Measuring and Modeling the Label Dynamics of Online Anti-Malware Engines

Shuofei Zhu¹, Jianjun Shi^{1,2}, Limin Yang³
Boqin Qin^{1,4}, Ziyi Zhang^{1,5}, Linhai Song¹, Gang Wang³

¹The Pennsylvania State University

²Beijing Institute of Technology

³University of Illinois at Urbana-Champaign

⁴Beijing University of Posts and Telecommunications

⁵University of Science and Technology of China

VirusTotal

- The largest online anti-malware scanning service
 - Applies 70+ anti-malware engines
 - Provides analysis reports and rich metadata
- Widely used by researchers in the security community

Challenges of Using VirusTotal

Q1: When VirusTotal labels are trustworthy?

Challenges of Using VirusTotal

- Q1: When VirusTotal labels are trustworthy?
- Q2: How to aggregate labels from different engines?
- Q3: Are different engines equally trustworthy?

Challenges of Using VirusTotal

- Q1: When VirusTotal labels are trustworthy?
- Q2: How to aggregate labels from different engines?
- Q3: Are different engines equally trustworthy?

Literature Survey on VirusTotal Usages

- Surveyed 115 top-tier conference papers that use VirusTotal
- Our findings:
 - Q1: rarely consider label changes
 - Q2: commonly use threshold-based aggregation methods
 - Q3: often treat different VirusTotal engines equally

Overview

Q1: the impact of label changes (label flips)

Q2: threshold-based label aggregation methods

Q3: the correlation between VirusTotal engines

Q1: the impact of label changes (label flips)

• Q2: threshold-based label aggregation methods

• Q3: the correlation between VirusTotal engines

Data Collection of the Main Dataset

- We chose "fresh" files without prior VirusTotal history
 - Sampled 14,423 files submitted for the first-time on 08/31/2018
 - Roughly half were labeled as "benign" by all engines on day-1
 - The rest were labeled as "malicious" by at least 1 engine on day-1
- We collected "daily" VirusTotal labels over one year
 - Use rescan API to force VirusTotal to scan the samples everyday
 - Data collection window: 08/31/2018 09/30/2019
- Data Preprocessing
 - 341+ million data points from 65 engines

Q1: the impact of label changes (label flips)

Q2: threshold-based label aggregation methods

Q3: the correlation between VirusTotal engines

Label Change or Flip

- We model the label dynamics by sequences of "0" and "1"

- A Flip: $0 \rightarrow 1$ or $1 \rightarrow 0$
 - hazard flip: temporary, lasts only one day
 - non-hazard flip: long term, lasts at least two days

Characteristics of Flips

- hazard flips
- --- all flips

Both flips and hazard flips widely exist across scan dates, engines and files.

Individual Label Stabilization

- How long to wait for a file's labels to become stable?
- Stable file: all engines' labels on the file do not change any more

Waiting for longer time does not guarantee to have more stable files.

Q1: the impact of label changes (label flips)

Q2: threshold-based label aggregation methods

• Q3: the correlation between VirusTotal engines

Aggregated Label Stabilization

- Many researchers use a threshold (t) to aggregate engines' labels
 - A file is considered as malicious, when ≥ t engines detect the file
- How flips impact this aggregation policy?
 - Influenced files: files with both benign and malicious aggregated labels
 - Measure % of influenced files for different t

Aggregated Label Stabilization

- Many researchers use a threshold (t) to aggregate engines' labels
 - A file is considered as malicious, when ≥ t engines detect the file
- How flips impact this aggregation policy?
 - Influenced files: files with both benign and malicious aggregated labels
 - Measure % of influenced files for different t

Q1: the impact of label changes (label flips)

• Q2: threshold-based label aggregation methods

Q3: the correlation between VirusTotal engines

Temporary Labeling Similarity

- How to compute the similarity between engines A and B?
 - Compute the similarity between the two labeling sequences for each file
 - Compute the average sequence-level similarity over all the files
- An example for sequence-level similarity

Label Correlations Between Engines

• Q1: the impact of label changes (label flips)

Q2: threshold-based label aggregation methods

Q3: the correlation between VirusTotal engines

Ground Truth Dataset

- How we create "fresh" ground-truth samples?
 - Obfuscating ransomware to create malware
 - Obfuscation + compiling open-source software to create goodware

• Findings:

- Obfuscation brings many false positives
 - Even for high-reputation engines
- $-3 \le t \le 15$ can produce good aggregation results
 - As long as the benign files are not obfuscated
- Inconsistency exists between the desktop and the VirusTotal versions

More results in our paper...

Conclusion and Takeaways

- A paper survey on how researchers use VirusTotal
- Data-driven methods to validate labeling methodologies
- Takeaways and suggestions
 - Data preprocessing
 - Submit the same files in 3 consecutive days to detect hazards
 - No need to wait over long time
 - Threshold-based label aggregation
 - Stable: when t is within a reasonable range (2-20)
 - Correctness: t = 3 to 15 when benign files are not obfuscated
 - Correlation and causality exists between engines
 - High-reputation Engines are not always accurate

Thank you!

- Also thanks to my collaborators
- Contact
 - sfzhu@psu.edu
- Artifact
 - https://sfzhu93.github.io/projects/vt/index.html

