages resource objects.
A refcount of a tracked object is incremented when a new
reference is assigned and decremented when a reference be-
comes invalid. Since the kernel manages a large number of
shared resources, refcount is prevalent. Due to the inherent
complexity of the kernel and resource sharing, developers
often fail to properly update refcounts, leading to refcount
bugs. Researchers have shown that refcount bugs can cause
critical security impacts like privilege escalation; however,
the detection of refcount bugs remains an open problem.

In this paper, we propose CID, a new mechanism that em-
ploys two-dimensional consistency checking to automatically
detect refcount bugs. By checking if callers consistently use
a refcount function, CID detects deviating cases as potential
bugs, and by checking how a caller uses a refcount function,
CID infers the condition-aware rules for the function to corre-
spondingly operate the refcount, and thus a violating case is a
potential bug. More importantly, CID’s consistency checking
does not require complicated semantic understanding, inter-
procedural data-flow tracing, or refcount-operation reasoning.
CID also features an automated mechanism that systemat-
ically identifies refcount fields and functions in the whole
kernel. We implement CID and apply it to the Linux kernel.
The tool found 44 new refcount bugs that may cause severe
security issues, most of which have been confirmed by the
maintainers.

1 Introduction

The Linux kernel becomes more and more important, espe-
cially with its wide use in cloud platforms, mobile devices,
and IoT devices. A core functionality of the kernel is to man-
age the shared resources (e.g. peripherals and files). Since
the Linux kernel is implemented in C language which does
not support automatic garbage collection or smart pointers, it
relies on reference counting (refcount for short) to keep track

of the uses of a variety of resources. Naturally, refcount is
quite prevalent in the Linux kernel to maintain a large number
of shared resource objects. Our study also reveals that the
Linux kernel alone (except third-party drivers) has about 800
structs that are managed with the refcount mechanism.

In essence, a refcount is an integer that tracks the num-
ber of references to the tracked resource object. To facilitate
the uses of refcounts, the Linux kernel offers specific data
types and manipulation APIs. For example, refcount_t is
defined in the Linux kernel to represent a refcount field, while
refcount_inc() and refcount_dec() are two primitive
APIs for increasing (INC) and decreasing (DEC) a refcount_t
field respectively. The refcount field of an tracked object is
increased when there is a new reference to the object or de-
creased when a reference becomes invalid. The reference
counting approach guarantees that an object is freed only
when its refcount reaches zero.

Since the refcount needs to be updated manually, the de-
velopers are required to have a clear understanding of their
intended uses on system resources and then perform correct
refcount operations, which are actually challenging in the
complex Linux kernel. On one hand, the programmers may
make mistakes due to the complexity of the kernel logic. On
the other hand, different functions of the same kernel module
might be developed by different developers. The developer of
a function may not know the details of other functions, which
often leads to incorrect refcount operations. As a result, the
refcount operations in the Linux kernel are error-prone.

Our study shows that there are two main kinds of refcount
errors. (1) Over decrease. This buggy case occurs when the
developer redundantly calls a refcount-decrease API or under
an over-relaxed condition. A redundant decrease may cause
the refcount to prematurely reach zero, which will incorrectly
trigger object release. That is, the memory associated to the
victim object is freed while there are still legitimate references
to it. If the kernel still references to the object while it has
been freed, critical use-after-free (UAF) occurs. (2) Missing
decrease. By contrast, another kind of bug is that a necessary
refcount decrease is missing. This often leads to a resource

USENIX Association 30th USENIX Security Symposium 2471

leak (e.g., memory leak) because the recount may never reach
zero, and the resource will never be released. Attackers can
exploit such bugs to launch denial-of-service, such as crashing
the system, by repeatedly triggering the bug. Interestingly,
missing refcount release may also lead to UAF, i.e., when the
refcount field overflows to be zero, the kernel will wrongly
free it while some legitimate references are still used.

Refcount bugs have severe impact on the security of the
system. In particular, security researchers have reported many
serious refcount vulnerabilities (e.g., CVE-2016-4558, CVE-
2016-0728, CVE-2019-11487), which can be exploited for
privilege escalation, putting a lot of real-world devices at risk.
Take CVE-2016-0728 as an example, by continuously trig-
gering the missing-decrease path in the keyrings facility, the
refcount bug finally overflows the usage counter, triggering a
UAF vulnerability. The UAF vulnerability is further success-
fully exploited to perform a local privilege escalation attack.
Even worse, this vulnerability is quite stealthy for hiding in
the kernel for about 4 years until it was discovered. As a result,
tens of millions of Linux PCs/servers, including 66% of the
Android devices (phones/tablets) [2] are affected. That’s to
say, the refcount bugs may be too latent to discover, yet cause
critical security impact against numerous devices and users.

Given the severe impact of refcount bugs, it is important to
detect them in the Linux kernel. However, there are significant
challenges in the detection.
Challenge-I: Lacking a refcount bug oracle. Refcount
bugs happen when there is a mismatch between refcount INC
operations and DEC operations. However, when to perform
DEC operations largely depends on the purpose of the develop-
ers and the usage of the tracked object. Therefore, there lacks
an oracle that models refcount bugs. Existing works mainly
adopt two strategies to detect refcount bugs. Pungi [24] opti-
mistically assumes that the change of a refcount must equal
to the number of references escaped from the function. How-
ever, it may incur overwhelming false positives in the Linux
kernel, since many kernel functions (e.g., refcount wrapper
APIs) just increase the refcounts with no reference escaped.
To accurately detect refcount bugs, RID [29] observes that the
paths sharing the same argument and the same return value in
the same function should have consistent refcount behaviors.
Based on this observation, it proposes inconsistent path pair
checking to detect refcount bugs. Though this strategy helps
to reduce false positives, its scope is so narrow that it misses
the majority refcount bugs. According to our study, for the
60 refcount bugs reported between 2018 and 2020 from the
Linux kernel [4], RID could only detect 10 of them.
Challenge-II: Recognizing wide-spread refcount fields.
The prerequisite to detect refcount bugs is the recognition
of refcount fields (i.e., struct fields that are manipulated by
refcount operations). However, refcount fields can be buried
in various types who serve for other purposes. It is non-trivial
to achieve both accuracy and coverage in identifying refcount
fields. According to our study described in §2.2, only 37 out

of the 100 atomic_t fields which we checked are used for
refcount, and the remaining are for other purposes. There-
fore, existing works [24, 29] involve manual efforts to label a
set of refcount fields/operations. Pattern-based [36] methods
could also identify refcount fields in the Linux kernel. How-
ever, such methods work for only common refcount fields,
but would miss less common or custom ones.

To address these challenges, this paper proposes CID1,
which first systematically identifies potential refcount fields/-
operations in the Linux kernel and then automatically detects
refcount bugs with two-dimensional consistency checking.
Our bug detection is based on two unique observations: (1)
INC and DEC operations enforce a strict mutual relation, of-
tentimes with pre-conditions; (2) INC and DEC functions for
the same object are often invoked multiple times, following
the same usage, and the usage is bug-free in most cases. The
two observations motivate the design of our two-dimensional
consistency checking. In one dimension, the INC-DEC consis-
tency checking infers condition-aware refcount rules for the
INC or DEC function by examining the DEC or INC operations
and their conditions in another function. Then, it uses the rules
to detect violating cases in the INC or DEC function as refcount
bugs. A unique strenghth of the checking is that the inferred
refcount rules apply regardless of the complicated data and
control flows between the INC and DEC operations, thus it
avoids the complicated tracing and inter-procedural data-flow
analysis. In the other dimension, the DEC-DEC consistency
checking recognizes deviating DEC operations, from the ma-
jority DEC operations paired with the same INC operation, as
refcount bugs.

Compared to existing works, our two-dimensional check-
ing does not rely on an aggressive or conservative bug oracle
while the checked inconsistencies still effectively uncover
refcount bugs. Meanwhile, CID introduces behavior-based re-
fcount field identification, which distinguishes refcount fields
from a large number of other fields based on their purposes.
By summarizing the behavior features of refcount fields, CID
systematically and automatically identifies the refcount fields
that are defined in different data types at a high precision.

We implement a prototype of CID with the LLVM infras-
tructure [23]. CID incorporates several new techniques to
realize refcount bug detection with the two-dimensional con-
sistency checking. First, CID selects candidate refcount fields
through type analysis and then identifies refcount fields with
a behavior-based inference method. Second, CID collects the
functions that perform INC operations on the identified ref-
count fields, and performs path-sensitive data flow analysis to
model the INC behaviors in them including the DEC behaviors
in their callers. At last, CID checks the consistencies over the
modeled behaviors between paired INC and DEC operations
from two dimensions to detect refcount bugs and generates
bug reports.

1CID is named for Checking INC/DEC operations

2472 30th USENIX Security Symposium USENIX Association

To evaluate the effectiveness of CID, we apply it to the
Linux kernel of version 5.6-rc2. CID finishes the analysis
for the whole kernel within 18 minutes and reports 149 re-
fcount bugs. From these bugs, we manually confirmed 44
new refcount bugs and submitted their patches to the Linux
maintainers. Until now, 36 bugs have been confirmed, and
the patches for the 34 bugs have already been applied to the
kernel. These new bugs are also confirmed to have severe
security impacts, including UAF, Denial of Service (DoS) and
memory leak. We analyze the confirmed false-positive cases
and find most of them resulted from the imprecise static anal-
ysis used in CID. We measure the bug detection capability of
CID by comparing it with RID [29] (the state-of-the-art tool)
on detecting 60 known refcount bugs. The results show that
CID only misses 6 bugs while RID misses 50 bugs. Besides,
the refcount field identification of CID is also evaluated to be
quite effective, which identifies 792 refcount fields from the
kernel with an accuracy of 94.3%.

In summary, we make the following contributions.

• A New Approach for Refcount Bug Detection. We pro-
pose a novel approach to detect kernel refcount bugs with
two-dimensional consistency checking, which examines
the inconsistencies between the INC operations and DEC
operations without assuming a bug oracle.

• A New Approach for Refcount Field Identification. We
present behavior-based inference approach to systemati-
cally identify refcount fields across the whole kernel. This
technique generally facilitates other works relying on ref-
count identification.

• New Bugs Detected by the Prototype. We develop a pro-
totype of CID and apply it to the Linux kernel. The tool
found 44 new refcount bugs in the latest kernel, which
cause severe security impacts. Among them, 36 bugs have
been confirmed by the Linux maintainers.

The rest of the paper is organized as follows: §2 introduces
the refcount mechanism in the Linux kernel and studies the
challenges in refcount field identification; §3 illustrates the
two-dimensional consistency checking with real-world exam-
ples; §4 and §5 present the design and implementation of CID;
§6 evaluates the effectiveness of CID; §7 discusses our work;
§8 presents the related work; finally, §9 concludes the paper.

2 Background

2.1 Refcount in the Linux Kernel
Reference count (refcount) is a common resource manage-
ment mechanism. In the Linux kernel, the refcount mecha-
nism is widely used in various subsystems for managing all
kinds of resources, such as dynamically allocated memory
blocks [30], device drivers [12]. In essence, a refcount is a
numeric field counting the number of references to a spe-
cific resource object. The kernel developers often maintain

a refcount field in the to-be-counted resource data structure
to implement the refcounting mechanism. The refcount of a
resource is incremented when a new reference is taken and
decremented when a reference is released. It is important to
note that, by design, when a refcount reaches zero, its cor-
responding resource is not being used and will be recycled
automatically.

According to the kernel documentation [1, 3, 7, 30],
refcount is typically manipulated through atomic opera-
tions that support concurrent allocation and release of
a resource. Therefore, to avoid concurrency and per-
formance issues, refcount is defined as an atomic inte-
ger. There are 5 data types for refcount definition in
the Linux kernel—atomic_t, atomic_long_t, atomic64_t,
kref, and refcount_t. atomic_t, atomic_long_t and
atomic64_t are essentially of type int, long, and s64, re-
spectively, whose size varies with the underlying architec-
ture. Note that atomic_t, atomic_long_t, and atomic64_t
generic types are not limited to refcount usage, i.e., they can be
used for other purposes. The kref type is a refcount-specific
type introduced by Greg [22], and it is subsequently replaced
by refcount_t type in the latest kernel. Actually, the kref
type has already been defined with refcount_t in the current
kernel. The refcount_t type adds extra support to prevent
accidental counter overflows and underflows, which is quite
effective in reducing the severe UAF vulnerabilities. Although
refcount_t is more secure than the other 4 types, it incurs
obvious performance overhead. Besides, the conversion from
old refcount types to the new refcount_t type requires sig-
nificant efforts. Therefore, there are still a lot of legacy data
structures using the old types [35], and some time-sensitive
scenarios clearly refuse this new type [16].

Based on the refcount types, the Linux kernel also provides
primitive APIs to manipulate refcounts. According to the
developer manual [1, 3, 7], three categories of primitive APIs
exist: SET, INC, and DEC. A SET primitive API initializes the
refcount of a newly allocated object to 1. An INC primitive
API increases the refcount by 1 when a new reference is
assigned to the counted object, whereas a DEC primitive API
decreases the refcount by 1 when a reference to the object
becomes invalid. Note that although INC and DEC APIs allow
to add or sub any value to the refcount, the Linux community
recommends that the value should be changed by 1 in the
context of refcounting [5].

There are a number of primitive refcount APIs; we collect
62 primitive refcount APIs from the latest Linux kernel and
present some examples in Table 1. Further, with the help of
the primitive APIs, Linux developers usually implement cus-
tom INC and INC wrapper functions to ease the management
of various objects. The convention is that an INC wrapper
function increments the refcount of an allocated object or
allocates one if it has not been allocated, while a DEC wrapper
function not only decrements the refcount but also releases
the object if its counter drops to 0.

USENIX Association 30th USENIX Security Symposium 2473

Table 1: Primitive refcount APIs in the Linux kernel.
Category # Examples

SET 5 atomic_set, refcount_set, kref_init

INC 27
atomic_inc, refcount_inc, kref_get
atomic_add, refcount_add_not_zero

DEC 30
atomic_dec, refcount_dec, kref_put
atomic_sub, refcount_sub_and_test

Table 2: The number of fields that are defined with the 5
refcount data types.

Refcount Type # of Fields

atomic_t 2,010
atomic_long_t 154
atomic64_t 334
refcount_t 297
kref 425

Total 3,220

2.2 A Study on Refcount Field Identification

The wide use of the refcounting mechanism in various kernel
modules, together with the general-purpose data types that
are used to define refcount fields, makes the identification of
refcount fields quite challenging. In order to understand the
difficulties in identifying refcount fields in the Linux kernel,
we perform a study on Linux 5.6-rc2.

First, to explore the possibility of manual identification
for refcount fields, we write a simple LLVM-based analyzer
to collect all fields that are defined in the 5 refcount data
types from the whole Linux kernel. As shown in Table 2,
the total number of potential refcount fields is 3,220. Since
77.6% of the fields in Table 2 (i.e., 2,498 = 2,010+154+334)
belong to atomic_t, atomic_long_t or atomic64_t which
may be used for other purposes, we can not simply flag them
as refcount fields.

Second, to understand how many of these general types
actually act as refcounts, we perform a further investigation.
Specifically, we randomly select 300 fields from Table 2,
covering all the 5 refcount types. Since atomic_t dominates
the distribution among the 5 types in Table 2, we select 100
fields in this type. For the remaining 4 types, we select 50
fields in each.

In order to have a clear understanding of the real purposes
for the selected 300 fields, we manually dig them out. During
the investigation, two authors carefully examined their usage,
with the help of the commit messages, code comments, and
the code that manipulates these fields. Among all the fields, 71
of them can be directly labelled with commit messages; 110
of them are labelled with the help of code comments, while
the usage of the remaining ones has to be inferred from code

Table 3: The usage for the selected 300 fields.

Lock/
Status

Token/
ID

Normal
Counter Refcount

atomic_t 16 2 45 37
atomic_long_t 2 1 42 5
atomic64_t 0 13 34 3
refcount_t 0 0 0 50
kref 0 0 0 50

Total 18 16 121 145

behaviors. Overall, the process cost about 100 man-hours.
During the manual analysis, we mainly observe four us-

ages for these fields, and the detailed results are presented
in Table 3. From this table, we find that normal counter and
refcount contribute for the most cases of usage. Not surpris-
ingly, all cases with refcount_t and kref types are recog-
nized as refcounts, consistent with their specific purposes in
reference counting. Nevertheless, we observe that the three
general atomic types are used for more than one purposes.
Take atomic_t type as an example, 16 cases act as lock/re-
source status, 2 cases are used as token/ID, 45 cases are used
as normal counters, while actually only 37 cases of them are
used as refcounts.

The above results clearly indicate that it is unacceptable
to simply recognize refcount fields through their data types.
Meanwhile, it would be impractical to manually identify ref-
count fields from such a large quantity.

3 Two-Dimensional Consistency Checking

This section uses several real-world refcount bugs (reported
by CID) to illustrate the motivation and the approach of our
two-dimensional consistency checking.
Dimension 1: INC-DEC Consistency Checking. The most
intuitive approach to detecting refcount bugs is to statically
trace all paths to check if a DEC operation is paired to an INC
operation. This does not work well in practice because compli-
cated conditions and data flows are involved along the paths.
We observe that INC operations and DEC operations enforce a
strict mutual relation with conditions. This observation moti-
vates us to examine the consistency between conditional INC
operations and the corresponding conditional DEC operations.
Our insight is that the INC operations, which are often in a
callee function, and the DEC operations, which are often in
a caller function, should follow the same refcounting con-
ventions. Based on how the caller conditionally performs the
DEC operations, we can infer a set of condition-aware refcount
rules for the callee, and violating cases are refcount bugs. Like-
wise, we can also infer the condition-aware refcount rules for
the caller based on the callee. Such a design focuses on the
two ends of refcount operations, and the rules always apply

2474 30th USENIX Security Symposium USENIX Association

1 /* File: net/batman-adv/hard-interface.c */
2 struct batadv_hard_iface* batadv_hardif_get_by_netdev(...)
3 {
4 struct batadv_hard_iface *hard_iface;
5 ...
6 list_for_each_entry_rcu(hard_iface, ...) {
7 if (hard_iface->net_dev == net_dev && ...
8 // increase refcount if find the hard_iface
9 kref_get_unless_zero(&hard_iface->refcount))
10 goto out;
11 }
12 hard_iface = NULL;
13 out:
14 ...
15 // return the hard_inface if found
16 return hard_iface;
17 }

(a) INC Function

1 /* File: net/batman-adv/sysfs.c */
2 static ssize_t batadv_store_throughput_override(...){
3 ...
4 //call INC function
5 hard_iface = batadv_hardif_get_by_netdev(net_dev);
6 if (!hard_iface)
7 return -EINVAL;
8 ...
9 ret = batadv_parse_throughput(...);
10 if (!ret)
11 //missing refcount decrease here
12 return count;
13 ...
14 //decrease refcount before return
15 batadv_hardif_put(hard_iface);
16 return count;

17 }
(b) Caller with Buggy DEC Operations

1 /* /drivers/usb/core/urb.c */
2 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
3 {
4 ...
5 while (!list_empty(&anchor->urb_list)) {
6 victim = list_entry(anchor->urb_list.prev, ...);
7 //increase the refcount
8 usb_get_urb(victim);
9 ...
10 //decrease the refcount
11 usb_put_urb(victim);
12 }
13 ...
14 }

1 /* /drivers/usb/host/ehci-hub.c */
2 static int ehset_single_step_set_feature(...)
3 {
4 ...
5 urb = request_single_step_set_feature_urb(...);
6 ...
7 //increase the refcount
8 usb_get_urb(urb);
9 ...
10 //decrease the refcount
11 usb_put_urb(urb);
12 ...
13 return retval;
14 }

1 /* /drivers/net/wimax/i2400m/usb-fw.c */
2 ssize_t i2400mu_bus_bm_wait_for_ack(...)
3 {
4 ...
5 usb_init_urb(¬if_urb);
6 //increase the refcount
7 usb_get_urb(¬if_urb);
8 ...
9 //miss refcount decrease before return
10 return result;
11 }

(a) Caller with Correct DEC Operations (b) Caller with Correct DEC Operations (c) Caller with Buggy DEC Operations

Figure 1: An Example to Illustrate INC-DEC Consistency Checking.

1 /* File: net/batman-adv/hard-interface.c */
2 struct batadv_hard_iface* batadv_hardif_get_by_netdev(...)
3 {
4 struct batadv_hard_iface *hard_iface;
5 ...
6 list_for_each_entry_rcu(hard_iface, ...) {
7 if (hard_iface->net_dev == net_dev && ...
8 // increase refcount if find the hard_iface
9 kref_get_unless_zero(&hard_iface->refcount))
10 goto out;
11 }
12 hard_iface = NULL;
13 out:
14 ...
15 // return the hard_inface if found
16 return hard_iface;
17 }

(a) INC Function

1 /* File: net/batman-adv/sysfs.c */
2 static ssize_t batadv_store_throughput_override(...){
3 ...
4 //call INC function
5 hard_iface = batadv_hardif_get_by_netdev(net_dev);
6 if (!hard_iface)
7 return -EINVAL;
8 ...
9 ret = batadv_parse_throughput(...);
10 if (!ret)
11 //missing refcount decrease here
12 return count;
13 ...
14 //decrease refcount before return
15 batadv_hardif_put(hard_iface);
16 return count;

17 }
(b) Caller with Buggy DEC Operations

1 /* /drivers/usb/core/urb.c */
2 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
3 {
4 ...
5 while (!list_empty(&anchor->urb_list)) {
6 victim = list_entry(anchor->urb_list.prev, ...);
7 //increase the refcount
8 usb_get_urb(victim);
9 ...
10 //decrease the refcount
11 usb_put_urb(victim);
12 }
13 ...
14 }

1 /* /drivers/usb/host/ehci-hub.c */
2 static int ehset_single_step_set_feature(...)
3 {
4 ...
5 urb = request_single_step_set_feature_urb(...);
6 ...
7 //increase the refcount
8 usb_get_urb(urb);
9 ...
10 //decrease the refcount
11 usb_put_urb(urb);
12 ...
13 return retval;
14 }

1 /* /drivers/net/wimax/i2400m/usb-fw.c */
2 ssize_t i2400mu_bus_bm_wait_for_ack(...)
3 {
4 ...
5 usb_init_urb(¬if_urb);
6 //increase the refcount
7 usb_get_urb(¬if_urb);
8 ...
9 //miss refcount decrease before return
10 return result;
11 }

(a) Caller with Correct DEC Operations (b) Caller with Correct DEC Operations (c) Caller with Buggy DEC Operations

Figure 2: An Example to Illustrate DEC-DEC Consistency Checking.

no matter how complicated the refcounting paths (between
the two refcount operations) are.

To illustrate the rationale behind the checking, we give an
example in Figure 1. Figure 1(a) presents an INC function
batadv_hardif_get_by_netdev(). This function finds the
hard_iface object that owns the given net_dev object, and
if the object is found it returns the hard_iface object with its
refcount increased (line 9); otherwise, it returns NULL without
changing refcout. Therefore, we infer the rules. Rule 1: if
batadv_hardif_get_by_netdev() succeeds, i.e., returns a
non-error, its caller should decrement the refcount. Rule 2:
if batadv_hardif_get_by_netdev() fails, i.e., returns an
error, its caller should not decrement the refcount;

Figure 1(b) presents a caller function that invokes the INC
function, and the DEC operation for the hard_iface object
uses function batadv_hardif_put(). Now we apply the
aforementioned two inferred rules to check if the caller func-
tion correctly operates the refcount. Specifically, rule 2 is
honored—when the callee fails, the caller directly returns in
line 7 without decreasing the refcount. However, rule 1 is not
honored. All the code paths from line 8 correspond to the case
in which the callee succeeds. Therefore, the refcount should
be decreased in all these paths based on rule 1. A missing de-
crease refcount bug however occurs because the path ending
in line 12 does not decrease the refcount.
Dimension 2: DEC-DEC Consistency Checking. The
DEC-DEC consistency checking is based on an observation
that INC and DEC functions for the same object are often in-
voked multiple times, following the same usage, and the us-

age is bug-free in most cases. Therefore, we can leverage
statistical analysis on the multiple DEC operations paired with
the sameINC operation, and perform consistency checking to
identify the deviating DEC operations from the majority DEC
operations as potential refcount bugs.

Figure 2 shows an example to explain how
DEC-DEC consistency checking works. In this example,
usb_get_urb()/usb_put_urb() are INC/DEC functions for
the refcount of an urb object. There are three caller functions
in Figure 2 which all invoke the INC function to increase
the refcount of an urb object. Among the three callers, both
Figure 2(a) and Figure 2(b) invokes the DEC function before
return, while only Figure 2(c) does not perform DEC operation
when return. Since the majority of callers has consistent DEC
behaviors, we recognize Figure 2(a)/(b) as correct callers,
while reporting Figure 2(c) as a buggy caller.

Relation of the Two Dimensions. Note that the two di-
mensions of consistency checking are applied under dif-
ferent scenarios, thus are complementary. For example,
INC-DEC consistency checking can not apply to Figure 2,
because there is no return value from its INC function
(usb_get_urb()). Similarly, the bug in Figure 1 can
not be detected with DEC-DEC consistency checking, since
there are not enough callers for the same INC function
(batadv_hardif_get_by_netdev()) for statistical analysis.
Therefore, the two dimensions exploit the consistencies be-
tween the INC and the DEC operations, and they further com-
plement each other to detect more bugs than either.

USENIX Association 30th USENIX Security Symposium 2475

4 Design

This section presents the workflow of CID and describes the
design of its major components.

4.1 Workflow Overview

Figure 3 presents the workflow of CID. It takes LLVM bitcode
files as input and automatically reports refcount bugs. There
are mainly three phases in the bug detection.
Phase 1: Behavior-based Refcount Field Identification.
CID identifies refcount fields from all candidate fields which
are defined in the 5 refcount data types as described in Ta-
ble 2. The identification employs the novel behavior-based
inference which is presented in §4.2.
Phase 2: Path-sensitive Refcount Operation Analysis. As
explained in §3, the two-dimensional consistency checking
relies on path condition analysis on both INC operations and
DEC operations. In order to realize the two-dimensional check-
ing, CID performs a precise path-sensitive refcount operation
analysis against both INC functions and their callers. CID also
performs reference escape analysis on the object to exclude
the reference-escaped paths in callers from the analysis scope,
which reduces false positives.
Phase 3: Bug Detection with Two-Dimensional Consis-
tency Checking. Based on the results of refcount opera-
tion analysis, CID detects refcount bugs from two dimen-
sions: INC-DEC consistency checking and DEC-DEC consis-
tency checking.

4.2 Refcount Field Identification

There are in total 5 atomic data types (atomic_t,
atomic_long_t, atomic64_t, refcount_t and kref) that
can be used to define refcount fields. CID first uses static anal-
ysis to collect all the fields of the kernel data structures that
contain any fields of these types and marks them as candidate
refcount fields. As described in Table 2, CID identifies 3,220
candidate fields. However, as shown in §2.2, many of the can-
didate fields are not true refcount fields, thus requiring further
analysis. Manually analyzing them is tedious and impractical.
Unique Behaviors of Refcount Fields. In order to identify
true refcount fields from the candidate fields, we aim to ana-
lyze and profile unique behaviors of refcount fields. Therefore,
we manually analyzed 300 candidate fields (as introduced
in §2.2) to profile inherent behaviors of them. Fortunately,
we indeed observe three unique behaviors that significantly
differ refcount fields from others. First, refcount fields are
usually initialized with SET operations and thereafter incre-
mented/decremented with INC/DEC operations, while other-
purpose fields may not be manipulated by all three kinds
of operations (e.g., lock/status fields may not be operated by
INC/DEC). Second, refcount fields are SET to 1 at initialization,

while other-purpose fields may be set to other values (e.g., to-
ken/ID fields, normal counter fields). Third, we find refcount
fields are more-likely incremented/decremented by 1 than
other fields, while are less-likely incremented/decremented
by other numbers (though sometimes exists). We summarize
these observed behaviors as follows.

• Rule 1 (R1): The operations on the field should cover all
three categories of primitive APIs: SET, INC, and DEC.

• Rule 2 (R2): For each SET operation, it must set the ref-
count to 1.

• Rule 3 (R3): For the INC and DEC operations, it should in-
clude at least one increase and one decrease of the refcount
by 1.

Behavior-based Inference for Refcount Fields. Based on
our observation of the unique refcount behaviors, we pro-
pose behavior-based inference to identify the refcount fields.
Our approach abstracts the behavior of a primitive ref-
count API as <op_type, op_value>, where op_type repre-
sents the type of the operation (including SET, INC and
DEC), and op_value represents the value that the opera-
tion manipulated on this field. For example, the function
call refcount_set(obj->candidate_field, 1) is sum-
marized as <SET, 1>. Given the 62 manually-collected primi-
tive refcount APIs (as introduced in §2.1) and the 5 atomic
data types in Table 2, CID first identifies all the primitive API
calls that manipulate the candidate fields, and then summa-
rizes the behaviors of these callsites. At last, with the behav-
iors of the candidate fields, CID employs the three rules to
determine the real refcount fields.

Following the above way, CID automatically and system-
atically identifies all possible refcount fields from the large
candidate field set. Though the approach is quite intuitive, to
the best of our knowledge, CID is the first to identify refcount
fields in an automated and systematical way. As evaluated in
§6.6, it achieves promising performance in both precision and
recall. This technique is not limited to detecting refcount bugs,
but can also facilitate other works on refcount (e.g., refcount
type conversion [36]).

4.3 Refcount Operation Analysis
Identify INC/DEC Operations (Functions). CID detects re-
fcount bugs by checking the consistencies between the INC
operations and the DEC operations. Therefore, CID needs to
collect all the paired INC and DEC operations. This process
consists of the following steps. (1) CID locates the INC func-
tions which perform INC operations on the identified refcount
fields with primitive APIs; (2) For each INC function, CID
collects its callers through call graph analysis; (3) In each
caller, CID recognizes DEC functions that operate on the same
refcount to the corresponding INC function with alias anal-
ysis; (4) We find all the paired DEC operations for each INC
operation.

2476 30th USENIX Security Symposium USENIX Association

Refcount Field
Identification

LLVM
Bytecode
(LLVM IR)

Linux
Source
Code

Candidate Fields
Collection

Behavior-based
Refcount Field Inference

Refcount Operation
Analysis

Refcount Operation
Identification

Path-sensitive Refcount
Behavior Analysis

Two-Dimensional
Consistency Checking

INC-DEC Consistency
Checker

DEC-DEC Consistency
Checker

Bug
Reports

Inconsistencies

Clang
Compiler

Figure 3: The overview of CID. It first identifies refcount fields (see §4.2), then performs refcount behavior analysis (see §4.3),
and finally detects refcount bugs with two-dimensional consistency checking (see §4.4).

Collect INC/DEC Conditions. To be more precise, our two-
dimensional consistency checking is condition-aware. That
is, we check corresponding refcount operations based on con-
ditions. Therefore, CID needs to collect the conditions for INC
operations and the conditions for DEC operations. However,
it is non-trivial to perform such analysis, since the kernel is
quite complicated, and there are a lot of conditions in kernel
functions while only a small of them affect the refcount oper-
ations. We observe that developers usually correlate the INC
operations and the DEC operations through the return value
of the INC functions. For example, in Figure 1, the condi-
tion is the return value of batadv_hardif_get_by_netdev,
based on which its caller performs the corresponding refcount
decrease. Therefore, CID preforms an intra-procedure path-
sensitive analysis to collect the return value for each path in
the INC function and the pre-condition for each path through
the call to the DEC function in the caller. Since the analysis
is only performed in a single function, CID could afford a
path-sensitive analysis in the kernel. This way, we model the
INC behaviors inside an INC function, and the DEC behaviors
inside its callers.
Model INC Behaviors in an INC Function. After we col-
lect the conditions, we model the INC operations and their
conditions to facilitate the consistency checking. We define
the tuple <Action, RetVal> to model the INC behaviors for
a path in the INC function. In this tuple, Action can be INC
or EMPTY, which depicts the refcount of the object is incre-
mented or not. The RetVal represents the return value for this
path, and it is marked as VOID if no return value. CID per-
forms a path-sensitive data flow analysis in the INC function
to collect the Action and RetVal for each path. During the anal-
ysis, infeasible paths are identified by checking contradictory
path constraints (explained in §5) and eliminated from the
modeling.
Model DEC Behaviors in Each Caller. CID also models the
DEC behaviors in each caller of an INC function. Similarly,
CID uses a tuple <Action, Conditions> to represent the DEC
behaviors in this caller. The Action have three possible values:
(1) DEC which means a paired DEC operation is performed on
the same object; (2) ESCAPE which means there is no DEC oper-
ation, but the object escapes from the caller; (3) EMPTY which

means neither the DEC operation nor the reference escape hap-
pens in the caller. CID again performs a path-sensitive data
flow analysis in the caller to collect these Actions. The paths
that have reference escapes are excluded from the consistency
checking in §4.4, because the DEC behaviors of the escaped
object is out of the analysis scope. During the analysis, CID
also collects the constraints (i.e., if statements) against the
return value of the INC function as Conditions.

4.4 Consistency Checking
Based on the modeling of INC behaviors in the INC functions
and the DEC behaviors in the corresponding caller functions,
CID checks consistencies to detect refcount bugs in two di-
mensions.
INC-DEC Consistency Checking. The INC-DEC consis-
tency checker examines whether the INC function and the
DEC function respect each other’s refcount operations under
the same conditions. The checker is mutual—from the INC
function, it infers the context-aware refcount rules for the DEC
function, and vice versa. For simplicity, we choose the infer-
ence based on the INC function to illustrate how the checker
works.

Given an INC function and its modeled behaviors, the
checker looks into each path and summarizes: (1) under what
conditions (e.g., returning an error code or success code), it
performs INC; (2) under what conditions, it also performs
DEC; for the paths that have the same refcount behaviors, the
checker unifies their conditions as RetVal1|RetVal2. After
that, the checker infers the condition-aware rules based on
the refcount convention, i.e., the caller should perform the
opposite DEC operation under the consistent conditions. The
condition-aware rules are expressed in the form of <Action,
RetVal>, specifying under what conditions, the caller of the
INC function should perform what refcount operations.

More specifically, the checker takes two inputs: the be-
haviors of an INC function and the behaviors of one caller
function that invokes this INC function. The checker then
works as follows. First, in the INC function, it selects its paths.
For each path, the checker computes both the refcount opera-
tions as well as the post-condition (i.e., returning an error or

USENIX Association 30th USENIX Security Symposium 2477

not). Second, it merges the results for the paths in a form of
<Action, RetVal>. Note that if a path performs both INC and
DEC, the merged action will be EMPTY. Third, it generates the
refcount rules for the DEC function: <–Action, RetVal> where
“–” denotes an opposite action. Fourth, using the rules and
the modeled behaviors of a caller of the INC function, which
are in the form of <Action, Conditions>, the checker detects
violating cases as refcount bugs.
DEC-DEC Consistency Checking. For each INC function,
the DEC-DEC consistency checker first summarizes the DEC
behaviors for its each caller and then identifies deviating cases
across all callers through statistical analysis. The deviating
cases are identified as potential refcount bugs because in
general most callers are correct.

The DEC behaviors of a caller function are summarized
from all the paths starting from the return of the INC func-
tion. We call the summarized DEC behaviors of a caller as its
tendency. There are three possible values for the tendency of
an caller: (1) EMPTY which means all paths in the caller do
not perform any DEC operations; (2) DEC which means all
the paths perform DEC operations or conditional DEC opera-
tions that depends on the return value of the corresponding
INC function; (3) UNKNOWN which is used in the remaining
scenarios when we are unable to make the decision.

To measure the inconsistency of the tendency among all
callers of an INC function, we define inconsistency score. CID
uses three steps to calculate the inconsistency score across
all callers of an INC function. First, the checker counts the
number of callers for each tendency, and represents them as a
normalized three-dimensional vector.

x = num o f callers implies EMPTY

y = num o f callers implies DEC

z = num o f callers implies UNKNOWN

length =
√

x2 + y2 + z2

vector = (
x

length
,

y
length

,
z

length
) = (xnv,ynv,znv)

Second, the checker separately calculates the distances be-
tween the normalized vector and the three base vectors as
follows.

distancex =
√
(xnv−1)2 + y2

nv + z2
nv

distancey =
√

x2
nv +(ynv−1)2 + z2

nv

distancez =
√

x2
nv + y2

nv +(znv−1)2

Finally, the checker gets the main tendency among the callers
by comparing their distances and defines the inconsistency
score as:

inconsistency score = min(distancex,distancey,distancez)

The rationale behind the inconsistency score is that it mea-
sures the uniformity of the DEC behaviors among all the callers

for an INC function. If the score is zero, it means all callers
has the same DEC behaviors. The high the score is, the more
diverse that these callers behaves. When most of the callers
tend to perform DEC operations, the checker marks the callers
which deviate the main tendency as potential refcount bugs.

5 Implementation

We have implemented CID as multiple passes on top of LLVM
(version 10.0.0), including a pass for constructing call graph,
a pass for identifying reference escape, a pass for performing
data flow analysis and alias analysis, and a pass for detecting
and reporting potential refcount bugs. The alias analysis is
based on the LLVM alias analysis infrastructure. The imple-
mentation of CID contains 10K lines of C++ code (counted
by cloc). We present some interesting implementation details
below.
Escape Analysis. As described in §4.3, CID needs to know
whether an object reference escapes from the caller. Thus, CID
performs reference escape analysis on an refcount-tracked
object in the caller. We consider three common reference
escape scenarios: (1) the referenced object may escape to an
argument pointer of the caller function; (2) the referenced
object may escape to a global variable; (3) the referenced
object may escape to the return value of the caller function.
CID tracks the use of the object within the caller through
def-use analysis and alias analysis. During the analysis, CID
carefully inspects each use point of the reference to test if an
escape occurs.

However, since we perform intra-procedural data flow anal-
ysis, we may miss data flows through function calls, resulting
in false negatives in escape analysis. For example, if a caller
invokes a function to acquire a field of a global struct and then
assigns the referenced object to this field, a reference escape
occurs while we can not capture. To eliminate such false neg-
atives, we perform a conservative one-layer inter-procedural
analysis to generate data flow summaries for invoked func-
tions. Specifically, we only capture the direct data flows from
the arguments of an invoked function to its return value with-
out considering other complicated situations, such as pointer
alias, function calls. Note that this conservative approach may
cause false positives in reference escape analysis, but it may
only generate some false negatives in bug detection. More
importantly, this design makes CID scale to the whole-kernel
analysis.
Identify Contradictory Path Constraints. In §4.3, CID ex-
cludes infeasible paths in the INC function. A common prac-
tice in infeasible path elimination is to check the satisfiabil-
ity of the path’s constraints with the help of an SMT solver.
However, this method is expensive. We observe that the un-
satisfiability of a path is frequently caused by two obvious
contradictory constraints on the same expression. For exam-
ple, there is one constraint requires an expression being true
while the other one says the expression must be false. Hence,

2478 30th USENIX Security Symposium USENIX Association

we implement a light-weight approach to identify such con-
tradictory constraints: first, CID collects the path constraints
for each path with data flow analysis; second, CID groups
the constraints for the same expression; third, CID checks if
there are contradictory constraints in each group; finally, CID
reports infeasible path if there is any contradictory constraint
group. In this way, CID can efficiently identify and eliminate
infeasible paths.
Bug Reporting and Ranking. CID generates detailed bug
reports to ease bug confirmation. Because CID checks bugs
from two different dimensions, it outputs reports in two dif-
ferent formats.

The INC-DEC Consistency Checker examines the incon-
sistency between the conditional INC operations and corre-
sponding conditional DEC operations. For each reported bug,
it outputs the name of the INC function, the name of the in-
consistent caller, and the inconsistent path pair. The analysts
can easily confirm the bug with such information.

The DEC-DEC Consistency Checker identifies deviating
callers from the majority. In order to reduce the burden of
manual verification, CID ranks the reports based on the incon-
sistency score and prunes these reports with a threshold (θ).
Therefore, the remaining bug report set may have a higher true
positive rate. For each reported bug, the checker outputs the
name of the INC function, the names of the deviated callers
which may have bugs, the inconsistency score and suggests
the appropriate refcount operation learned from the majority.

6 Evaluation

This section applies CID to the Linux kernel to evaluate its
effectiveness in refcount bug detection and refcount field
identification.

6.1 Setup and Configuration
The experiments are performed on a Debian 8.11 (64-
bit) machine with LLVM 10.0.0 installed (git commit:
771899e94452). The machine has 128 GB memory and two
Intel Xeon E7-4830 v2 processors (2.20 GHz, 20 cores). We
compiled the source code of the Linux kernel version 5.6-rc2
(git commit: 11a48a5a18c6, released on Feb 16, 2020) with
allyesconfig to enable all kernel modules for the x86_64 archi-
tecture. At last, 18,868 LLVM IR bitcode files are generated
and used as the input of CID for evaluation.
Hyper-parameter Determination. As described in §5,
bug detection from DEC-DEC dimension requires a hyper-
parameter—threshold (θ) of the inconsistency score among
all the callers of an INC function. The higher of the θ, the
more bugs would be reported by CID, but the higher false
positive rate CID may have. By trying several values for θ, we
count the bugs reported by DEC-DEC consistency checking in
Table 4. From this table, we find the reported bugs increased
by 33 when θ increases from 0.4 to 0.5, while only 10 more

Table 4: Evaluating the hyper-parameter value, θ, among mul-
tiple choices.

Threshold (θ) Reported Bugs

0.1 18
0.2 55
0.3 67
0.4 86
0.5 119
0.6 129

bugs are reported when increasing θ from 0.5 to 0.6. There-
fore, to control the volume of reported bugs, we choose θ =
0.5 for the following bug confirmation.

6.2 Bugs Reported by CID

By applying CID on Linux 5.6-rc2, CID identifies 792 refcount
fields (details explained in §6.6) and reports 149 bugs. We
manually analyzed all the reported bugs and confirmed 44
new refcount bugs. The details of the confirmed 44 bugs
are presented in Table 8 (in Appendix A). Among all the
bugs, DEC-DEC consistency checking reports 119 ones and
35 of them were confirmed; INC-DEC consistency checking
reports 102 potential bugs from which we confirmed 27 real
bugs. Based on the bug root cause, we wrote 42 security
patches to fix these bugs and submitted them to the Linux
community. Until now, 36 bugs have been confirmed by the
Linux community, and the patches for 34 bugs have already
been applied to the Linux mainline.
Bug Confirmation. CID relies on static analysis to detect
bugs, which are known to have false positives, so manual con-
firmation is necessary. To ease the bug confirmation and the
patch development, CID also outputs intermediate information
(such as the INC function callsites, the detected DEC operation
set in DEC-DEC consistency checking, the reference escape
flag) for all the reported bugs. During the bug confirmation,
we take the output information of CID as reference and man-
ually check the inconsistency of the refcount operations in
the reported buggy function. To be specific, we first observe
whether the refcount behavior is operated just as the behavior
tuple reported by CID. This step is to ensure the inconsistency
is not caused by CID misidentifying or missing the DEC opera-
tion. Second, we check if the inconsistency state is caused by
some special code logic, such as synchronization mechanism
(e.g., completions), indirect function call (e.g., file open and
close), which are known to be too difficult to handle in our
current implementation. If we observe that those situations
happen in the buggy function, we would like to conservatively
exclude it from bugs. Otherwise, we deem it a real refcount
bug and report it later. Following the above process, we man-
ually analyzed 149 bug reports and confirmed 44 new bugs.
The whole process took us 37 man-hours, which we believe
is affordable.

USENIX Association 30th USENIX Security Symposium 2479

Efficiency. CID completes the analysis of the whole kernel
within 18 minutes, of which loading bitcode files and con-
structing call graph take 7 minutes, refcount field/operation
identification costs about 1 minute, and refcount operation
analysis together with bug checking cost 10 minutes. The
analysis covered 19.2 million lines of code (reported by the
tool cloc) for the Linux kernel. According to the results, we
confirm that CID is quite efficient to scale to the highly com-
plex whole-kernel analysis.

6.3 False Positives Breakdown

Among the 149 bugs reported by CID, we manually confirm
44 of them as real refcount bugs and the left of them are
false positives. We analyze the 105 FPs and summarize three
causes for them.

• Imprecise escape analysis (34 FPs). CID leverages the
escape information collected through escape analysis to
perform two-dimensional consistency checking. However,
in addition to the situations we discussed in §5, there are
other complicated reference-escape situations which CID
can not recognize. When the escape analysis exhibits a false
negative, CID may wrongly expects a paired DEC operation
in the current function, causing a false positive.

• Imprecise alias analysis (23 FPs): In refcount operation
analysis, CID attempts to identify the DEC operations on the
incremented object via intra-procedural data-flow analysis
and alias analysis. The intra-procedural analysis used by
CID prevents it from finding some paired DEC operations
that are performed on aliased object pointers. Therefore,
CID incorrectly reports bugs.

• Others (48 FPs): Other reasons relate to the special features
of the Linux kernel, such as the heavy use of the function
pointers to support polymorphism (i.e. indirect function
call), synchronization mechanism (e.g., completions) and
so on. Due to those reasons, sometimes CID can not locate
the paired DEC operations and falsely reports refcount bugs.
Besides, we found that some bugs are reported on infeasi-
ble paths. Since these bugs cannot be triggered, they also
belong to false positives.

It turns out that most false positives are introduced by the
inaccuracy of the static analysis instead of our bug detection
oracle. In §7, we discuss how to mitigate these false positives
by applying more precise analysis techniques.

6.4 Security Impacts of Reported Bugs

We manually examine the security impacts of the reported
bugs and find that these bugs cause severe security impacts, in-
cluding UAF, DoS, and memory leak. As presented in Table 8,
we confirm 37 bugs that may cause DoS, 5 bugs that may re-
sult in UAF, and all of them may cause memory leak. Here

1 static int comedi_open(struct inode *inode,struct file *file)
2 {
3 ...
4 // increase refcount if success
5 struct comedi_device *dev = comedi_dev_get_from_minor(minor);
6 ...
7 cfp = kzalloc(sizeof(*cfp), GFP_KERNEL);
8 if (!cfp)
9 // missing refcount decrease here
10 return -ENOMEM;
11 ...
12 if(rc) {
13 // Other error paths
14 comedi_dev_put(dev); // decrease the refcount
15 kfree(cfp);
16 }
17 ...
18}

Figure 4: A missing decrease refcount bug detected by CID
in comedi_open(), which results in memory leak and DoS.

we present two case studies to explain the security impact of
the reported bugs.
Case Study on Bug #11. In bug #11, there is a missing ref-
count decrease in one exceptional path of comedi_open(),
and we find that it causes memory leak and DoS. We present
the bug-related code in Figure 4. In this bug, comedi_open()
first invokes comedi_dev_get_from_minor() (line 5)
which returns a reference to the comedi device and increases
its refcount. When comedi_open() returns zero, it means the
open operation is successful. Otherwise, the open operation
fails and the increased refcount at line 5 should be decreased.
However, if we trigger a memory allocation failure at line
7, comedi_open() returns an error code (line 10) without
decreasing the refcount to the comedi device. Therefore, the
comedi device will not be freed, causing a memory leak. Fur-
thermore, since the refcount for the comedi_device struct is
defined with kref, which has overflow/underflow protections.
Therefore, we can not continuously trigger this bug to cause
a UAF. However, if an overflow on kref is detected by Linux
kernel, the kernel will panic (aka. DoS), which is severe for a
long-running system.
Case Study on Bug #21. Similarly, bug #21 is also a missing
decrease bug in one exceptional path of ext4_orphan_get().
We find that this bug may lead to an exploitable UAF vul-
nerability. As shown in Figure 5, ext4_orphan_get() in-
vokes ext4_read_inode_bitmap() (line 6) to return a ref-
erence to the buffer head object. If the invocation succeeds,
it increases the refcount of the object, and the reference is
hold by bitmap_bh. Otherwise, it returns an error code and
does not touch the refcount of the buffer head object. When
ext4_orphan_get() returns, the local variable bitmap_bh
becomes invalid. Therefore, ext4_orphan_get() invokes
brelse (line 17) to decrease the refcount of the the buffer
head object. However, if the invocation to ext4_iget()
(line 10) fails, ext4_orphan_get() directly returns with-
out releasing bitmap_bh (line 14), causing a memory leak.

2480 30th USENIX Security Symposium USENIX Association

1 struct inode *ext4_orphan_get(struct super_block *sb, ...)
2 {
3 ...
4 struct buffer_head *bitmap_bh = NULL;
5 // increase refcount if success
6 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
7 if (IS_ERR(bitmap_bh))
8 return ERR_CAST(bitmap_bh);
9 ...
10 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
11 if (IS_ERR(inode)) {
12 // missing refcount decrease here
13 ...
14 return inode;
15 }
16 ...
17 brelse(bitmap_bh); // decrease refcount
18 return inode;
19 }

Figure 5: A missing decrease refcount bug detected by CID
in ext4_orphan_get(), which results in UAF.

To trigger a failure for the function call at line 10, we
can prepare a specially-crafted file as the argument for
ext4_orphan_get(). Even worse, the refcount field for the
buffer head object is defined with atomic_t type, which is a 32-
bit integer without overflow/underflow protection. Therefore,
we could repeatedly trigger this bug to free the buffer head
object while there are still valid references to this object. This
bug would finally lead to an exploitable UAF vulnerability.

6.5 Comparison with Existing Tools
We measure the bug detection capability of CID by compar-
ing it with the state-of-the-art approaches. Since RID [29]
is the state-of-the-art and the most close work to ours which
also employs consistency analysis, we choose it as our base-
line. According to [29], the detection of RID is based on
inconsistent path pair checking. The checking starts from its
pre-defined refcount wrappers and analyzes their caller func-
tions. For a caller function, RID collects the paths which are
indistinguishable outside from its arguments and return values.
If these paths incur inconsistent refcount change behaviors,
RID reports it as a refcount bug.

The experiments are performed on 60 known refcount bugs
that are fixed in the Linux kernel between 2018 and 2020. The
known bug set is collected from the Linux source code repos-
itory by using regular expressions to search the keywords in
the Git commit messages. The keywords include “refcnt”,
“refcount” and “reference count”. We manually examine the
matched 821 commits and finally locate 60 known bugs (as
listed in Table 9). Note that race-induced refcount bugs are
excluded, because they are essentially race bugs.
Comparison Results. Since RID is not open-sourced, we
check its capability on detecting known bugs by carefully
following its approach with manual efforts. We assume that
the implementation of RID perfectly aligns with its design and

Table 5: Comparison between CID and RID on Detecting 60
Known Refcount Bugs.

Total Reported by
CID Only

Reported by both
CID and RID

Reported by
RID Only

60 46 8 2

even that it has the same ability in refcount field identification
as CID. We present the detection results of CID and RID in
Table 5. From this table, we find that CID detects 54 (=46+8)
bugs while RID only detects 10 (=2+8) bugs. In all, there
are 46 bugs that can only be detected by CID, while CID only
misses 2 bugs that are detected by RID.
Bugs Missed by RID. The missed 50 bugs by RID are caused
by two reasons. First, 41 of them do not meet the requirement
of IPP (inconsistent path pair) while RID only captures the in-
consistent refcount change behaviors on IPP. Second, refcount
primitive APIs are used in the left 9 bugs instead of refcount
wrappers, which are out of the analysis scope of RID.
Bugs Missed by CID. For the 6 bugs that are missed by CID,
we conclude three causes. First, 3 bugs are missed due to the
implicit control flow (e.g., queue work mechanism, indirect
function call) between the INC/DEC functions and their callers.
Second, 1 bug is missed because developers do not use ref-
count primitive APIs (e.g., they directly use refcount ++) to
manipulate refcount fields. Third, there are 2 bugs whose INC
functions have no return value and have less than three callers.
Therefore, neither INC-DEC nor DEC-DEC consistency check-
ing detects these bugs. Note that the 2 bugs can be detected
by RID because they meet the requirements of IPP.

After comparing CID with RID, we conclude that both RID
and CID incur high FP rate (>70%) due to the imprecise static
analysis, and their different bug detection strategies lead to
discrepant bug detection capabilities. From the design, the
two-dimensional consistency checking helps CID detect bugs
in a wider scope. As a result, CID is able to detect significantly
more bugs.

6.6 Evaluating Refcount Field Identification
A key contribution of CID is its systematical identification of
refcount fields. We also evaluate the effectiveness of this part.
In all, CID identifies 792 refcount fields from the Linux kernel.
The detailed results are presented in Table 6. It is interesting
to find that not all refcount_t and kref fields are refcount
fields. We manually analyze 11 refcount_t fields and 18
kref fields that are identified as non-refcount fields by our
tool. Our results confirm that 26 of them are indeed non-
refcount fields, and only 3 of them are false negatives of our
tool. We find developers wrongly use these non-refcount fields
for normal counters (e.g. packet_sock->sk_wmem_alloc),
and for lock/status (e.g., device_link->rpm_active). This
finding further demonstrates the advantages of our behavior-

USENIX Association 30th USENIX Security Symposium 2481

Table 6: The number of the refcount fields identified by CID.

Refcount
Type

of
Fields

of
Refcount Fields Ratio

atomic_t 2,010 140 6.97%
atomic_long_t 154 5 3.25%
atomic64_t 334 3 0.90%
refcount_t 297 251 84.5%
kref 425 393 92.5%

Total 3,220 792 24.6%

Table 7: The Effectiveness of Refcount Field Identification
on Ground Truth (Hint: R1 requires a refcount field has all
three types of primitive operations; R2 requires a refcount
field should be set to 1 at each SET operation; and R3 requires
that a refcount field at least has one <INC, 1> and <DEC, 1>).

Rule
Setting TP TN FP FN Accuracy Precision Recall

R1 143 104 51 2 82.3% 73.7% 98.6%
R2 137 134 21 8 90.3% 86.7% 94.5%
R3 145 61 94 0 68.7% 60.7% 100.0%

R1&R2 137 145 10 8 94.0% 93.2% 94.5%
R1&R3 143 117 38 2 86.7% 79.0% 98.6%
R2&R3 137 143 12 8 93.3% 91.9% 94.5%

R1&R2&R3 137 146 9 8 94.3% 93.8% 94.5%

based refcount field identification, which does not rely on the
specific data types.
Effectiveness on Ground Truth. The effectiveness evalua-
tion requires a ground truth set. Since in §2.2 we have manu-
ally labelled the usage for 300 fields (the results are presented
in Table 3), we use this set to evaluate CID in refcount field
identification. In all, our ground truth consists of 145 positive
cases and 155 negative cases.

To identify refcount fields from all possible fields (those
are defined in the 5 refcount data types), CID proposes a
behavior-based inference approach. There are three rules in
the inference. Our experiments evaluate the effectiveness of
these rules and their combinations in identifying refcount
fields. The detailed results are shown in Table 7. From this ta-
ble, we find that the combination of all the rules (R1&R2&R3)
achieves the best performance in accuracy, precision and re-
call. This finding supports our design of combining the three
rules in CID.
Error Case Analysis. Following the rule setting of combin-
ing all the three rules (aka. R1&R2&R3), CID reports 9 false
positives and 8 false negatives in identifying refcount fields.
We present the causes for them below.

• False Positives. In all false positive cases, CID wrongly
recognizes some plain counters as refcounts. For example,
the rxrpc_net->nr_calls field is used for counting the
number of RPC calls registered in the rxrpc_net struct,

while CID identifies it as reference counter. The reason is
that the manipulation APIs operated on this field match all
the three rules. Therefore, CID reports a false positive case
here. Actually, CID can be improved to eliminate this kind
of false positives by considering the initialization behav-
ior of the field at the allocation site. More specifically, we
observe that for refcount fields its initialization is near to
the allocation site of its tracked object, while there is not
such observation for normal counters. Since the current
performance of CID is acceptable, we leave this optimiza-
tion as our future work. Besides, false positives in refcount
field identification may not lead to false positive cases in
the bug detection. Our breakdown of false positives in
§6.3 also confirms this point. Interestingly, when using
such fields, CID can still detect inconsistencies in using
the fields, which still form true bugs although they are not
refcount bugs.

• False Negatives. All false negatives cases are due to
that the SET operations may not initialize the refcount
values to 1. For example, the rxrpc_connection->usage
field has two SET operations: one sets the usage
field to 1 in rxrpc_alloc_client_connection(),
and the other sets the field to 2 in
rxrpc_prealloc_service_connection(). In the
latter case, developers explicitly claim in the code
comments that they need to initialize the refcount field
to 2 because this object will be used in two places after
allocation. This behavior violates the Rule 2 of CID. As a
result, CID misses this case in refcount field identification.
However, it is worth noting that such a behavior is not
encouraged in the kernel documentation [3]. Therefore, we
do not expect this is a normal and common behavior that
should be handled by CID.

7 Discussion

The Impact of Reference Escape on the Analysis Scope.
As described in §4, CID performs escape analysis to ex-
clude the reference-escaped paths in callers from the analysis
scope. Such design may limit the code that can be analyzed by
CID. Therefore, we measure its impact on the analysis scope.
First, in DEC-DEC checking, we will extend our analysis to
its callers if we observe that a referenced object escapes the
current function with refcount increased. In particular, we will
treat this functions as a new INC function, and then analyze
its callers to locate the paired DEC operations. For the 792
refcount fields, CID locates 11,910 caller functions (including
extended ones) for DEC-DEC checking, while 3,751 functions
(31.5%) still can not be analyzed due to two reasons: 1) we
limits the extension in 3 layers; 2) they do not have enough
callers for DEC-DEC consistency checking after extension. Sec-
ond, in INC-DEC checking, the current implementation of CID
does not extend the scope to the caller function if reference
escapes. The reason is that the extended analysis requires

2482 30th USENIX Security Symposium USENIX Association

accurate inter-procedural data flow to capture the conditional
INC/DEC operations. For the 5,146 caller functions identified
by INC-DEC checking, 639 ones cannot be analyzed (12.4%)
due to reference escaping. In the future, we plan to leverage
inter-procedural data flow analysis to cover these cases.
Coordinating Two-dimensional Consistency Checking.
The unique advantage of DEC-DEC consistency checking is
that it does not require to understand the semantics in the INC
function. However, its statistical analysis requires adequate
callers for the inference. One the other hand, the INC-DEC
consistency checking is not limited by the number of callers,
but it needs accurate analysis about the INC function.

CID decides which consistency checking strategy to use
according to the specific situation of the INC function and
its callers. If the situation meets the requirements of both
checking strategies, the refcount operations will be checked
from both dimensions. As a result, CID takes the advantage of
both DEC-DEC consistency checking and INC-DEC consistency
checking to effectively uncover refcount bugs and cover more
codes.
Mitigating False Positives. To mitigate false positives, more
advanced static analysis techniques can be adopted. First,
we could use inter-procedural data-flow analysis to improve
the accuracy of escape analysis and alias analysis. Second,
the multi-layer type analysis [25] can be leveraged to pre-
cisely identify the targets of indirect calls in the kernel. Such
information can help CID reduce the false positives due to
missing paired DEC operations. Last but not least, symbolic
execution [33, 34] would also help CID identify and eliminate
the bug reports which can not actually be triggered.
Bug Exploitability. As a static analysis-based detection tool,
CID excludes the generation of PoC or an exploit from the
scope. Two general exploitation strategies are (1) to increase
the refcounts, so as to maliciously consume resources, which
finally leads to DoS and (2) to force the refcount to reach zero,
through either over decrease or overflow, so as to trigger the
release of refcount object, which often leads to use-after-free.
As such, in general the exploitation of refcount bugs requires
one extra primitive—repeatedly triggering the bug. Once that,
the exploitation is already successful or can further reuse ex-
isting use-after-free exploitation techniques [14,21,40]. Actu-
ally, exploring whether a bug can be triggered is an orthogonal
and extremely challenging problem. Therefore, we leave it
as our future work. Specifically, we plan to combine directed
fuzzing [11, 13] and concolic execution [42] to evaluate the
triggerability of detected bugs.
Portability. The only prior knowledge CID requires is a list
of primitive refcount types such as the ones shown in Table 3.
Once the list is provided, CID can automatically identify ref-
count fields and perform the bug detection. We find that other
OS kernels and user-space programs also widely use primitive
refcount types and APIs to implement refcount mechanisms.
Take FreeBSD as an example, data types like reference_t,
zfs_refcount_t are used to define refcount fields; the op-

erations on these fields are also encapsulated into primi-
tive APIs (e.g., refcount_init(), refcount_acquire(),
refcount_release()). Similarly, in Mozilla Firefox (writ-
ten in C++), its refcounted data structures should inherit cer-
tain base classes such as RefCounted or RefCountType, and
two primitive APIs (addref() and release()) are provided
to perform INC and DEC operations. Therefore, CID can be
applied in these platforms for refcount field identification and
refcount bug detection.
Implementation Improvements. The implementation of
CID can be improved from two perspectives: parallelized
analysis and targeted analysis. First, though its first three
passes (call graph analysis, data flow analysis and alias anal-
ysis) are hard to parallelize due to their algorithmic nature,
the final pass for bug detection can be parallelized with multi-
threading. Specifically, either the modeling of INC/DEC oper-
ations or the two consistency checkers can be performed in
parallel. Second, CID can be enhanced to support the targeted
analysis. In this scenario, the developers can provide their
interested refcount fields or interested functions that have ref-
count behaviors. With this information, CID can be configured
to only check the refcount operations on the interested fields
or refcount operations in the interested functions.

8 Related Work

Reference Counting. Due to the lack of automatic garbage
collection, Use-after-free (UAF) and double-free vulnerabili-
ties are quite common in C/C++ programs. Since reference
counting is quite effective in managing dynamically-allocated
objects/resources, many attempts [10, 19] have been made to
provide C/C++ developers with reference counting mecha-
nism. For legacy C/C++ applications, Shin et al. proposes CR-
Count [37] which leverages pointer footprinting to accurately
compute the reference counts with a small runtime overhead.
Though CRCount releases developers from the complicated
management of objects/references, its performance overhead
prevents its wide application. For programs that still rely on
manual manipulation of refcount operations (e.g., Linux ker-
nel, Mozilla Firefox), CID helps to detect refcount bugs.
Refcount Bug Detection. Due to the importance of refcount,
several works have attempted to detect them. Software de-
velopers and testers have implemented refcount tracing and
balancing techniques [6] to track leak of refcounted objects
dynamically in FireFox. The coverage of dynamical testing
is limited by its inputs. The researchers thus prefer to de-
tect refcount bugs through static analysis or symbolic exe-
cution. Referee [17] uses symbolic model checking to find
the refcount errors in the presence of multiple threads. The
checking needs a complete control flow about the program
under analysis, and it further assumes that the resources/ob-
jects is managed in the same way. Due to this assumption,
it is impossible to be applied to OS kernels. Pungi [24] per-
forms refcount bug detection in the native implementations of

USENIX Association 30th USENIX Security Symposium 2483

Python/C programs with a strong property that the change of
a refcount must equal the number of references escaped from
the function. However, it is hard to apply to the OS kernels
due to two reasons: 1) it requires accurate inter-procedural
escape-analysis which is hard to realize in the kernel; 2) its
detection strategy doesn’t fit the kernel design where many
functions (e.g., wrappers) can increase/decrease the refcount
without reference-escaping. RID [29] proposes inconsistent
path pair (abbreviated as IPP) checking to detect refcount
bugs. The IPP checking identifies the refcount inconsistency
between the paths which are indistinguishable outside the
target function by examining their arguments and the return
value. However, its detection scope is very narrow, as shown
in our evaluation—only detecting 10 out of 60 refcount bugs
reported between 2018 and 2020 from the Linux kernel.
Consistency Checking. Engler et al. [18] were among the
first to explore the idea of statistical analysis. Though the
approach is unsound, it is widely adopted by researchers to de-
tect different kinds of bugs. Juxta [31] applies cross-checking
to detect semantic bugs between semantically equivalent im-
plementations of file systems. Yamaguchi et al. [41] infers
search patterns for taint-style vulnerabilities through cluster-
ing the sink patterns. APISan [43] aims to find deviations
from majority in API usages under rich symbolic contexts.
CRIX [26] cross-checks the semantics of conditional state-
ments in the peer slices of critical variables to compare their
criticalness. RoleCast [38] also applies consistency checking
to detect role-specific missing checks in Web applications.
CID differs from all existing works from two perspectives.
First, CID is the first to apply cross checking in refcount
bug detection. Refcount bug detection is much more com-
plicated by its nature, which requires the identification of
refcount fields and operations. Second, Many refcount func-
tions are called only in a limited number of times, rendering
cross checking ineffective. CID incorporates the INC-DEC
consistency checking, which requires only one occurrence, to
address this problem.
Static Analysis in Kernels. Since more and more operating
systems are open-sourced (e.g., Linux, FreeBSD), static analy-
sis technique is widely adopted in detecting many kinds of se-
curity bugs in the kernel. Firstly, source code-based static anal-
ysis tools such as Smatch [8], Sparse [9] and Coccinelle [32]
are frequently used in the Linux kernel for source code analy-
sis and manipulation. However, these tools are not suitable for
implementing CID. Take Coccinelle as an example, it is not
used to build CID for two reasons: 1) our detection leverages
the correlation between different operations across functions
instead of capturing a specific pattern in one function; 2) our
approach relies on more heavy-weight data-flow analysis such
as reference-escape analysis, path-constraint analysis which
is hard to implement in Coccinelle scripts.

Secondly, intermediate code-based analysis is preferred by
several recent works. K-Miner [20] partitions the kernel code
along separate execution paths starting from system-call entry

points to allow practical inter-procedural data-flow analysis.
Dr.Checker [28] focuses on the Linux kernel drivers and im-
proves the precision of data flow analysis by sacrificing sound-
ness in a few cases. Both K-Miner [20] and Dr.Checker [28]
aim to improve practicality and precision of data flow analysis
in kernel and serve as general bug detection tools. Meanwhile,
there are some detection tools designed for detecting a spe-
cific kind of bugs in kernel. UniSan [27] detects information
leaks caused by uninitialized reads. KINT [39] detects integer
errors. Other complementary approaches to static analysis use
symbolic execution [15, 34]. In comparison, CID leverages
precise path-sensitive intra-procedural analysis to perform
refcount bug detection instead of performing complex inter-
procedural analysis in the kernel. CID also employs tailored
techniques to identify refcount-related fields and operations.

9 Conclusion

Refcount bugs are quite common in the Linux kernel and
cause critical security impacts. This paper presented CID, a
scalable and effective system for refcount bug detection using
a two-dimensional consistency checking. CID models all ref-
count behaviors. In one dimension, it infers condition-aware
rules for detecting refcount bugs, and in the other dimension,
it detects deviating DEC behaviors across refcount callers. This
design helps CID avoid complicated semantic understanding
or reasoning on refcount operations, and to cover more bugs
than the state-of-the-art tools. Furthermore, considering ref-
count operations are diversely spanned in the whole kernel,
CID introduces behavior-based inference to systematically
identify refcount fields and the operations. By applying CID
to the Linux kernel, we found 44 new bugs, and the maintain-
ers have confirmed 36 bugs.

Acknowledgements

We would like to thank our shepherd Thorsten Holz and
anonymous reviewers for their helpful comments. This work
was supported in part by the National Natural Science
Foundation of China (U1636204, U1836210, U1836213,
U1736208, 61972099), Natural Science Foundation of Shang-
hai (19ZR1404800), and National Program on Key Basic
Research (NO. 2015CB358800). Min Yang is the correspond-
ing author, and a faculty of Shanghai Institute of Intelligent
Electronics & Systems, Shanghai Institute for Advanced Com-
munication and Data Science, and Engineering Research Cen-
ter of CyberSecurity Auditing and Monitoring, Ministry of
Education, China. The authors from the University of Min-
nesota were supported in part by NSF awards CNS-1815621
and CNS-1931208. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.

2484 30th USENIX Security Symposium USENIX Association

References

[1] Atomic type documentation. https://www.kernel.
org/doc/Documentation/atomic_t.txt.

[2] CVE-2016-0728 Bug Report. https://perception-
point.io/resources/research/analysis-and-exploitation-
of-a-linux-kernel-vulnerability/.

[3] Kref type documentation. https://www.kernel.org/
doc/Documentation/kref.txt.

[4] Linux kernel git. https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git.

[5] Refcount operation documentation. https:
//www.kernel.org/doc/Documentation/
driver-api/basics.rst.

[6] Refcount Tracing And Balancing for Firefox. https:
//developer.mozilla.org/en-US/docs/Mozilla/
Performance/Refcount_tracing_and_balancing.

[7] Refcount_t type documentation. https:
//www.kernel.org/doc/Documentation/
core-api/refcount-vs-atomic.rst.

[8] Smatch: pluggable static analysis for C. https://lwn.
net/Articles/691882/.

[9] Sparse: a semantic parser for C. https://www.kernel.
org/doc/html/v4.14/dev-tools/sparse.html.

[10] A. Alexandresc. Modern C++ design: generic program-
ming and design patterns applied. 2001.

[11] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed Greybox Fuzzing.
In Proceedings of the 24th ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages
2329–2344, 2017.

[12] Daniel Bovet and Marco Cesati. Understanding The
Linux Kernel. 2005.

[13] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye: To-
wards a Desired Directed Grey-Box Fuzzer. In Proceed-
ings of the 25th ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2018.

[14] Yueqi Chen and Xinyu Xing. SLAKE: Facilitating
Slab Manipulation for Exploiting Vulnerabilities in the
Linux Kernel. In Proceedings of the 26th ACM SIGSAC
Conference on Computer and Communications Security
(CCS), page 1707–1722, 2019.

[15] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2E: A Platform for in-Vivo Multi-Path Anal-
ysis of Software Systems. In Proceedings of the 16th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), page 265–278, 2011.

[16] Jonathan Corbet. Faster reference-count overflow pro-
tection. https://lwn.net/Articles/728675/.

[17] Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak
Majumdar. Verifying Reference Counting Implementa-
tions. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 352–367, Berlin, Heidelberg,
2009.

[18] Dawson R. Engler, David Yu Chen, and Andy Chou.
Bugs as Deviant Behavior: A General Approach to In-
ferring Errors in Systems Code. In Proceedings of Sym-
posium on Operating Systems Principles (SOSP), 2001.

[19] David Gay, Rob Ennals, and Eric Brewer. Safe Manual
Memory Management. In Proceedings of the 6th Inter-
national Symposium on Memory Management (ISMM),
page 2–14, 2007.

[20] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-
Reza Sadeghi. K-Miner: Uncovering Memory Corrup-
tion in Linux. In Proceedings of 25th Annual Network
and Distributed System Security Symposium (NDSS).
The Internet Society, 2018.

[21] Sean Heelan, Tom Melham, and Daniel Kroening. Au-
tomatic Heap Layout Manipulation for Exploitation. In
Proceedings of the 27th USENIX Security Symposium
(USENIX Security), pages 763–779, Baltimore, MD, Au-
gust 2018.

[22] Greg Kroah-Hartman. Kobjects and Krefs. In Proceed-
ings of the Linux Symposium, 2004.

[23] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transfor-
mation. In International Symposium on Code Genera-
tion and Optimization (CGO), pages 75–86, 2004.

[24] Siliang Li and Gang Tan. Finding Reference-counting
Errors in Python/C Programs with Affine Analysis.
In Proceedings of European Conference on Object-
Oriented Programming (ECOOP), pages 80–104, 2014.

[25] Kangjie Lu and Hong Hu. Where Does It Go?: Refin-
ing Indirect-Call Targets with Multi-Layer Type Anal-
ysis. In Proceedings of the 26th ACM Conference on
Computer and Communications Security (CCS), pages
1867–1881, 11 2019.

USENIX Association 30th USENIX Security Symposium 2485

https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/atomic_t.txt
https://www.kernel.org/doc/Documentation/kref.txt
https://www.kernel.org/doc/Documentation/kref.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://www.kernel.org/doc/Documentation/driver-api/basics.rst
https://www.kernel.org/doc/Documentation/driver-api/basics.rst
https://www.kernel.org/doc/Documentation/driver-api/basics.rst
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Refcount_tracing_and_balancing
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Refcount_tracing_and_balancing
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Refcount_tracing_and_balancing
https://www.kernel.org/doc/Documentation/core-api/refcount-vs-atomic.rst
https://www.kernel.org/doc/Documentation/core-api/refcount-vs-atomic.rst
https://www.kernel.org/doc/Documentation/core-api/refcount-vs-atomic.rst
https://lwn.net/Articles/691882/
https://lwn.net/Articles/691882/
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
https://lwn.net/Articles/728675/

[26] Kangjie Lu, Aditya Pakki, and Qiushi Wu. Detecting
Missing-Check Bugs via Semantic- and Context-Aware
Criticalness and Constraints Inferences. In Proceed-
ings of the 28th USENIX Security Symposium (USENIX
Security), 2019.

[27] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke
Lee. UniSan: Proactive Kernel Memory Initialization
to Eliminate Data Leakages. In Proceedings of the 23th
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), page 920–932, 2016.

[28] Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vigna.
Dr.Checker: A Soundy Analysis for Linux Kernel
Drivers. In Proceedings of 26th USENIX Security Sym-
posium (USENIX Security), pages 1007–1024, Vancou-
ver, BC, August 2017.

[29] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi.
Rid: Finding Reference Count Bugs with Inconsistent
Path Pair Checking. In Proceedings of the 21st In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 531–544, 2016.

[30] Paul E. McKenney. Overview of linux-kernel reference
counting. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2007/n2167.pdf/.

[31] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee,
Chengyu Song, and Taesoo Kim. Cross-Checking Se-
mantic Correctness: The Case of Finding File System
Bugs. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (SOSP), page 361–377, 2015.

[32] Yoann Padioleau, Julia Lawall, René Rydhof Hansen,
and Gilles Muller. Documenting and Automating Collat-
eral Evolutions in Linux Device Drivers. In Proceedings
of the 3rd ACM SIGOPS/European Conference on Com-
puter Systems (EuroSys), page 247–260, 2008.

[33] Sebastian Poeplau and Aurélien Francillon. Symbolic
Execution with SymCC: Don’t Interpret, Compile! In
Proceedings of the 29th USENIX Security Symposium
(USENIX Security), pages 181–198, 2020.

[34] David A. Ramos and Dawson Engler. Under-
Constrained Symbolic Execution: Correctness Check-
ing for Real Code. In Proceedings of the 24th USENIX
Security Symposium (USENIX Security), pages 49–64,
Washington, D.C., 2015.

[35] Elena Reshetova. Conversion from atomic_t to ref-
count_t: summary of issues. https://www.openwall.
com/lists/kernel-hardening/2016/11/28/4.

[36] Elena Reshetova, Hans Liljestrand, Andrew Paverd,
and N Asokan. Toward Linux kernel memory safety.

Software: Practice and Experience, 48(12):2237–2256,
2018.

[37] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil
Cho, and Yunheung Paek. CRCount: Pointer Invali-
dation with Reference Counting to Mitigate Use-after-
free in Legacy C/C++. In Proceedings of 26th Annual
Network and Distributed System Security Symposium
(NDSS). The Internet Society, 2019.

[38] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov.
Rolecast: Finding Missing Security Checks When You
Do Not Know What Checks Are. In Proceedings of
the 2011 ACM International Conference on Object Ori-
ented Programming Systems Languages and Applica-
tions (OOPSLA), page 1069–1084, 2011.

[39] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. Improving Integer
Security for Systems with KINT. In Presented as part
of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 163–177,
Hollywood, CA, 2012.

[40] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. FUZE: Towards Facilitating Ex-
ploit Generation for Kernel Use-After-Free Vulnerabili-
ties. In Proceedings of the 27th USENIX Security Sym-
posium (USENIX Security), pages 781–797, Baltimore,
MD, August 2018.

[41] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and
Konrad Rieck. Automatic Inference of Search Patterns
for Taint-Style Vulnerabilities. In Proceedings of the
36th IEEE Symposium on Security and Privacy (S&P),
page 797–812, USA, 2015. IEEE Computer Society.

[42] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In Proceedings of
the 27th USENIX Conference on Security Symposium
(USENIX Security), 2018.

[43] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Tae-
soo Kim, and Mayur Naik. APISan: Sanitizing API
Usages through Semantic Cross Checking. In Proceed-
ings of the 25th USENIX Security Symposium (USENIX
Security), pages 363–378, Austin, TX, August 2016.
USENIX Association.

A Bug Results

B Known Bugs to Compare RID with CID

2486 30th USENIX Security Symposium USENIX Association

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2167.pdf/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2167.pdf/
https://www.openwall.com/lists/kernel-hardening/2016/11/28/4
https://www.openwall.com/lists/kernel-hardening/2016/11/28/4

Table 8: List of new refcount bugs detected by CID. We manually confirmed the security impact of each bug in column 6, where
“ML” represents memory leak. We also investigate the latent period of the detected bugs (in column 7). In column 5, “I-D” and
“D-D” represent the INC-DEC consistency checking and DEC-DEC consistency checking respectively.

ID File Buggy Function Refcount Field Dimension Impact Years Status

1 net/tipc/crypto.c tipc_crypto_rcv tipc_aead->refcnt I-D remote DoS, ML <1 Applied
2 drivers/iommu/intel-svm.c prq_event_thread mm_struct->mm_users I-D UAF, ML 3 Submitted
3 net/ipv6/route.c ip6_route_info_create nexthop->refcnt I-D remote DoS, ML 1 Submitted
4 security/apparmor/domain.c aa_change_profile (#Line: 1328) aa_label->count I-D DoS, ML 3 Applied
5 net/ipv4/tcp_bpf.c tcp_bpf_recvmsg sk_psock->refcnt I-D remote DoS, ML <1 Applied
6 net/tls/tls_sw.c tls_data_ready sk_psock->refcnt I-D remote DoS, ML 2 Applied
7 net/tls/tls_sw.c bpf_exec_tx_verdict sk_psock->refcnt I-D remote DoS, ML <1 Applied
8 drivers/gpu/drm/ttm/ttm_bo.c ttm_bo_add_move_fence dma_fence->refcount I-D DoS, ML <1 Applied
9 drivers/gpu/drm/ttm/ttm_bo_vm.c ttm_bo_vm_fault_reserved dma_fence->refcount I-D DoS, ML 1 Applied
10 security/apparmor/domain.c aa_change_profile (#Line: 1318) aa_label->count D-D DoS, ML 3 Applied
11 drivers/staging/comedi/comedi_fops.c comedi_open comedi_device->refcount D-D DoS, ML 6 Applied
12 drivers/gpu/.../huge_pages.c igt_ppgtt_pin_update i915_address_space->ref D-D DoS, ML <1 Applied
13 security/apparmor/apparmorfs.c policy_update aa_label->count D-D DoS, ML 3 Applied
14 fs/btrfs/relocation.c btrfs_recover_relocation btrfs_trans_handle->use_count D-D DoS, ML 8 Applied
15 fs/nfs/nfs3acl.c nfs3_set_acl posix_acl->a_refcount D-D DoS, ML 15 Confirmed
16 drivers/staging/wusbcore/devconnect.c wusb_dev_add_ncb usb_hcd->kref D-D DoS, ML 12 Submitted
17 drivers/gpu/.../amdgpu_dm.c emulated_link_detect dc_sink->refcount D-D DoS, ML 2 Submitted
18 net/x25/x25_dev.c x25_lapb_receive_frame x25_neigh->refcnt D-D remote DoS, ML 9 Applied
19 sound/usb/mixer_quirks.c snd_microii_spdif_default_get snd_usb_audio->usage_count D-D UAF, ML 4 Applied
20 drivers/scsi/mpt3sas/mpt3sas_scsih.c _scsih_pcie_device_remove_by_handle _pcie_device->refcount D-D DoS, ML 3 Submitted
21 fs/ext4/ialloc.c ext4_orphan_get buffer_head->b_count D-D UAF, ML 4 Applied
22 sound/soc/ti/davinci-mcasp.c davinci_mcasp_get_dma_type dma_device->ref D-D DoS, ML 3 Applied
23 fs/configfs/dir.c configfs_rmdir config_item->ci_kref D-D DoS, ML <1 Applied
24 fs/nfs/nfs4proc.c nfs4_proc_layoutget pnfs_layout_hdr->plh_refcount D-D DoS, ML 10 Applied
25 sound/soc/fsl/fsl_asrc_dma.c fsl_asrc_dma_hw_params dma_device->ref D-D DoS, ML 6 Applied
26 fs/nfsd/nfs4callback.c nfsd4_process_cb_update svc_xprt->xpt_ref D-D DoS, ML 9 Applied
27 net/batman-adv/sysfs.c batadv_show_throughput_override batadv_hard_iface->refcount I-D, D-D remote DoS, ML 4 Applied
28 net/batman-adv/sysfs.c batadv_store_throughput_override batadv_hard_iface->refcount I-D, D-D remote DoS, ML 4 Applied
29 net/tipc/node.c tipc_rcv (#Line: 2033) tipc_node->kref I-D, D-D remote DoS, ML <1 Applied
30 net/tipc/node.c tipc_rcv (#Line: 2037) tipc_node->kref I-D, D-D remote DoS, ML <1 Applied
31 net/tipc/node.c tipc_rcv (#Line: 2066) tipc_node->kref I-D, D-D remote DoS, ML <1 Applied
32 drivers/net/wimax/i2400m/usb-fw.c i2400mu_bus_bm_wait_for_ack urb->kref I-D, D-D remote DoS, ML 11 Applied
33 net/netrom/nr_route.c nr_add_node nr_neigh->refcount I-D, D-D remote DoS, ML 3 Applied
34 drivers/infiniband/sw/siw/siw_qp_tx.c siw_fastreg_mr siw_mem->ref I-D, D-D DoS, ML <1 Confirmed
35 net/sunrpc/clnt.c rpc_clnt_test_and_add_xprt rpc_xprt_switch->xps_kref I-D, D-D remote DoS, ML 4 Applied
36 net/sunrpc/clnt.c rpc_clnt_test_and_add_xprt rpc_xprt->kref I-D, D-D remote DoS, ML 4 Applied
37 net/batman-adv/bat_v_ogm.c batadv_v_ogm_process batadv_hardif_neigh_node->refcount I-D, D-D remote DoS, ML 4 Applied
38 drivers/staging/gasket/gasket_sysfs.c gasket_sysfs_register_store gasket_sysfs_mapping->refcount I-D, D-D DoS, ML 2 Applied
39 drivers/staging/gasket/gasket_sysfs.c gasket_sysfs_put_attr gasket_sysfs_mapping->refcount I-D, D-D DoS, ML 2 Applied
40 net/sunrpc/rpcb_clnt.c rpcb_getport_async rpc_xprt->kref I-D, D-D remote DoS, ML 12 Applied
41 drivers/scsi/lpfc/lpfc_els.c lpfc_els_unsol_buffer lpfc_nodelist->kref I-D, D-D DoS, ML 6 Applied
42 fs/afs/rotate.c afs_select_fileserver afs_cb_interest->usage I-D, D-D DoS, ML 2 Submitted
43 drivers/tty/serial/serial_core.c uart_port_startup uart_state->refcount I-D, D-D UAF, ML 2 Submitted
44 drivers/tty/serial/serial_core.c uart_shutdown uart_state->refcount I-D, D-D UAF, ML 2 Submitted

USENIX Association 30th USENIX Security Symposium 2487

Table 9: List of 60 known bugs reported in the Linux Kernel between 2018 and 2020. We compared CID with RID on these bugs
and show whether these bugs can be detected by them in column 6 and 7 respectively.

ID File Buggy Function Refcount Field Fix Commit ID RID CID

1 drivers/scsi/qedf/qedf_io.c qedf_initiate_abts fc_rport_priv->kref 56efc304b18cbfa4a2b355c0ae817f61acea38c4 % !

2 drivers/scsi/qla2xxx/qla_os.c qla2x00_abort_srb srb->ref_count d2d2b5a5741d317bed1fa38211f1f3b142d8cf7a % !

3 drivers/net/macsec.c macsec_newlink net_device->pcpu_refcnt 2bce1ebed17da54c65042ec2b962e3234bad5b47 % %

4 drivers/net/wireless/virt_wifi.c virt_wifi_newlink module->refcnt 1962f86b42ed06ea6af9ff09390243b99d9eb83a % %

5 net/core/skbuff.c sock_zerocopy_realloc ubuf_info->refcnt 100f6d8e09905c59be45b6316f8f369c0be1b2d8 ! %

6 kernel/bpf/hashtab.c alloc_htab_elem bpf_htab->count 7f93d1295131c9a8b6ff5eec13eef094f0d42921 % !

7 drivers/nvme/target/fabrics-cmd.c nvmet_install_queue nvmet_ctrl->ref 1a3f540d63152b8db0a12de508bfa03776217d83 % %

8 net/sched/cls_u32.c u32_change tc_u_hnode->refcnt 275c44aa194b7159d1191817b20e076f55f0e620 % %

9 fs/cifs/smb2ops.c open_shroot cached_fid->refcount 2f94a3125b8742b05a011d62b16f52eb8f9ebe1c % !

10 drivers/scsi/qedf/qedf_main.c qedf_xmit fc_rport_priv->kref 4262d35c32c652344b6784cad51ec5a0e2e5258b % !

11 drivers/usb/serial/mos7720.c write_parport_reg_nonblock mos7715_parport->ref_count 2908b076f5198d231de62713cb2b633a3a4b95ac % !

12 drivers/media/usb/uvc/uvc_driver.c uvc_probe uvc_device->ref f9ffcb0a21e1fa8e64d09ed613d884e054ae8191 % !

13 fs/nfs/nfs4proc.c nfs4_alloc_unlockdata nfs4_lock_state->ls_count 3028efe03be9c8c4cd7923f0f3c39b2871cc8a8f % !

14 fs/nfs/nfs4proc.c nfs4_alloc_lockdata nfs4_lock_state->ls_count 3028efe03be9c8c4cd7923f0f3c39b2871cc8a8f % !

15 sound/pci/hda/hda_intel.c atpx_present kobject->kref 6e8aeda224c83c7c7841e143d410b6d0e7bda05e ! %

16 drivers/md/dm-zoned-target.c dmz_submit_bio dmz_bioctx->ref 0c8e9c2d668278652af028c3cc068c65f66342f4 % !

17 drivers/infiniband/core/device.c iw_query_port in_device->refcnt 390d3fdcae2da52755b31aa44fcf19ecb5a2488b ! !

18 drivers/video/fbdev/clps711x-fb.c clps711x_fb_probe kobject->kref fdac751355cd76e049f628afe6acb8ff4b1399f7 ! !

19 net/l2tp/l2tp_core.c l2tp_tunnel_register sock->sk_refcnt f8504f4ca0a0e9f84546ef86e00b24d2ea9a0bd2 ! !

20 drivers/net/ethernet/mellanox/mlxsw/core_acl_flex_actions.c pppol2tp_tunnel_ioctl l2tp_session->ref_count 212dab0541eb916f29d55f914c8e84e13c6b214d ! !

21 drivers/mtd/spi-nor/nxp-spifi.c nxp_spifi_probe kobject->kref 38ebbe2b7282e985a7acc862892564e8fbbde866 ! !

22 net/netfilter/ipvs/ip_vs_app.c do_ip_vs_set_ctl module->refcnt 62931f59ce9cbabb934a431f48f2f1f441c605ac ! !

23 fs/afs/cell.c afs_lookup_cell_rcu afs_cell->usage a5fb8e6c02d6a518fb2b1a2b8c2471fa77b69436 ! !

24 fs/nfs/nfs4proc.c nfs41_check_delegation_stateid cred->usage 8c39a39e28b86a4021d9be314ce01019bafa5fdc ! !

25 drivers/media/platform/mtk-mdp/mtk_mdp_core.c mtk_mdp_probe kobject->kref 864919ea0380e62adb2503b89825fe358acb8216 % !

26 drivers/media/platform/exynos4-is/media-dev.c __of_get_csis_id kobject->kref da79bf41a4d170ca93cc8f3881a70d734a071c37 % !

27 drivers/media/platform/exynos4-is/fimc-is.c fimc_is_probe kobject->kref da79bf41a4d170ca93cc8f3881a70d734a071c37 % !

28 drivers/media/platform/exynos4-is/media-dev.c fimc_md_register_sensor_entities kobject->kref da79bf41a4d170ca93cc8f3881a70d734a071c37 % !

29 sound/soc/samsung/odroid.c odroid_audio_probe (#Line: 238) kobject->kref d832d2b246c516eacb2d0ba53ec17ed59c3cd62b % !

30 sound/soc/samsung/odroid.c odroid_audio_probe (#Line: 239) kobject->kref d832d2b246c516eacb2d0ba53ec17ed59c3cd62b % !

31 sound/soc/samsung/odroid.c odroid_audio_probe (#Line: 274) kobject->kref d832d2b246c516eacb2d0ba53ec17ed59c3cd62b % !

32 drivers/pci/hotplug/rpadlpar_core.c find_vio_slot_node kobject->kref fb26228bfc4ce3951544848555c0278e2832e618 % !

33 drivers/pci/hotplug/rpadlpar_core.c dlpar_remove_slot kobject->kref fb26228bfc4ce3951544848555c0278e2832e618 % !

34 drivers/pci/hotplug/rpadlpar_core.c dlpar_add_slot kobject->kref fb26228bfc4ce3951544848555c0278e2832e618 % !

35 drivers/gpu/drm/drm_syncobj.c drm_syncobj_find_fence drm_syncobj->refcount bc9c80fe01a2570a2fd78abbc492b377b5fda068 % !

36 drivers/acpi/utils.c acpi_dev_get_first_match_name kobject->kref 817b4d64da036f5559297a2fdb82b8b14f4ffdcd % !

37 drivers/gpu/drm/i915/gvt/dmabuf.c intel_vgpu_get_dmabuf drm_gem_object->refcount 41d931459b53e32c67a1f8838d1e6826a69ee745 % !

38 drivers/net/wireless/intersil/p54/p54pci.c p54p_probe kobject->kref 8149069db81853570a665f5e5648c0e526dc0e43 % !

39 drivers/md/dm-ioctl.c dm_early_create mapped_device->holders 311f71281ff4b24f86a39c60c959f485c68a6d36 % !

40 drivers/scsi/qla2xxx/qla_os.c qla2xxx_eh_abort srb->ref_count 8dd9593cc07ad7d999bef81b06789ef873a94881 % !

41 drivers/pinctrl/samsung/pinctrl-samsung.c samsung_pinctrl_create_functions (#Line: 782) kobject->kref a322b3377f4bac32aa25fb1acb9e7afbbbbd0137 % !

42 drivers/pinctrl/samsung/pinctrl-samsung.c samsung_pinctrl_create_functions (#Line: 797) kobject->kref a322b3377f4bac32aa25fb1acb9e7afbbbbd0137 % !

43 drivers/pinctrl/samsung/pinctrl-samsung.c samsung_dt_node_to_map kobject->kref a322b3377f4bac32aa25fb1acb9e7afbbbbd0137 % !

44 drivers/pinctrl/samsung/pinctrl-s3c64xx.c s3c64xx_eint_eint0_init kobject->kref 7f028caadf6c37580d0f59c6c094ed09afc04062 % !

45 drivers/pinctrl/samsung/pinctrl-s3c24xx.c s3c24xx_eint_init kobject->kref 6fbbcb050802d6ea109f387e961b1dbcc3a80c96 % !

46 drivers/pinctrl/samsung/pinctrl-exynos.c exynos_eint_wkup_init kobject->kref 5c7f48dd14e892e3e920dd6bbbd52df79e1b3b41 % !

47 drivers/gpu/drm/drm_gem.c drm_gem_ttm_mmap drm_gem_object->refcount 9786b65bc61acec63f923978c75e707afbb74bc7 % !

48 kernel/bpf/syscall.c bpf_map_get_fd_by_id bpf_map->usercnt 781e62823cb81b972dc8652c1827205cda2ac9ac % !

49 drivers/power/reset/zx-reboot.c zx_reboot_probe kobject->kref f052df96c46dbe52fbacd02189e7906f41686f27 % !

50 drivers/media/i2c/tc358743.c tc358743_probe_of kobject->kref 64bac6916ef7d9cc57367893aea1544fcad91b9b % !

51 net/batman-adv/bat_v.c batadv_v_gw_dump_entry batadv_gw_node->refcount 9713cb0cf19f1cec6c007e3b37be0697042b6720 % !

52 net/batman-adv/bat_iv_ogm.c batadv_iv_gw_dump_entry batadv_gw_node->refcount b5685d2687d6612adf5eac519eb7008f74dfd1ec % !

53 drivers/net/ethernet/netronome/nfp/flower/tunnel_conf.c nfp_tun_neigh_event_handler dst_entry->__refcnt e62e51af3430745630f0cf76bb41a28d20c4ebdc % !

54 drivers/cpufreq/brcmstb-avs-cpufreq.c brcm_avs_cpufreq_get kobject->kref a48ac1c9f294e1a9b692d9458de6e6b58da8b07d % !

55 drivers/cpufreq/s3c2416-cpufreq.c s3c2416_cpufreq_reboot_notifier_evt kobject->kref 8ead819f1befae08182c772b6fdf8ac201b34566 % !

56 drivers/net/dsa/rtl8366rb.c rtl8366rb_setup_cascaded_irq kobject->kref f32eb9d80470dab05df26b6efd02d653c72e6a11 % !

57 fs/fuse/cuse.c cuse_channel_open fuse_conn->count 9ad09b1976c562061636ff1e01bfc3a57aebe56b % !

58 drivers/of/resolver.c adjust_local_phandle_references kobject->kref 60d437bbff358748fcfc3bce5f08da9a6b3761da % !

59 drivers/soc/ux500/ux500-soc-id.c ux500_soc_device_init kobject->kref dbc3c6295195267ea7bc48d46030c7b244f8b11e % !

60 drivers/media/platform/ti-vpe/cal.c of_get_next_port kobject->kref 094efbe748c204fb2e10ebf6f100da926e10fc2f % !

2488 30th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Refcount in the Linux Kernel
	A Study on Refcount Field Identification

	Two-Dimensional Consistency Checking
	Design
	Workflow Overview
	Refcount Field Identification
	Refcount Operation Analysis
	Consistency Checking

	Implementation
	Evaluation
	Setup and Configuration
	Bugs Reported by CID
	False Positives Breakdown
	Security Impacts of Reported Bugs
	Comparison with Existing Tools
	Evaluating Refcount Field Identification

	Discussion
	Related Work
	Conclusion
	Bug Results
	Known Bugs to Compare RID with CID

