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Abstract

Contrary to intuition, host-side flash caches can degrade
performance rather than improve it. With flash write op-
erations being expensive, cache hit-rates need to be rel-
atively high to offset the overhead of writes. Otherwise,
the end-to-end performance could be worse with flash
cache.

We believe that some lessons learnt from multi-tiered
storage systems can be applied to flash cache manage-
ment. Multi-tiered storage systems migrate data based
on long-term I/O monitoring, carefully ensuring that
the background data migration does not adversely affect
foreground I/O performance.

To test our hypothesis, we designed and implemented
a new flash cache, named Scalable Cache Engine (SCE).
In SCE, cache populations occur in the background in
1 MiB sized fragment units rather than the typical stor-
age I/O size (4 KiB). By doing so, we warm-up the flash
cache much faster while also benefiting from a prefetch-
ing effect that is very effective for improving cache hit-
rates when the workload demonstrates strong spatial lo-
cality. Additionally, large, aligned writes to flash are
much more efficient than small random ones and there-
fore reduce the cache population overhead. We show that
our approach successfully tackles several issues of exist-
ing flash cache management approaches and works well
for OLTP database workloads. For instance, the through-
put under a TPC-E workload actually degraded by 79.1%
with flashcache, a popular open-source solution, com-
pared to the baseline performance. For the same condi-
tions, SCE could achieve a 301.7% improved throughput.

1 Introduction

Over the last decade solid-state storage technology has
dramatically changed the architecture of enterprise stor-
age systems. Advancements in flash-based solid state
drive (SSD) technology have resulted in SSDs that out-

perform traditional hard disk drives (HDDs) along a
number of dimensions: SSDs have higher storage den-
sity, lower power consumption, a smaller thermal foot-
print, and orders of magnitude lower latency and higher
throughput. Thus, it is not surprising that flash-based
storage has been deployed at various levels of the en-
terprise storage architecture ranging from a storage tier
in a multi-tiered environment (e.g., IBM Easy Tier [11],
EMC FAST [6]) to a caching layer within the stor-
age server (e.g., IBM XIV SSD cache [13]), and to a
host-side cache (e.g., IBM Easy Tier Server [12], EMC
XtreamSW Cache [7], NetApp Flash Accel [24], Fusio-
nIO ioTurbine [8]). More recently, several all-flash stor-
age systems that completely eliminate HDDs (e.g., IBM
FlashSystem 840 [10], Pure Storage [28]) have been in-
troduced and have gained significant traction.

Due to its performance, capacity, and cost charac-
teristics, flash memory fills the gap between DRAM
and magnetic HDDs quite nicely. Flash is roughly 20
times faster than HDDs, and about 100 times slower
than DRAM. Also, flash is around 10 times more ex-
pensive than HDDs, but nearly 10 times less expensive
than DRAM. This makes flash a good choice as a caching
layer between DRAM and HDDs. In a typical environ-
ment, host servers utilize directly-attached (DAS) SSDs
to cache data resident in a storage network (SAN) back-
end. By placing data close to the applications and elimi-
nating network latencies, application performance is im-
proved. For instance, in server virtualization or on-line
transaction processing (OLTP) environments with SAN-
attached storage back-ends, host-side flash caching can
reduce latency, eliminate congestion at the SAN backend
and thereby improve overall system throughput.

Use of flash-based SSDs as a caching layer is partic-
ularly interesting in enterprise environments since it can
provide targeted performance acceleration. For example,
host-side flash caches can be utilized selectively at hosts
running performance-critical applications. Moreover, as
a storage layer cache, the presence of the cache is com-



pletely transparent to the application. By contrast, when
using flash SSDs as persistent storage in the SAN or the
host, appropriate volumes need to be allocated by the ad-
ministrator and some tuning is required at the applica-
tion side to ensure that the appropriate data end up on the
SSDs and even to ensure that the SSD does not become a
performance bottleneck. Ineffective tiering in such cases
may result in lower-than-expected performance [14]. In
order to continue to benefit from the high-availability,
resiliency and management functionality (such as snap-
shots and remote mirroring functions) provided by the
storage backend, host-side flash caches typically operate
in a write-through mode. That is, the host only caches
unmodified data and data that have already been com-
mitted to the SAN such that a host failure will not impact
data availability.

Host-side flash caches inherently differ from tradi-
tional DRAM caches in two ways: flash caches 1) use
flash SSD instead of DRAM as the caching media, and
2) sit underneath DRAM caches in the storage hierar-
chy. With DRAM caches, population implies only a
memory copy operation, and therefore, it is a good idea
to populate on each cache miss; caches aim to cache
the Most Recently Used (MRU) blocks as they have
higher likelihood of access in the near future, evicting
the Least Recently Used (LRU) blocks to make space if
there is none. Such mechanisms are perfectly suitable
for DRAM-based caches; some profits are expected with
nearly zero investment. However, blindly populating all
the data accessed by the user into the flash cache is not
always prudent for flash-based caches. Cache popula-
tion requires expensive flash write operations, which take
long time and also consume device lifetime. It has al-
ready been pointed out that populating upon every cache
miss may have a negative influence on the end-to-end
performance [27, 20].

To offset the cache population overhead, high cache
hit-rate are necessary. Unfortunately, there are multi-
ple factors preventing flash-based caches from achiev-
ing good cache hit-rates. Flash cache typically sits un-
der a substantial amount DRAM cache, which absorbs
the hottest potion of the workload. Therefore, it receives
storage accesses for a sparser and wider range of data
with lower access frequency – in other words, data lo-
cality at the flash cache is weakened, and the chance of
cache hit becomes lower. To achieve high cache hit-rate
for sparser and wider ranged data accesses, large capac-
ity flash caches are required. Otherwise, cache trashing
will happen and seriously degrade cache hit-rate. Lastly,
the big capacity of flash cache brings another problem:
slow cache warm-up time – it will be difficult to achieve
a high cache hit-rate with a cold cache. Flash caches are
expected to have orders-of-magnitude higher capacity
than DRAM-based ones, in some instances up to several

TiBs in size. At this scale, it may take several hours to fill
up the cache. For instance, a 300 GiB-sized flash cache
took longer than 10 hours to reach its maximum cache hit
rate for an enterprise workload [4]. Even though cache
warm-up is only a one-time event, it can still be a criti-
cal issue for some cases such as virtual machine migra-
tion and change of workload. Bonfire [31] was proposed
as an auxiliary solution to accelerate cache warm-up for
large storage caches.

We believe that flash-based caching techniques should
learn lessons from multi-tiered storage systems such as
IBM EasyTier [11] and EMC FAST [6]. Multi-tiered
storage systems have multiple classes of storage devices
such as high performance SSDs, enterprise-class HDDs
with SAS interface, and nearline HDDs having SATA in-
terfaces. To maximize performance and minimize cost,
multi-tiered storage systems dynamically migrate data
between storage tiers: hot data is placed on SSDs and
cold data is placed on SATA HDDs. In these systems,
the granularity of data movement is coarser compared
to caching, and migration is typically performed in the
background with a limited I/O bandwidth budget so as to
not hurt foreground performance. Since the cost of mov-
ing larger chunks of data is high, the data migration de-
cisions are made very cautiously based on long-term I/O
accesses frequencies. Our intuition is that such mecha-
nisms could also be applied to flash cache management.

To validate our hypothesis, we designed and imple-
mented a new flash cache solution named Scalable Cache
Engine (SCE) from scratch. We apply the lessons learned
from the data migration process of multi-tiered stor-
age systems to flash cache population. We propose a
cache population scheme that has three major differences
from existing approaches. First, we use bigger unit (e.g,
1 MiB) for cache population than the typical I/O access
size (4 KiB). The typical approach to caching is keeping
recently accessed data on the faster media, and therefore
the cache population unit normally equals the I/O opera-
tion size. However, there are multiple reasons for choos-
ing a larger cache management unit, and the reasons are
connected to the other two differences of our popula-
tion scheme. The second difference of our population
scheme is to not populate on each cache-miss – in other
words, we perform selective cache population like Sieve-
Store does [27]. We monitor the I/O traffic and choose a
population candidate based on access recency and fre-
quency, and our coarse granularity is definitely useful
for I/O monitoring. Finally, we propose to separate the
cache population process from the foreground I/O activ-
ities so as to not influence I/O latency, similarly to how
multi-tiered storage systems do background data migra-
tion. This separation allows us great flexibility; popu-
lation related decisions can be dynamically made based
on run-time metrics. For example, SCE performs cache



population more aggressively when the cache hit-rate is
low and there is a lot of free space, and the population
speed slows down as the cache hit-rate ramps up and the
remaining cache space is reduced.

We have implemented SCE on Linux and carried out
a performance study using th Sysbench OLTP bench-
mark [21] as well as the industry-standard TPC-E bench-
mark [5]. The results we obtained validate our expec-
tations and confirm the superior performance of SCE
compared to flashcache for both benchmarks. For a
four-hour run of the Sysbench OLTP benchmark, SCE
achieved 70.4% and 36.1% higher throughput than flash-
cache with 20 GiB (small) and 80 GiB (large enough)
cache configurations, respectively. For an eight-hour run
of the TPC-E benchmark with 40 GiB cache size, flash-
cache reduced the throughput by 79.1% compared to the
baseline performance without flash cache. For the same
conditions, SCE achieved a throughput improvement of
301.7%. The results demonstrate that our approach is an
exceptionally good match for OLTP database workloads.

The rest of the paper is organized as follows: In
Section 2, we present Sysbench OLTP benchmark re-
sults with flashcache that show how current flash cache
management approaches fails to improve storage perfor-
mance. We then present our approach to flash caching in
Section 3. In Section 4 we revisit the experimental eval-
uation with Sysbench OLTP benchmark and further with
the TPC-E benchmark. An overview of related work is
given in Section 5. We present our conclusions and fu-
ture work in Section 6.

2 Motivation

We tested flashcache version 3.1.1 with the Sysbench
OLTP benchmark [21] to understand how a flash cache
cause the performance of an OLTP database workload
to degrade. Our experimental setup is a fairly typi-
cal one, where an enterprise database system is running
within a virtual Linux server. The physical host is run-
ning Linux and uses a directly-attached SSD for caching,
while network-attached storage volumes are used as the
storage backend. We configured a 20 GiB / 40 GiB sized
SSD partition as the caching device while the whole VM
image size (including the Linux OS and the Sysbench
OLTP database) was 160 GiB; the initial database size
used by Sysbench OLTP benchmark was about 77 GiB –
more technical details about our setup are given in Sec-
tion 4. We repeated the same experiment for three con-
figurations: 1) without a flash cache, 2) flashcache with
a 20 GiB SSD, and 3) flashcache with a 40 GiB SSD.
flashcache was configured in write-through mode, which
is the standard choice for enterprise storage systems. For
each run we measured the number of transactions per
second (TPS), as well as I/O performance metrics and

cache performance statistics.
In Figure 1 (a) we present the end-to-end Sysbench

OLTP results for a 4-hour run of the benchmark. Sur-
prisingly, the TPS numbers were reduced with flash
caching: 22.6% and 9.5% fewer TPS were measured for
the 20 GiB and 40 GiB cache configurations, respec-
tively. For a better understanding, we present the I/O
traffic statistics for the HDD and SSD in Figures 1 (b),
(c), and (d). Without flash caching, about 14 MiB/s of
read and 17 MiB/s of write traffic reached the HDD (Fig-
ure 1 (b)). With flash caching enabled, about 22 MiB/s
of write traffic to the SSD was observed with both the
20 GiB and the 40 GiB configurations, while only about
2.5 MiB/s and 6.5 MiB/s of read traffic reached the SSD
for the two configurations, respectively.

The results can be explained by the properties of the
workload and the configuration. First, the workload
incurs more writes than reads – flash caching with a
write-through policy is more beneficial for read-intensive
workloads. Second, the cache size is smaller than the
size of the working set. In other words, the cache hit
rate was too low in both cases; about 20% and 50%
read-hit rates were achieved for the 20 GiB and 40 GiB
cache configurations, respectively. The rate of SSD reads
represents the rate of cache read-hits and the rate of
SSD write represents the rate of cache population. Fig-
ures 1 (c) and (d) clearly show that there was too much
cache population, i.e., too many flash writes.

We also experimented with the write-around policy of
flashcache; it reduced the amount of write traffic sub-
stantially. The SSD write traffic became almost same
with the HDD read traffic because HDD writes did not
cause cache population. Nevertheless, there was no im-
provement in TPS and the amount of write traffic was
still high.

On one hand, the observed performance degradation
seems to be natural and unavoidable – cache trashing is
a well-known problem and can be alleviated with bigger
cache capacity. On the other hand, it still feels wrong;
with a 40 GiB flash cache for a 80 GiB sized database,
we only got a 50% cache read hit-rate, and about 10%
worse overall performance. The 50% read hit-rate is also
interesting if one takes into account that we configured
the random function of Sysbench to be a Pareto distri-
bution, i.e., follow the 80-20 rule. Why was only 50%
read-hit rate achieved with 40 GiB sized flash cache?
20% of 80 GiB database is only 16 GiB, and thus a cache
hit-rate higher than 80% was expected. These anomalies
can be explained as follows: the flash cache sits under-
neath DRAM caches – for this measurement, the system
memory size was 15 GiB. Since the hottest portion of
the working-set was absorbed by the DRAM cache, the
flash cache received almost uniformly distributed storage
accesses. In such cases, cache population solely relying
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Figure 1: Sysbench OLTP results with flashcache: (a) shows TPS for a 4-hour run for three configurations: without
flash cache, with 20 GiB , and with 40 GiB cache capacity. (b), (c), and (d) show the amount of I/O traffic given to the
SSD and HDD while running Sysbench OLTP – flashcache makes TPS number worse.

on recency is clearly not enough. This indicates that we
need more sophisticated population techniques for flash
cache management.

3 Scalable Cache Engine

3.1 Selective coarse-grained population
Unconditional cache population on a cache-miss can
cause performance issues a) for write intensive work-
loads and b) when the flash cache size is not big enough
to hold the entire working set. Our solution, SCE,
chooses to populate selectively based on I/O traffic,
which implies that we need to allocate some memory per
observation unit. Clearly, 4 KiB is too small a granularity
to maintain such information, and therefore we define a
fragment as the cache management unit. A fragment con-
sists of N logically contiguous blocks (of 4 KiB each); in
our approach we use N = 256, that is, a fragment size of
1 MiB. The user workload is continuously monitored and
hot fragments are identified based on the foreground I/O
traffic. SCE picks the hottest fragments for population
from among the most recently accessed fragments. This
also enables faster population since population occurs in
larger units (1 MiB fragments), as opposed to finer 4 KiB
pages.

3.2 Asynchronous background population
In-line cache population can slow down cache missed
read operations. It can cause the overall I/O performance
to degrade, especially when too many cache misses hap-
pen – for instance when the flash cache is empty or the
workload changes. To deal with this, SCE employs asyn-
chronous background cache population at a fragment
granularity. As shown in Figure 2, we separate the cache
population path from the foreground I/O data path. This
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Figure 2: Asynchronous cache population in SCE: SCE
provides cache functions as a service; read requests are
directed to the caching device or the backing device
based on cache mapping information; write requests in-
validate page validity bitmaps and are passed to back-
ing device; multiple threads perform cache populations
asynchronously in the background.

approach borrows ideas from automated storage tiering
mechanisms [6, 11]. The user workload is continuously
being monitored as already explained in Section 3.1 and
hot fragments are identified based on the foreground I/O
traffic. Once identified, they are brought into the cache
by multiple asynchronous population worker threads in
the background.

This separation of concerns completely decouples the
two data paths, effectively removing the flash write la-
tency from the user requests. As a result, this approach
gives the cache more control and flexibility about how
much and when to populate. For instance, the cache can
limit its population rate to avoid performance degrada-
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tion for write intensive workloads or when it finds that
the working set has already been populated, freeing up
bandwidth from the device to serve read hits.

Since population is done at a fragment granularity, it
is possible that a cache miss for a 4 KiB block may result
in a 1 MiB fragment population. In practice, however,
we have found that this acts as an effective prefetching
mechanism that not only accelerates the cache warm-up
but also improves the cache hit rate. Moreover, fragment-
based population is desirable for flash based SSDs be-
cause it results in large writes to the SSD thereby im-
proving the endurance of the flash device [23]. By chang-
ing the fragment size, the write pattern can even be cus-
tomized to be optimal for a specific SSD based on the
internal SSD geometry such as virtual block size [29].

3.3 Coarse-grained cache management

Existing flash cache solutions normally use a cache block
size of 4 KiB, similar to file systems and operating sys-
tem (OS) page caches. At this granularity, the scalability
of the cache is limited by the size of the mapping meta-
data (since each cache block requires a corresponding
metadata entry). For instance, flashcache uses roughly
24 bytes of main memory per 4 KiB block which implies
that nearly 12 GiB of memory would be required to track
metadata for a 2 TiB flash cache.

Recall that SCE uses a 1 MiB sized fragment as the
cache allocation and management unit. Cache allocation,
population, and eviction occur at a fragment granular-
ity, while read hits, invalidates and write-through occurs
at a 4 KiB block granularity. Obviously, coarse-grained
cache management is more memory efficient than a fine-
grained one. In our approach we use roughly 76 bytes
per cached fragment (1 MiB) for cache metadata, achiev-
ing a 152 MiB main memory footprint for 2 TiB of flash

cache.

Coarse-grained cache management requires several is-
sues to be addressed. The first issue is cache space effi-
ciency, since a whole fragment is cached although only a
few blocks in the fragment may be hot. In contrast, with
a fine-grained mapping, the cache can allocate only hot
blocks, thereby utilizing the flash space more efficiently.
However, spatial locality in the access pattern mitigates
this effect for coarse-grained caches. In addition, this is-
sue becomes less critical as the flash capacity grows.

A more complicated issue arises with respect to han-
dling mismatches between I/O request size and cache
mapping size, especially in the case that the I/O request
size is not a multiple of the fragment size. For instance,
to populate upon a write miss, the cache would need to
read the rest of the data (i.e., the blocks not covered by
the write request but belonging to the same fragment)
from the source device. Alternatively, the cache may al-
locate the fragment but only fill it partially, effectively
ending up wasting some space on flash. flashcache does
not populate when an I/O request size does not match the
cache mapping block size.

Figure 3 shows how SCE manages cache metadata us-
ing a coarse-grained mapping. Because SCE maintains
mappings at a fragment granularity, it is feasible to use
a direct mapping instead of a hash table. The fragment
mapping table contains mapping table entries for the en-
tire address space of the source device (e.g., a logical
volume in the SAN): each table entry maps a logical
fragment in the source device to a fragment descriptor
if the fragment is cached. The fragment descriptor de-
scribes the state of each cached fragment, including a
page validity bitmap to keep track of which 4 KiB pages
in the fragment are valid. The bitmap maintains a bit
per 4 KiB page, resulting in a bitmap size of 32 bytes
per 1 MiB fragment. Note that by using the mapping
table a fragment-level lookup can be done with just one
memory reference. For a fragment found in the cache,
efficient bitmap operations on the page validity bitmap
can be used to determine a hit or a miss, even when the
request spans multiple pages.

4 Evaluation

For our evaluation, we used two OLTP workloads (Sys-
bench OLTP and TPC-E) with two database engines
(MySQL for Sysbench and DB2 for TPC-E) and two dif-
ferent SSDs (1.8 TB and 825 GB PCI-e attached flash
SSDs from different vendors) on two different back-end
storage systems (a locally attached HDD and a remote
SAN-attached storage volume).



4.1 Sysbench OLTP
We have already shown the performance impact of flash
caching on Sysbench OLTP throughput in Section 2.
To repeat our measurement easily, we created a Vir-
tual Machine (VM) on KVM, and installed the bench-
mark within the VM. Flash caching was enabled in the
KVM host running RHEL 6.5 on an IBM System x3650
M4 server. As a backing storage device, we created a
160 GiB sized partition on a RAID0 device using two
10 kRPM 500 GiB HDDs. For flash caching, we cre-
ated a partition on the eMLC-based PCI-e enterprise-
class SSD with a 1.8 TiB capacity.

4.1.1 Sysbench OLTP with 20 GiB

We first tested the case in which the flash cache capac-
ity is much small compared to the working-set size, i.e.,
with 20 GiB flash cache size. Figure 4 (a) presents
the measured throughput for three cases: 1) baseline,
2) flashcache, and 3) SCE. flashcache reduced the TPS
throughput by 23% while SCE increased it by 32%. Fig-
ure 4 (b) shows the I/O traffic generated by flashcache
to the HDD and to the SSD. When the flash cache was
not large enough, flashcache generated roughly 9× more
SSD write traffic than SSD read traffic; the SSD write
traffic seems to be equal to the sum of the HDD write
and HDD read traffic. Figure 4 (c) explains how SCE can
achieve much higher throughput than flashcache; unlike
flashcache, the SSD write traffic was well suppressed.
This result is especially interesting, as the coarse-grained
cache management of SCE could be expected to lose due
to worse space efficiency.

4.1.2 Sysbench OLTP with 80 GiB

We validated that SCE could improve the performance
of an OLTP database workload even with a flash cache
capacity smaller than the active working-set size. What
would happen when there is the cache capacity is large
enough? Would SCE still be better than flashcache? To
find out, we tested with 80 GiB of cache size. Fig-
ure 5 (a) shows the TPS throughput during the course
of 4 hours. This time, flashcache could achieve a higher
TPS throughput than the baseline; after the 4-hour run,
the throughput had increased by 39%, and was still in-
creasing. SCE achieved a higher throughput than flash-
cache in multiple ways: 36% higher TPS were measured,
cache warm-up was dramatically faster, and the rate of
SSD writes was much lower.

4.2 TPC-E
For the TPC-E benchmark we used the same method with
a few differences: a 825 GiB sized PCI-e SSD and a SAN

volume connected by Fibre Channel were used. A sig-
nificant difference between a local HDD and a SAN vol-
ume is that SAN storage server has a substantial amount
of RAM buffers – write response time becomes shorter.
The TPC-E benchmark runs within a Kernel-based Vir-
tual Machine (KVM) running Red Hat Enterprise Linux
(RHEL) 6.5 and IBM DB2 Express-C v10.5. The TPC-E
KVM instance has 8 CPUs and 15 GiB of RAM allocated
to it – as suggested for an extra-large DB instance in
Amazon cloud [1]. We tested flashcache tested in write-
through and in write-back modes, and with a flash cache
size of 40 GiB.

Figure 6 (a) and (b) show measured throughput and
average response time. flashcache in a write-through
configuration degraded the performance terribly: TPS
throughput dropped by 5×, and response time increased
by 14×. Unlike flashcache, SCE achieved 4× higher
TPS and 2× shorter response time. We can see that
the cache management of SCE is an exceptionally good
match for the TPC-E OLTP database workload. SCE
even achieved higher performance than flashcache in a
write-back configuration – note that, SCE uses a mix-
ture of write-around and write-through mode (no write-
back). When a write request is given to a mapped frag-
ment, SCE acts in write-through mode. Otherwise, it
only writes to the backend storage (write-around mode).
From Figure 6 (c), (d), and (e), we can see the amount of
I/O traffic given to the SSD and to the HDD. SCE gener-
ated much higher SSD read traffic than SSD write traffic
– which is desirable for a flash cache; get a large benefit
with a small investment.

5 Related work

Traditionally, the focus of research around cache man-
agement has been on cache eviction policies. Various
eviction policies have been proposed including LRU,
Clock [3], Generalized Clock [30], 2Q [17], LIRS [16],
ARC [22], CAR [2] and Clock-Pro [15]. These policies
have mostly been developed with RAM-based caches in
mind and their main goal has been to optimally combine
recency and frequency of accesses to maximize the hit
rate, as well as to gracefully adapt to changing work-
loads. More recently, flash-aware cache management
schemes such as CFLRU [25], LRU-WSR [18], and Spa-
tialClock [19] have been proposed. These schemes have
been designed for RAM-based caches on top of flash-
based backing storage and their key focus continues to
be on cache eviction. To the best of our knowledge, our
work is the first attempt to throw the spotlight on cache
population as opposed to cache eviction.

In the past few years, flash-based caching solutions
have begun to attract the attention of both the indus-
trial as well as the academic research community. Re-
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Figure 4: Sysbench OLTP read-write results with 20 GiB SSD, (a) TPS: SCE increased TPS by 32% while flashcache
decreased TPS by 23%., (b) I/O traffic for flashcache: roughly 9× more SSD write traffic was observed than SSD read
traffic – too much cache population happened. (c) I/O traffic for SCE: Compared to flashcache, much higher SSD read
and much lower SSD write traffic were observed – background cache population increases HDD read traffic as much
SSD write traffic.
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(a) Sysbench OLTP Read-Write / 80 GiB

No cache (35.8)

SCE (67.8)
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Time (minutes)

Figure 5: Sysbench OLTP read-write results with 80 GiB SSD, (a) TPS: both SCE and flashcache increased TPS by
89% and 39%, respectively., (b) I/O traffic for flashcache: SSD read traffic increased rapidly over time – still SSD
write traffic was much higher than SSD read traffic (c) I/O traffic for SCE: after one hour after beginning, SSD read
traffic became higher than SSD write traffic.

searchers from NetApp proposed a flash caching solu-
tion called Mercury [4]. While interesting results were
reported, the cache management scheme itself was not
tailored to the characteristics of flash and therefore not
of particular interest to flash-based caching.

Koller et al. published a study on write policies for
host-side flash caches [20]. This work addressed the
performance issues associated with write-through cache
policies and proposed two new policies: ordered write-
back and journaled write-back. While the policies ad-
dress consistency issues arising from write-back caching,
the proposed approaches cannot achieve enterprise-class
reliability and high availability which requires data to be
available even in the event of SSD failures. Typically
such reliability and high availability is achieved by em-
ploying redundancy at the storage backend (e.g., with
RAID [26] for drives, dual controllers, multiple paths,
etc.).

Bonfire [31] was proposed to address the accelerate
cache warm-up for large storage caches. However, the
approach followed in that work is very different from our
approach. Bonfire is external to the cache, i.e., it is a
component that functions independently from the cache
manager. Bonfire monitors storage workloads, records
relevant metadata, and uses that information to executes
warm-up explicitly. Our approach, on the other hand, is
one that is integrated with cache management and does
not rely on external components or prior knowledge of
the workload. In SCE, the cache management module
itself controls the rate at which the cache gets populated.
Configuration parameters, such as the number of popula-
tion threads, can be used to influence the population rate.
That said, the two approaches are essentially orthogonal
and, when used in combination, the benefits of both can
be reaped.

In [9] Holland et al. present a performance evalu-
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Figure 6: TPC-E results with 40 GiB SSD: (a) TPS: SCE achieved 4× increased TPS than baseline but flashcache
decreased TPS by 79% – SCE achieved even higher TPS than flashcache with write-back configuration, (b) Average
transaction response time: SCE reduced the average response time by 55% while flashcache made it 14× longer than
baseline – SCE achieved almost same response time with flashcache with write-back configuration., (c) I/O traffic for
flashcache write-through mode, (d) I/O traffic for flashcache write-back mode, (e) I/O traffic for SCE.

ation of flash caches that utilizes a trace-driven simu-
lation methodology and aims to understand the perfor-
mance impact of various configuration parameters. How-
ever, some of our results seem to conflict with their
conclusions. For example, our studies with the TPC-E
benchmark indicate that caches with a write-back policy
can provide significantly better performance compared to
caches with write-through policy. However, their study
seems to indicate that the two policies do not impact per-
formance significantly. This may be an artifact of the
evaluation methodology or the workload used or even be
attributed to the write performance characteristics of the
SSDs and the backend storage used in each case.

6 Conclusion

The focus of this paper has been on host-side flash-based
caches, which have recently gained traction in enter-
prise environments to accelerate storage workloads. We
show that flash-based caching is different than traditional
DRAM-based caching: it can even make database perfor-
mance worse. To alleviate this and maximize the benefit
of flash caches, we design a flash cache from scratch.
We borrow ideas from multi-tiered storage systems, and

propose to use coarse grained, asynchronous, selective
cache population. Our evaluation study shows that our
approach works exceptionally well for OLTP database
workloads. Even though our coarse-grained cache man-
agement sacrifices space efficiency, our selective asyn-
chronous cache population could still improve the per-
formance under a small flash cache capacity. With a
big-enough flash cache, SCE demonstrated much faster
cache warm-up time with less SSD write traffic, which
translates to a longer lifetime for a flash device.

Even though extremely beneficial for OLTP database
workloads, we are not claiming that the policy of SCE is
always better than conventional fine-grained cache man-
agement. Our contribution is rather providing multiple
knobs to control the behavior of flash cache population
such as the fragment size and the number of cache pop-
ulation threads to improve the cache hit-rate and popula-
tion speed. We were able to find an appropriate configu-
ration and achieve a dramatic performance improvement
for OLTP database workloads. In the future, we plan to
introduce dynamic control of the configuration parame-
ters to adapt to various types of storage workloads.
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