usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

On the Accuracy and Scalability of
Intensive I/O Workload Replay

Alireza Haghdoost and Weiping He, University of Minnesota;
Jerry Fredin, NetApp; David H.C. Du, University of Minnesota

https://www.usenix.org/conference/fast17/technical-sessions/presentation/haghdoost

This paper is included in the Proceedings of
the 15th USENIX Conference on

File and Storage Technologies (FAST "17).
February 27-March 2, 2017 - Santa Clara, CA, USA
ISBN 978-1-931971-36-2

Open access to the Proceedings of
the 15th USENIX Conference on
File and Storage Technologies




On the Accuracy and Scalability of Intensive I/O Workload Replay

Alireza Haghdoost”, Weiping He", Jerry Fredin', and David H.C. Du"

“University of Minnesota Twin-Cities, "NetApp Inc.

Abstract

We introduce a replay tool that can be used to replay cap-
tured I/O workloads for performance evaluation of high-
performance storage systems. We study several sources
in the stock operating system that introduce the uncer-
tainty of replaying a workload. Based on the remedies of
these findings, we design and develop a new replay tool
called hfplayer that can more accurately replay intensive
block I/O workloads in a similar unscaled environment.
However, to replay a given workload trace in a scaled
environment, the dependency between I/O requests be-
comes crucial. Therefore, we propose a heuristic way of
speculating I/O dependencies in a block I/O trace. Using
the generated dependency graph, hfplayer is capable of
replaying the I/O workload in a scaled environment. We
evaluate hfplayer with a wide range of workloads using
several accuracy metrics and find that it produces better
accuracy when compared with two exiting available re-
play tools.

1. Introduction

Performance evaluation of a storage system with realis-
tic workloads has always been a desire of storage systems
developers. Trace-driven evaluation is a well-known prac-
tice to accomplish this goal. It does not require installation
of a real system to run applications and does not expose a
production systems to potential downtime risk caused by
performance evaluation experiments. However, the lack
of an accurate trace replay tool makes it less appealing
and draws some skepticism of using trace-driven methods
for performance evaluation of block storage devices and
systems [19, 23].

An I/0 trace typically includes the timestamps of when
each I/0O request is issued and completed. These times-
tamps can be used to replay the workload on a similar un-
scaled environment. However, the block I/0 trace does not
usually include any information about the dependencies
between /O requests. Therefore, these timestamps can-
not be directly used in a workload replay on a scaled
environment where the issue time of a latter I/O request
may be determined by the completion time of a former re-
quest in a dependency chain. However, a latter I/O request
may be issued earlier before the completion time of a for-
mer I/O request if there is no dependency between the
two. Some examples of a scaled environment can mean

a server speed is increased, the number of disk drives is
doubled, or a faster type of drives is considered.

The I/O dependency information is available only in
the file system or application layers. However, the intrin-
sic software overhead and high degree of parallelism that
embedded in these layers reduce the capability of the
workload replay to stress-test a modern block storage sys-
tem when replaying I/O traces at file system or application
layer. For example, Weiss et al. [24] demonstrates Can
a scalable file system replay tool that can barely hit 140
IOPS, while modern storage systems are capable of driv-
ing intensive I/O workloads with hundreds of thousands
of IOPS and a few milliseconds response-time [4].

Typical block I/O replay tools ignore I/0O dependencies
between I/O requests and replay them as fast as possi-
ble (AFAP) [15]. The AFAP approach cannot accurately
replay a workload since it overlooks the intrinsic compu-
tation and wait time in the original application. Therefore,
the characteristics of replayed workload may be different
from that of an original application in terms of throughput,
response-time and request ordering.

We believe a more accurate replay tool for scaled en-
vironments should try to mimic the behavior of the real
application on the scaled environments and respect the
existing dependencies in the I/O trace. This is possible by
speculating the dependencies of I/O requests and trying to
propagate I/O-related performance gains along the depen-
dency chains. However, it is challenging to discover I/O
dependencies simply based on a given block I/O workload
trace without accessing the application source code.

In this work, we propose hfplayer, a replay tool that
tries to infer potential I/O dependencies from the block
I/O traces and replay I/O intensive workloads with more
accuracy in both scaled and unscaled replay modes. In the
scaled mode, the arrival of new requests depends on the
completion of the previous requests, while in the unscaled
mode each request is issued independently at a scheduled
time [14].

The goal of this replay tool is to ensure that replayed
I/O requests arrive the storage device (e.g., SAN con-
troller) at the right time and order. We develop methods
to ensure that the right number of I/O requests being is-
sued from the user level and these requests traverse all
the OS layers (the entire path from user space to device
controller) with minimal interference on the workload
throughput, I/O response time and ordering.

USENIX Association

15th USENIX Conference on File and Storage Technologies 315



The intended use of Afplayer is for performance eval-
uation, debugging and validating different block storage
devices and systems with realistic workloads. For the set
of our experiments, it replays realistic I/O workload on
both scaled and unscaled storage systems with less than
10% average error.

Our main contributions in the paper are summarized as
follows: 1) Uncover and propose remedies to Linux I[/O
stack limitations and its non-deterministic I/O behaviors
which are sources of measurement uncertainty. 2) Design
and implement a workload replay engine which can more
accurately replay a block I/O workload that has been cap-
tured in a similar unscaled environment. 3) Design and
implement a scalable workload replay engine which can
speculate I/O request dependencies and replay a realis-
tic workload in a scaled environment. Our workload re-
play tool is open-source and available for download at:
https://github.com/umn-cris/hfplayer.

The rest of this paper is structured as follows. In
the next section, we describe several sources of non-
deterministic behaviors for block I/O workload replay
in the stock operating system. We also describe our ap-
proaches to remedy or work around these limitations. In
Section 3 we discuss the I/O request dependencies and
how we construct a dependency graph for a given work-
load by speculating I/O request dependencies. We also
describe our approach of replaying the I/O workload con-
sidering the influences of the target storage in a scaled
environment using the scalable replay engine of Afplayer.
Then we evaluate the replay accuracy of Afplayer on both
unscaled and scaled storages and compare the results with
existing tools in Section 5. We refer and describe the rel-
evant literature of this paper in Section 6. Finally, we
summarize and offer some conclusions in Section 7.

2. Sources of Workload Replay Uncertainty

In this section, we introduce several key limitations to
faithfully replaying a block I/O workload in the Linux
I/O stack. One solution to potentially limiting OS im-
pacts the workload replay accuracy is to embed the /O
engine of the workload replay tool in the kernel space [5].
This would reduce forced preemption of replay engine
threads and eliminates the cost of user to kernel space
context switch in replaying an I/O request. However, this
approach limits the portability of the developed engine to
a single OS platform and even to a specific kernel version.
Therefore, we focus on developing a replay tool with a
user space engine which is capable of working with the
standard system calls on most OS platforms. In this work,
we focus on Linux and propose a method to significantly
reduce the context switch overhead. We will introduce
the integration with IBM’s AIX OS in the future work.
Moreover, we believe user space 1/0 engine development
is aligned with the emerging efforts in the industry to

develop user space APIs like Intel SPDK for ultra high-
speed storage devices [2].

User-space replay threads can submit I/O requests us-
ing synchronous or asynchronous system calls. Replay
tools that are implemented with the synchronous method
like Buttress [6] and blkreplay [15] need a large number of
worker threads running in parallel to achieve a high replay
throughput. Therefore, they may expose more inter-thread
coordination overheads compared with the asynchronous
method. These overheads are known as a major source of
uncertainty in the workload replay [13]. As we show in
Section 5, these limitations severely impact the accuracy
of replaying I/O intensive workloads. Therefore, hfplayer
replay engine is based on the asynchronous method and
exclusively uses libaio which is Linux kernel support for
asynchronous I/O operations as well as NO-OP scheduler
without its merge functionality. We have identified that
Linux kernel is not able to fully disable the I/O merge
functionality in certain situations. We have proposed a
patch to fix this bug and the patch has been merged into
the mainstream branch since the kernel v3.13 [3].

Accurate I/O replay timing is another challenging issue
which heavily depends on the timing predictability of the
I/O stack. In an ideal situation, it should cost each I/O
request a fixed amount of time to travel from the replay
engine to the storage device. Therefore, if there is an inter-
arrival gap of n milliseconds between two consecutive I/O
requests in the given workload trace, the replay thread
just needs to wait n milliseconds after issuing the first
I/O request to issue the second request and expects both
requests to arrive at the device with an accurate time in-
terval of n milliseconds. However, our experiments show
that the I/O stack travel time is quite unpredictable and
thus such a timing accuracy is impossible if we do not
carefully tune and watch the I/O queuing mechanism in
the kernel. In order to work around these limitations, we
have practiced the following four techniques to improve
the workload replay accuracy.

2.1. /O Stack Queue Sizing

In general there are two queuing layers in the asyn-
chronous I/O submission path of Linux kernel. The
io_submit system call first pushes a block I/O request (or
bio) into the tail of the block layer queue, then it pulls
another bio from the head of the queue, transforms it into
a SCSI command and pushes it into the SCSI layer queue.
Finally, it returns the success code to the user space, while
the SCSI Initiator processes the commands in the SCSI
layer queue using a kernel worker thread. These two
queues usually do not have enough room for all new re-
quests when the I/O stack is overloaded. In this case, the
execution time of the system call becomes unpredictable.

While the block layer request queue size is tunable, the
SCSI layer queue size is limited to the maximum sup-
ported TCQ tags by the SCSI layer. Usually a system call

316 15th USENIX Conference on File and Storage Technologies

USENIX Association



puts the bio request into a waiting list if it cannot find an
empty queue tag and schedules a kernel worker thread
to push it later. This schedule is expensive and signifi-
cantly increases I/O submission unpredictability. More-
over, it changes the delivery order of I/O requests in the
kernel space even if the replay tool thread submits these
requests in order. Therefore, internal I/O queues in the
kernel should be sized according to the HBA capability to
reduce queue insertion failures. In our test environment,
while our HBA can handle 2048 in-flight requests, the
default block layer queue size is set to 128 and the default
SCSI layer queue size is 32.

Obviously, adjusting the I/O stack queue sizes below
the HBA capability reduces the potential I/O through-
put and impacts the replay accuracy to reproduce high-
throughput workload. On the other hand, enlarging the
queue sizes more than HBA capability without any con-
trol on the number of in-flight requests overloads the HBA
and results in multiple retries to sink I/O requests from the
block layer queue into the SCSI command queue. There-
fore, we set the internal queue size to the maximum size
supported by HBA hardware and dynamically monitor
in-flight requests in the replay engine to make sure it does
not overload the internal queues.

2.2. System-Call Isolation

We have identified that forced preemption is another
factor making the execution time of I/O submission sys-
tem call unpredictable. The system call execution thread
can be preempted by other kernel processes with higher
priorities like interrupt service routines. Consequently, it
will impact the timing and ordering accuracy of a typical
multi-threaded I/O workload replay tool. While it is pos-
sible to isolate regular interrupt handlers from system call
threads using IRQ and CPU affinities, it is hard to avoid
collisions of the system call threads with non-maskable
timer interrupts. Moreover, scheduling replay tool threads
with real-time scheduling priority is not a viable option
since it has been discovered as another source of uncer-
tainty for the workload replay [13]. Therefore, our best
effort is to pin the replay tool threads to a CPU set and
exclude all maskable interrupts from execution on that
CPU set.

2.3. In-Flight I/O Control

After making an I/O submission system call more pre-
dictable with the aforementioned techniques, we need to
work around potential scenarios that the I/O path unex-
pectedly takes more time to submit asynchronous I/O
requests. When the submissions of a few I/O requests
get delayed in a worker thread, it prevents the following
I/O requests from being submitted on time. For example,
assuming three consecutive I/O requests are scheduled
to issue at time ¢, t + 10us and ¢ +20us by a worker
thread. If the submission of the first request unexpectedly

SaF-------mmm oD
o | |
< <4 1 1
oo | 1
S 1 i
(o) | 1
— 1 1
ey 1 1
= 1 1

1 1

1 1
o ! |
g qt+------------ Skt &
|q_', i | Trashing H
7] ! !

1 1
8 Accurate ! !
9‘, | 1
ot -2 I
oc ; !

n 2n
In-Flight IO Requests

Figure 1: Response-Time Trashing

takes 30us, there is no need to wait any longer to issue
the following two I/O requests since the scheduled issue
times of these two requests are passed. In such a scenario,
the replay tool issues several I/O requests in a very short
amount of time and this burst of I/O requests forces the
I/O stack to operate in a state that we call Response-Time
Trashing state. In this state, an artificially large number of
I/0 requests are pushed into the I/O stack queues which
severely impacts I/O response-time accuracy.

Figure 1 illustrates the Response-Time Trashing which
occurs when the number of in-flight I/O requests is ar-
tificially high. For example, assuming we are planning
to replay an I/O workload with a throughput of o and
response-time of 7. An accurate replay should reproduce
the workload with the same throughput and response-
time by keeping n I/O requests in-flight. However, un-
predictable delays in the path cause a burst submission of
an unexpectedly large number of I/O requests since their
scheduled issue times have already passed. Therefore, in
this example 2n requests are being queued in the stack
instead of n requests. The throughput of I/O becomes
saturated after a threshold number of queued requests is
reached. Pushing more I/O requests to the internal queues
only exponentially increases the response-time without
any throughput improvement. Without an in-flight /O
control mechanism, the workload is being replayed with
response-time of 4¢ instead of ¢ since an artificially high
number of requests are queued in the stack. Moreover,
there is no reason to slow down or flush the queues since
the workload is being replayed with the expected through-
put of ¢. Note that some I/O workloads do not experience
the dropping tail of I/O throughput by increasing the num-
ber of in-flight requests. These workloads usually saturate
physical hardware resources of the SAN controller.

Limiting internal queue sizes is a conservative default
approach to prevent I/O stack operating in the trashing
state. This conservative approach bounds the maximum
throughput intentionally to prevent typical applications

USENIX Association

15th USENIX Conference on File and Storage Technologies 317



without in-flight I/O control from creating a burst submis-
sions of I/O request and forcing the I/O stack to operate
in the trashing state. Therefore, we need to keep the in-
ternal kernel queues open and meanwhile dynamically
monitor and control the number of in-flight I/Os in the
replay engine.

Depending on the information included in the workload
trace, it is possible to estimate the number of in-flight I/O
requests required to replay the workload. The number of
in-flight I/O requests at time # can be calculated by count-
ing the number of I/O requests with issue times smaller
than # and completion times larger than t. Assume that n
requests are counted as the number of in-flight requests at
time ¢ for a given trace file. During the replay process, we
can throttle the I/O injection rate if more than n requests
have been issued but not yet completed. This throttling
creates a small pause and helps the I/O stack to reduce
the artificially high number of in-flight requests. This ap-
proach dynamically controls the number of the in-flight
I/O requests and protects them from going beyond a pre-
determined limit before replaying each I/O request.

Note that we round up the dynamic limit of in-flight
requests to the next power of two number. If we limit the
worker thread to keep at most n requests in-flight, it can
replay I/O requests at the same pace as they were cap-
tured, but cannot speed up even when some I/O requests
fall behind the replay schedule due to unexpected latency
of system calls. Therefore, it will negatively impact the
timing accuracy of the replay process. On the other hand,
if we do not put any limitation on the in-flight I/O count,
the replay thread tries to catch up as fast as possible and
issues too many I/O requests in a short period of time
which resulting in Response-Time Trashing. Therefore,
we round up the predetermined limit of in-flight requests
to the next power of two number and let the replay threads
speed up slowly to catch up with the schedule if needed.

2.4. 1/0 Request Bundling

If the inter-arrival time between two consecutive 1/O
requests is shorter than the average latency of an I/O sub-
mission system call, it is impossible for a single worker
thread to submit both requests one after another on time
with separate I/O submission system calls. On the other
hand, if we deploy two worker threads, it is possible to
submit both I/O requests on time, but they may arrive out-
of-order to the SAN controller due to the variations of
system call latency and device driver queue processing.
Therefore, the high-fidelity replay engine of hfplayer bun-
dles these consecutive requests into one group and lets the
libaio unroll it on a single worker thread context within
the kernel space. As a result, not only the I/O requests
arrive at the SAN controller in order but there is less over-
head of kernel to user-space context switch involved in the
I/O submissions of multiple I/O requests. We recommend
bundling multiple I/O requests before the submission if

the inter-arrival time between consecutive I/O requests
is less than a certain threshold. This inter-arrival time
threshold is proportional to the system performance to
execute I/O submission system calls. We will discuss this
threshold value in Section 5.1.5.

3. Dependency and Scalable Replay

In most applications, there are dependencies that exist
between 1/O operations. A simple case would be an ap-
plication that reads an input file, manipulates the data in
some manner and writes the result to an output file. In this
case, there is a dependency that exists between the read
and the write since the write cannot occur until the read
and the data manipulation have completed. Therefore, the
actual issue time of an I/O request in the application is
relative to the latency of its dependent I/Os as well as the
data manipulation time.

The I/0 latency is determined by the storage device per-
formance and I/O queue depth. On the other hand, the data
manipulation time is determined by the computing power
of the server. If we replay a captured /O trace in an envi-
ronment similar to the one where the application was run
initially (i.e., an unscaled environment), both I/O latency
and data manipulation time would be the same as the
original environment (with a reasonable pre-conditioning
step). Therefore, I/O dependencies are maintained by sim-
ply replaying the I/O requests in the sequence that they
were originally captured.

However, if we want to scale the workload replay to
emulate running the application on a faster storage sys-
tem or host (i.e., a scaled environment), the I/O latency
or data manipulation time would be different from those
in the original environment. Therefore, simply replaying
the I/0 requests in the captured order and time does not
necessarily maintain real application I/O behavior. The
application might issue I/O requests with a different order
and perhaps shorter inter-arrival time in a scaled envi-
ronment. The sequence between dependent I/O requests
is actually maintained by the application and should be
respected during replay. Therefore, an accurate scalable
workload replay tool should be able to estimate these
I/0 dependencies from a captured trace and issue an I/O
request after the completion time of its dependent I/O
requests plus a data manipulation time.

Unlike traditional data dependency analysis in the
compiler theory, it is not possible to precisely declare
dependencies based on block I/O trace information with-
out accessing application source code. Moreover, the file
system semantics are not available in a block I/O request
and it is not practical to derive dependencies similar to
ARTC and TBBT replay approaches [24, 25] based on
the file system level operations. Moreover, a set of /O
requests considered as independent from the point of view
of either application or file system might become depen-
dent with each other in the block layer since they are

318 15th USENIX Conference on File and Storage Technologies

USENIX Association



pushed into the same I/O queues and processed in or-
der by the same I/O logic. Therefore, our best effort is
to take a heuristic method and speculate potential I/O
dependencies from a given trace and propagating 1/0O-
related performance gains along the dependency chains
during a workload replay on a faster (scaled) storage de-
vice. Finally in Section 5.2 we demonstrate the accuracy
of our heuristic method by comparing the performance
characteristics of the replayed workloads to real work-
loads generated by the applications on the scaled environ-
ment.

3.1. Inferring Dependency from Block I/0 Trace

A block I/O trace usually includes information about
the read and write request types, logical block address,
transfer size and timestamps of issuing and completing
I/0 requests. Unfortunately, this information of the I/O
operations itself does not help inferring the dependencies.
We try to infer request dependencies using the timing
relationships between these operations in the workload
trace.

Inferring potential I/O dependency might create both
false positives and false negatives. A false positive is to
mistakenly identify two requests as dependent with each
other, whereas they are independent. Therefore, they are
replayed from a single dependency chain while they orig-
inated from separate chains in the application. A false
negative is the prediction that mistakenly considers two
dependent requests as independent. Therefore, they are
replayed from separate dependency chains, while their
relative order and timing are ignored. Consequently, the
performance gains originated from the scaled system are
not properly distributed among these requests.

False negative dependencies are more destructive for
the workload replay accuracy on a scaled system because
falsely identified independent requests can take advan-
tage of any performance gains and replay as fast as pos-
sible with an arbitrary order that is not reproducible by
the original application. On the other hand, false positive
dependencies are more conservative since they are only
allowed to take advantage of performance gain in a single
dependency chain, while they could issue independently
and perhaps even faster by the original application.

Moreover, some of these false positive dependencies
may actually help improve the workload replay accuracy.
For example, consecutive dependent I/O requests with a
very long inter-arrival time are probably independent from
the application point of view. They may be generated by
independent threads at different times or the same thread
with a long idle time. However, hfplayer still considers
these consecutive requests as dependent to preserve the
long idle time during the workload replay task. Otherwise,
such a long think time will be dismissed if these requests
are being considered as independent and will be replayed
around the same time from separate dependency chains.

Trace File Dependency Graph

Requests
Order

Time

Figure 2: Example of Block I/0 Dependency Graph

Therefore, it can be beneficial for a workload replay to
maintain some of these false positive dependencies.

hfplayer takes the following conservative approach to
infer I/O dependencies with a minimum false negative
prediction rate. First it assumes all consecutive pairs of
requests are dependent, meaning that the second request
depends on the outcome of the first request. Since no inde-
pendent requests are detected initially, the false negative
prediction rate would be zero. However, the false positive
rate is at a maximum value. Second, it scans the I/O trace
and tries to reduce the false positive rate by excluding
those requests that are impossible to be dependent with
each other. Finally, it searches the remaining list of depen-
dent I/O requests and removes redundant dependencies to
simplify the dependency graph.

Requests that are impossible to be dependent on each
other are identified solely by their timing information in
the trace file. Each block I/O operation in the request trace
has a start time and a completion time. Start time is the
time-stamp indicating when a request arrives at the trace
capture point and the completion time is the time-stamp
indicating when a request completion signal is returned
back to the trace capture point in the I/O stack. Figure
2-a illustrates a sample request trace where the start and
completion times of a request create a time interval rep-
resented as a line segment capped by two dots. Figure
2-b illustrates the dependency graph that is constructed
based on these time intervals. We use traditional directed
acyclic graph to visualize I/O dependencies in the trace
file. During workload replay, the graph dependency edges
implies that child request will be issued after the com-
pletion of the parent request plus a manipulation time
associated with the parent. Afplayer distinguishes inde-
pendent requests without introducing false negative in the
following scenarios:

Overlapping Requests: A pair of I/O operations are
identified as independent if they have overlapping time
intervals since the first request finishes after the start time
of the second request. Therefore, it is impossible for the
second request to depend on the outcome of the first re-
quest. For example, Requests A and B in Figure 2 are
independent since they are identified as overlapping re-
quests.

Short Think Time: Think time is defined as the time
duration starting from the completion of the first oper-

USENIX Association

15th USENIX Conference on File and Storage Technologies 319



ation and ending at the start of the second operation. A
pair of I/O operations with a very short think time are also
identified as an independent pair. The threshold value of
this short think time varies depending on the processing
power of the application server and represents the time
it takes to push up the completion signal of the first re-
quest from the capture point to the file system layer plus
the time to issue the second operation from the file sys-
tem. Therefore, it is impossible for the second request to
depend on the outcome of the first request with a very
short think time. Although an artificially large threshold
value for the think time helps reduce the false positive
rate, it may also introduce a false negative since a pair
of dependent I/O requests is falsely marked as indepen-
dent. Therefore, we take a conservative approach and just
assign the smallest possible threshold of think time for a
consecutive pair of I/O requests. This would help to keep
the minimum false negative rate. This threshold time is
around 10uts in our test environment where the trace cap-
ture point is located in the SAN controller. For example,
the think time between Requests B and C in Figure 2 is
too short such that they are considered as independent
requests.

After excluding independent requests based on their
timing positions, Afplayer scans the remaining list of de-
pendent I/O requests, constructs a dependency graph and
removes redundant dependencies. A pair of I/O opera-
tions has a redundant dependency in the graph if there is
an indirect path from the first to the second operation in
the graph. Therefore, removing redundant dependencies
does not affect semantic information of the graph. For
example, the dependency between Requests A and E in
Figure 2 is maintained implicitly since Request E waits
for the completion of Request D and Request D starts after
completion of Request A. Therefore, there is no need to
add another dependency edge from Request A to Request
E.

3.2. Scalable Replay According to I/O Dependency

A scaled server may be capable of running the appli-
cation at a faster pace and pushing more I/O requests
into the I/O stack with less think time. On the other hand,
a scaled storage device may pull more I/O requests out
of the stack and process the requests faster with shorter
response-time (I/O latency). An accurate I/O replay on a
scaled system not only requires I/O dependency predic-
tion, but also requires differentiation between server and
storage scale factors.

Figure 3 illustrates the way that block /O replay tools
issue Requests A and B on a scaled storage device where
Request B is dependent to the outcome of Request A.
We assume that the workload is replayed from a server
with the performance characteristics similar to that of the
original application server. Therefore, it is expected to
see the same think time and reduced I/O latency for both

t t, t t

e
R;g;':; Think time Iate'r?cy A . Think time B Lat;gcy -
AFAP Replay
Deper;i:;}g Iatelr?cyA Lattlegcy B

t

——
te + (t-t)

Figure 3: Replay methods on the Scaled Storage

Requests A and B. Typical workload replay tools either
ignore the I/O latency reduction (i.e., issue I/O requests
based on their original scheduled time: regular replay), or
ignore the scheduled time (i.e., issue I/O requests As Fast
As Possible: AFAP replay). We believe neither one of
these approaches is accurate. The regular replay approach
issues the requests at the same speed as they were cap-
tured on the unscaled storage device. The AFAP replay
approach issues I/0O requests too fast which can violate
the 1/O request dependencies and accumulates a large
number of in-flight I/O requests that severely impacts the
response-time and throughput accuracy of the reproduced
workload.

hfplayer emulates the execution of the original applica-
tion on a scaled storage device by preserving the original
think times and dynamically adjusting the issue times
of I/O operations according to their dependent parent’s
completion time. If the completion signal of Request A
(parent) arrives at ¢., the issue time of Request B (child)
will be set to . + (3 — T») during the replay process.

Note that only a few I/O requests in the beginning of
the workload trace that are in-flight at the same time do
not have parents. Therefore, almost all I/O requests in the
workload trace have at least one dependent parent that
form multiple dependency chains. The total number of
parallel dependency chains at any point of the time ob-
viously cannot exceed the maximum number of in-flight
I/0O requests recorded in the workload trace file.

4. hfplayer Architecture

The main components of Afplayer are illustrated in
Figure 4. The dependency analyzer module is used only
during the scaled replay mode. It takes the trace file with
a short inter-arrival time threshold from the inputs, identi-
fies I/O request dependencies and creates a dependency
graph based on the method as we have described in Sec-
tion 3. Finally, this module annotates the original trace
file and creates a new intermediate trace file with a list of
dependent parents for each I/O request.

We have deployed four types of threads for a replay ses-
sion, the worker threads, a harvest thread, a timer thread
and the main application thread. The main application
thread is responsible for initializing and preparing the re-
quired data structures for other threads. These data struc-
tures include individual I/O request data structure with

320

15th USENIX Conference on File and Storage Technologies

USENIX Association



optional request bundling and dependency information
as well as internal I/O queues dedicated to each worker
thread. We have carefully aligned these data structures
to the processor cache line size to avoid multiple cache
misses when Afplayer touches these data structures.

In the unscaled replay mode, each worker thread picks
an I/O request from its request queue and issues the re-
quest according to the scheduled issue time recorded in
the I/0O data structure. It also makes sure that the I/O stack
is not operating in the response time trashing mode by
keeping track of the total number of I/O requests issued
and completed as we discussed in Section 2.3.

Dependency
° Analyzer hf P I ayer
Q
§ Prepare 1/0 and Monitoring |
§ Harvester Timer Worker
=) Thread Thread Threads
g libaio
&
3 Block Layer
& SCS| Initiator |
E | SCSI Target (Trace Capture) |

Figure 4: hfplayer Components on Linux I/0 Stack

In the scaled replay mode, a worker thread issue an in-
dividual I/O request after it receives the completion signal
of all of its parents plus their corresponding think times.
After a worker thread successfully issues an I/O request
to the storage controller, its I/O completion signal will
be picked up by the harvester thread. Then, the harvester
thread decrements the number of in-flight parents counter
in its children’s data structure. This process eventually
reduces individual children’s counter to zero and then let
other worker threads to issue its children requests in a
dependency chain.

Finally, a timer thread is used to share a read-only timer
variable to all worker threads with nanoseconds accuracy.
Worker threads in the unscaled replay mode compare this
shared timer value with the scheduled issue time of the
current request to make sure I/O requests are submitted
on time. We add a fixed offset to the timer value to make
sure all worker threads have enough time to start and wait
for the submission of the very first I/O request.

5. Evaluation

We evaluate the replay accuracy of the hfplayer in
the following two scenarios. First, we evaluate its high-
fidelity unscaled replay engine in a unscaled environ-
ment and compare it with existing replay tools in Sec-
tion 5.1. Then, we evaluate its scalable replay engine on
scaled storage devices in Section 5.2. These experiments
are done with Linux 3.13 kernel running on a 2x6-Core

Xeon X5675 server with 64GB memory and 8Gbps Fiber
Channel connection to a NetApp E-Series SAN controller.
We have created three SAN volumes for these ex-
periments with RAID-0 configuration. The first volume
is composed of four enterprise SAS solid-state drives
(4xSSD volume). The second volume is composed of nine
enterprise SSDs (9xSSD volume) and the last SAN vol-
ume is composed of two 15K RPM SAS hard disk drives
(2xHDD volume). We have disabled the read and write
cache since warming up the SAN controller caches is out
of the scope of this work. Note that the performance num-
bers presented in this section do not represent the actual
capability of the products used in these experiments.

5.1. Workload Replay on the Unscaled Storage

In this experiment, we collect 12 I/O workload traces,
then replay them with multiple replay tools and quan-
tify the unscaled workload replay accuracy. At first, we
compare the hfplayer replay accuracy with other exist-
ing block I/O replay tools. Next, we evaluate its multi-
threading and bundling features.

5.1.1. Workload Types: An accurate replay tool should
be able to faithfully replay any workloads in a wide in-
tensity spectrum from low to high throughputs. However,
as we mentioned earlier it is a challenge to maintain the
replay accuracy for intensive and high throughput work-
loads. Therefore, we need a tunable synthetic I/O work-
load to demonstrate when the accuracy of existing replay
tools drops as we increase the I/O throughput in this exper-
iment. Although it is more appealing to replay the work-
load trace of a realistic application, we use synthetic work-
loads in this experiment since most of the open-source en-
terprise and HPC applications does not use a raw volume
without a file system. Therefore it require a large cluster of
servers and huge parallelism to overcome the application
and file system layer overheads and stress the storage con-
troller with an intensive I/O workload. For example, a re-
cent study reported that 168 Lustre nodes (OSS and OST)
are required to create a storage space with 100K IOPS
[7]. Obviously, producing such a workload is a challenge
not only for us with limited hardware/software resources
but also for the research community to reproduce and val-
idate our research results. Therefore, we have selected
synthetic workloads that can stress the SAN controller
up to 200K IOPS and then demonstrate how hfplayer
can replay these workloads with high-fidelity on a similar
storage device.

We have used FIO and its libaio engine to generate 11
synthetic I/O workloads that cover low to high throughput
intensity spectrum on the raw 4xSSD volume. We have
also selected Sequential Write and Random Read/Write
with a default 50/50 split for the I/O patterns. These two
patterns then are used to generate 10 workloads with the
incremental throughput tuned by iodepth values of 16, 32,

USENIX Association

15th USENIX Conference on File and Storage Technologies 321



64, 128 and 512. Finally, we generated another workload
with the I/O pattern of Sequential Read and iodepth of
512 to create a very high-throughput workload for eval-
uation of multi-threading and request bundling features
of hfplayer. All of these workloads are generated for the
duration of 60 seconds. The traces of block I/O requests
that have been generated by these workloads are collected
from the SAN controller SCSI Target layer. These trace
files are then used in our replay experiments. hfplayer
input trace file format is compatible with SNIA draft of
block-trace common semantics [17] and does not include
proprietary fields.

5.1.2. Replay Tools: We compare the workload replay
accuracy of hfplayer with two publicly available block
I/0 replay tools. First, we use blkreplay [15] which is
developed by a large web hosting company for the per-
formance validation of block storage devices used in its
data centers. blkreplay is built with a synchronous multi-
threaded I/O engine as we mentioned in Section 2 and
suffers from inter-thread coordination overhead. We con-
figure it with no-overhead and with-conflicts to disable its
write-verify and write-protection mode in order to make
an apples to apples comparison with other tools. More-
over, we set the maximum thread count to 512 since some
of our workloads carry-on such a high number of in-flight
I/O requests.

Second, we use btreplay [8] which is developed origi-
nally to replay workloads that are captured with the blk-
trace tool on Linux. It uses libaio with an asynchronous
I/0 engine like hfplayer and has a similar feature to com-
bine the I/O requests into a bundle if they fit in a fixed time
window with a fixed request count per bundle. The bundle
time window and the maximum request count are stati-
cally set in the command line and are not dynamically set
according to the workload intensity. However, as we men-
tioned in Section 2.4, hfplayer can dynamically adjust the
bundle size since it bundles requests together if their issue
time is very close to each other. Moreover, we just use a
single worker thread in the btreplay since it cannot replay
a single trace file using multiple worker threads. We con-
figure hfplayer to work with a single worker thread for a
fair comparison as well and evaluate its multi-threading
and bundling features separately in Section 5.1.5. We do
not use FIO replay engine since it is similar to btreplay
and uses asynchronous I/O engine. Moreover, it has been
reported in the open-source community that FIO is not as
accurate as btreplay [1].

5.1.3. Accuracy Metrics: An accurate unscaled work-
load replay should maintain both temporal and spatial
characteristics of the original trace workload. Temporal
characteristics of an I/O workload are usually quantified
by I/O throughput and response-time. We use relative er-
ror percent of average response-time to demonstrate the
response-time accuracy of the workload replay. Moreover,

| m hfplayer M btreplay

# blkreplay ‘

Relative Exec.
Time Error (%)

Relative Avg.
Requests LatencyError (%)

Avg. In-Flight 10

Reordered |0
Ratio (%)

Figure 5: Replay Accuracy for the Sequential Write Workloads

determining factor of I/O throughput is the total execution
time since the number of replayed requests is the same
in each replay experiment. Therefore, we use relative er-
ror percentage of execution time to demonstrate the I/O
throughput accuracy of the workload replay. The spatial
characteristics of the workload replay remain the same
if all I/O requests arrive in the storage device(s) with the
same order that is presented in the original trace. There-
fore, we have used the Type-P-Reordered metric [12] to
measure the number of requests that are reordered in the
replayed workload.

5.1.4. Workload Replay Accuracy Comparisons: Fig-
ure 5 demonstrates the accuracy of the three replay tools
that we have tested using five sequential write work-
loads. The shared horizontal axis represents the demand-
ing throughput of the captured workload in IOPS. The
vertical axes A, B and D represent three accuracy metrics
discussed earlier. First, axis A shows the relative execu-
tion error of the replayed workload. While all three replay
tools can reproduce low throughput workloads with neg-
ligible timing errors, btreplay and blkreplay cannot keep
up when throughput demand increases from 92K to 104K
IOPS and cannot finish the replay task on time.

Second, axis B shows the relative error of average I/O
response-time during the workload replay compared with
the original workload. Once again all three tools have a
negligible response-time error to replay the low through-
put workload (40K IOPS). However, both btreplay and
blkreplay fail to replay with accurate response-time for
higher throughput demanding I/O workloads. Starting
with 68K IOPS workload, these tools build an artificially

322 15th USENIX Conference on File and Storage Technologies

USENIX Association



high number of in-flight I/Os in the I/O path as we show
in axis C which results in Response-Time Trashing. The
I/O response-time error of the replay task for the most
demanding I/O workload (104K) is negligible because
the I/O path is already overloaded and achieving its max-
imum response-time at this throughput rate. Therefore,
the internal overhead of btreplay and blkreplay prevents
them from achieving the target throughput and causes
them to finish the replay task with 14% and 16% relative
execution time error respectively.

Finally, axis D shows the ordering accuracy of the re-
played workload. blkreplay is based on a multi-threaded
synchronous I/O engine. Therefore, it is expected to see
it reorders most of I/O requests in the workload. We be-
lieve reordering can significantly change the workload
characteristics. In this case, it converts a sequential write
workload into a half sequential, half random workload.
btreplay and hfplayer both use the single threaded async
I/0 engine and can submit all I/O requests in order but a
negligible number of these requests are reordered in the
I/O stack by the SCSI Initiator since it operates in the
Simple TCQ mode which is inevitable.

Figure 6 shows the replay accuracy for mixed random
read/write workloads. First, axis A shows all three re-
play tools are capable of replaying mixed workloads with
a negligible error. That is because the overhead of the
I/O stack is lower for read/write workload compared with
previous write-only workload. Typically write requests
are more resource consuming since writes carry a pay-
load that requires extra protection for data consistency
and durability both in the Kernel and SAN controller I/O
stacks. Second, axis D shows both blkreplay and btreplay
fail to replay the workload with accurate response-time
which is directly impacted by the number of in-flight I/O
requests shown by axis C. Note that the only workload
that Afplayer does not provide the best response-time accu-
racy is on the 99K IOPS workload, where its relative error
rate is 52%, whereas blkreplay error rate is 16%. That is
because blkreplay managed to replay the workload with
a lower number of in-flight I/O requests. However, blkre-
play cannot maintain a low request ordering accuracy at
the same time. As we show in axis D, about 34% of re-
quests that are issued with this tool at 99K IOPS workload
arrived in the controller out of order.

Note that the number of reordered requests in the mixed
read/write workload is significantly more than sequential
write workload for btreplay and hfplayer (comparing axis
D in Figures 6 and 5). These requests are submitted in
order with a single worker thread in both replay tools.
However, they are reordered in the SCSI initiator layer
since read and write requests have different service time.
Usually read requests are serviced faster since the read
I/0O path is faster on a SAN controller without a caching
layer. Therefore, the queue tags that are allocated for the

| mhfplayer mbtreplay % blkreplay |

4%

3% 1-&
2% 4--
1% -

Relative Exec.
Time Error (%)

0% -

-]
3
X

400%

200%

Relative Avg.
Latency Error (%)

o
S

Avg. In-Flight10
Requests

Reordered 10
Ratio(%)

42K-RandRW '67K-RandRW 80K-RandRW 94K-RandRW S99K-RandRW

Figure 6: Replay Accuracy for the Random R/W Workload

read requests in the SCSI initiator layer are deallocated
faster than the tags allocated for writes requests. How-
ever, in the write-only workload, all the tags are allocated
and deallocated with the same rate and the SCSI initiator
queue will operate similar to a FIFO queue.

5.1.5. Multi-threading and Request Bundling: We did
not evaluate these two features of the hfplayer in the previ-
ous experiments to make an apples to apples comparison
with other replay tools. However, these two features are
useful during the replay of very high throughput work-
loads where the other replay tools are incapable of main-
taining replay accuracy as we elaborated in the previous
subsection. In this experiment, we go extreme and replay
a very high throughput sequential read workload with
232K IOPS. This workload is captured and replayed on
a 9xSSD volume, while the previous experiments were
done on a 4xSSD volume.

Figure 7 shows the replay accuracy of hfplayer where
multi-threaded and bundling features are used. The hor-
izontal axis shows the maximum inter-arrival time be-
tween two requests to fit into a bundle. Obviously,
hfplayer forms larger bundles with a larger maximum
inter-arrival time value. We have replayed the workload
with one to eight threads for each time to evaluate the
multi-threading feature as well. On the vertical axes, we
just show the relative execution time error (or throughput
accuracy) and reordered I/O ratio. We do not show the av-
erage response-time accuracy since the I/O path in all of
these experiments is fully loaded. Therefore, I/O response-
times are all saturated and close to expectation. We have
described a similar behavior in Figure 5-B that happens

USENIX Association

15th USENIX Conference on File and Storage Technologies 323



for all replay tools during replay of a high-throughput
104K TIOPS workload. Figure 7 shows that hfplayer can-
not finish replaying the 232K IOPS workload on time
when the bundling feature is disabled. Enabling the multi-
threaded feature helps to reduce the relative execution
time error from 28% to 27% and 21% with two and four
worker threads respectively. The improvement is minimal
and the resulting error rate is still high. Moreover, using
eight worker threads does not improve the replay accu-
racy further due to extra threading overhead to acquire
block layer queue lock. On the other hand, adding more
worker threads significantly increases the reordered I/O
rate.

In contrast, when request bundling is enabled (for exam-
ple, set bundling threshold to 201tLs), the ordering errors
are reduced to around 30% in multiple worker threads
mode. Moreover, multiple worker threads help Afplayer
submit all I/O requests on time and reduce the execution
time error rate. As we increase the bundling threshold,
we see a negligible change in the accuracy metrics. That
is because hfplayer can fit up to 256 requests in a bun-
dle and increasing the bundle threshold cannot create a
larger bundle when almost all bundles are full. The maxi-
mum bundle size limit is an implementation trade-off that
forces the bundle data structure to fit in a CPU cache line.
Therefore, the replay task does not suffer from multiple
cache line misses when it sends a bundle to the kernel.

Finally, Figure 7 shows a significant amount of I/O re-
quests are reordered in the single threaded mode when
bundling is enabled. For example, 29.3% of requests ar-
riving in the SAN controller are out of order when we
set the bundling threshold to 30us. All of these requests
are inserted into the SCSI initiator queue in order using
a single thread that mostly lives in the kernel space. In
other words, the io_submit system call unrolls a bundle
and issues individual I/O requests from the kernel space
and does not context switch to the user space frequently.
Therefore, the tag allocation in the SCSI initiator queue
takes place at a faster pace compared with deallocation.
As a result, the SCSI driver cannot allocate in order tags
when a burst of tag allocation requests arrive during the
unrolling of a bundle in the kernel space.

5.2. Evaluate Scalable Workload Replay

In this subsection, we evaluate the scalability feature
of the hfplayer and its scaled replay engine. The ulti-
mate goal of this experiment is to evaluate how accurate
hfplayer can replay a workload on a faster storage device,
given a workload trace file that is captured from a slower
storage device. First, we will describe the workloads that
we have used for this experiment. Then we describe the
evaluation methodology and finally we present the evalu-
ation results.

5.2.1. Workload Types: As we described in Section 3,
the dependency replay engine of hfplayer tries to em-

M 1-Thread m2-Threads £&4-Threads N8-Threads

a8
. o

.ooo .ooo

Reordered|ORatio(%) Relative Exec. Time Error (%)

O(NJA) | 20us | 30us | 40us @ 50us | 60us
Max Inter-Arrival Time Between I/O Requests in a Bundle

Figure 7: Multi-threading and Request Bundling Evaluation

ulate the application behavior by speculating the I/O
dependencies from a given trace file and replay I/O re-
quests according to their dependencies. Therefore, we
could not use synthetic workloads for this experiment
since they do not contain realistic dependency informa-
tion that can be emulated. Therefore, we have tried to
use realistic applications on top of a file system for this
purpose. Instead of using a commercial I/O intensive ap-
plication (like an Oracle Database) or making our own
I/0O intensive application (like copying large ISO files),
we have used Filebench [21] and mkfs to generate the
workloads for this experiment. These applications are
available in the public domain and can be used by others
to reproduce the results.

The key features of the selected I/O intensive applica-
tions are a) they perform direct I/O instead of buffered
I/O which eliminates the ext4 buffer cache impact on the
I/0O performance, b) they perform a meaningful task from
the application layer and their durations depend only on
the performance of the storage device, and c) the task ex-
ecution time is fixed and reproducible on a single storage
device.

According to these criteria, we have selected Copyfiles
and Createfiles benchmarks from the Filebench suite. The
first benchmark is configured to copy 100K files with 256
threads. The second benchmark is configured to create
50K files with mean directory width of 100 and mean
file size of 16K using 16 threads and a 1MB request size.
Both benchmarks are set to do direct I/O and the other
configuration parameters are set to default. These two
benchmarks run a meaningful I/O intensive task on the
SAN volumes mounted with the ex#4 file system.

The mkfs application creates another I/O intensive
workload during the file system initialization phase. We
have created fixed size partitions on all SAN volumes
and used mkfs.ext4 utility without the lazy inode table
and journal initialization to create a file system image.
This forces mkfs to create all inode tree and journal data
structures on the disk in the foreground.

324 15th USENIX Conference on File and Storage Technologies

USENIX Association



M Original Program on Target Volume (4xSSDs) M Original Program on Source Volume (2xHDDs)
7 HF Replay Source Trace on Target % AFAP Replay Source Trace on Target
= Load Replay Source Trace on Target Dep Replay Source Trace on Target

<

2.0

=
«

Normilized IOPS
Ind e B
o o W o

=
«

o
]

o

Normalized Avg Latency
—
o

CreateFiles mkfs

CopyFiles

Figure 8: Replay Workloads Captured from 2xHDD on 4xSSD

5.2.2. Evaluation Methodology: We will describe our
evaluation methodology with a simple example. Let us as-
sume an I/O intensive application that executes on storage
device A for 10 minutes. However, it takes just 5 minutes
to run the same application on a faster storage device B.
A scalable replay tool should be able to take the trace file
of the I/O workload from storage device A (which lasts
for 10 minutes) and replay it on device B in 5 minutes.
In other words, storage device B takes almost the same
workload during the replay as it received when the real
application was running. In this example, storage device
A is the Source and B is the Target storage device.

In practice, the source is the slower storage device that
is installed in the production site and the target is a faster
storage device that is under development or validation
test. The workload is captured from the source (on the
production site) and replayed on the target storage (in the
lab). The expectation is that the replay tool will generate
the same workload that the production application would
have generated on the target storage and quantifies how
much it can improve application performance.

Our methodology to quantify how Afplayer can meet
such an expectation is as follows. First, we execute the
I/O intensive applications on 2xHDD, 4xSSD and 9xSSD
volumes for multiple times, capture their I/O workloads
from the SAN controller and make sure the execution time
of captured workloads are repeatable. We have validated
that these applications are repeatable with less than 2.7%
relative standard deviation. Then we consider the 2xHDD
volume as a source and 4xSSD volume as the target for
the replay. This means that the trace files captured on
2xHDD volume are replayed on 4xSSD volume. Finally,
we compare the execution time and I/O response-time
with the original application trace files that were captured
from 4xSSD in the first step. We do the same steps to take
4xSSD volume as a source and 9xSSD as a target.

We use hfplayer to replay the captured workload from
the source on the target storage in the following four re-
play modes to make our evaluation more comprehensive.
First, we replay with the HF or high-fidelity replay engine.

W Original Program on Target Volume (9xSSDs) M Original Program on Source Volume (4xSSDs)
HF Replay Source Trace on Target i AFAP Replay Source Trace on Target
= Load Replay Source Trace on Target Dep Replay Source Trace on Target

15 -

Normalized 10PS
S g
°
777777777
2455,

6011 IO/s
4056 I0/s

g
o °

I
«

o
«

Normalized Avg Latency
=
)

ol
=)

CreateFiles mkfs

CopyFiles

Figure 9: Replay Workloads Captured from 4xSSD on 9xSSD

Note that this is the same replay mode that we have used
in Section 5.1. Second, we replay with the AFAP replay
mode which ignores the scheduled timing and tries to
replay I/O requests on the target storage device as fast
as possible. Note that other block I/O replay tools like
blkreplay recommend this replay mode to replay a work-
load on a scaled storage [15]. Third, we replay with the
Load replay mode which is similar to AFAP, but it only
tries to dynamically match the number of in-flight I/O
requests as described in a previous work [16]. Finally, we
replay with the Dep replay mode which is based on the
dependency replay engine of the hfplayer. It estimates
I/O dependencies and replays requests according to those
dependencies as we described in Section 3.

5.2.3. Result Discussion: Figure 8 shows the results of
taking the captured workload from the 2xHDD volume
(source) and replaying it on the 4xSSD volume (target).
In this figure, the horizontal axis is the workload type.
The top vertical axis is the workload IOPS normalized
to original application IOPS running on the target stor-
age device. The bottom vertical axis shows the average
response-time again normalized with what is expected
to see on the target storage device. An accurate replay
should have a patterned bar that is very close to the solid
black bar. The numbers on the patterned and gray bars
show the error values or how far each bar is from the solid
black bar.

This figure shows that the dependency replay mode can
accurately replay captured workload from the 2xHDD
volume on the 4xSSD volume in terms of both IOPS and
average response-time. The IOPS generated with high-
fidelity replay mode matches with the low throughput of
the source volume (gray bar) and its its response-time is
significantly lower than the original application response-
time on the target storage (black bar). AFAP and Load
replay mode both replay the workload on the target vol-
ume with a significantly higher throughput. As a result,
they queue more requests than expected in the I/O path
and inflate the response-time. Even the in-flight I/O rate
control mechanism that is embedded in the Load replay

USENIX Association

15th USENIX Conference on File and Storage Technologies 325



mode does not help to slow down the workload replay and
match with the original program I/O performance running
on the target volume.

Finally, Figure 9 shows the results of taking a captured
workload from the 4xSSD volume and replaying it on
the 9xSSD volume. This figure shows that dependency
replay mode of hfplayer can accurately replay a work-
load on a scaled storage even if the performance variation
between the source and target is not significant. For ex-
ample, mkfs is a single threaded application that typically
does synchronous I/O with one in-flight request at a time.
Therefore, as we see in this figure, both the source and
target storage devices have the same IOPS value (solid
black and solid gray bars). That is because only one SSD
produces the throughput at any point in time with one
in-flight I/O request. This is the worst case for hfplayer
with dependency replay with an IOPS error rate less than
30%, compared to less than 10% IOPS error rates in all
other cases.

6. Related Work

Various trace replay tools have been developed at file
system level. For example, Joukov et al. developed Re-
playfs [9], a tool that can replay file system I/O traces
that were captured at the VFES level. Zhu et al. proposed
TBBT [25], an NFS trace replay tool that automatically
detects and recovers missing file system I/O operations
in the trace. Mesnier et al. proposed /TRACE [11] for re-
playing traces of parallel applications. It achieves a high
accuracy in terms of inter-node data dependencies and
inter-I/O compute times for individual nodes by utiliz-
ing a throttling technique. More recently, Weiss et al. de-
signed ARTC [24], a new method of replaying system call
traces of multi-threaded applications which can explore
some non-deterministic properties of the target applica-
tion. However, as we mentioned in Section 1 none of these
replay tools are capable to reproduce high-throughput
workload due to intrinsic file system overhead. More
recently, Pereria et al. compares the replay accuracy of
ARTC with TBBT [13].

There are several other block I/O replay tools. Liu et al.
designed TRACER [10], a replay tool used for evaluating
storage system energy efficiency. It can selectively replay
a certain percentage of a real world block I/O trace to
reach different levels of workload intensity by filtering
trace entries uniformly. Anderson et al. proposed But-
tress [6] as a toolkit to replay block traces with a loose
timing accuracy of 100us more than 10 years ago. This
tool uses synchronous I/O and thus requires instantiat-
ing a great number of threads in order to achieve a high
number of outstanding I/O requests on the target storage
system. Therefore, its replay performance and scalability
are limited by the threading overhead and cannot keep
up with the capabilities of modern SAN storage systems.
Sivathanu et al. proposed a load-aware trace replay [16]

that aims to preserve the same /O load pattern of the orig-
inal application traces irrespective of the performance of
the target storage system. However, we have evaluated
this technique in Section 5.2 and demonstrated that it
cannot replay a workload on the scaled target storage ac-
curately.

More recently, Tarihi et al. proposed DiskAccel [22], a
sampling methodology to accelerate trace replay on con-
ventional disk drives. DiskAccel uses a weighted variant
of the K-Means clustering algorithm to select represen-
tative intervals of the I/O trace file. These I/O intervals
instead of the whole trace are then replayed on the target
disk drive. Therefore, a week long captured /O trace file
can be replayed in about an hour, while maintaining the
same average I/O response-time. Moreover, Tarasov et
al. proposed a flexible workload modeling technique that
extract a mathematical model from the block trace [20].
This model is then used as an input for a benchmark tool
to reproduce the workload. These trace reduction and
modeling methodologies are complementary to our work
and can be used to shrink the trace size and I/O work-
load duration with Afplayer as well. DiskAccel also im-
plements a method to enforce I/O requests dependency
during the replay job. However, due to the lack of block
I/0 dependency information, it assumes all reads requests
are dependent and all write requests are independent. In
contrast, hfplayer infers dependency information without
such an unrealistic assumption.

Finally, Tarasov mentioned a few limitations of the
workload replay on a scaled storage [18]. He described
the dependency replay as a viable approach but claimed
that approximation of I/O dependencies from the block
layer can add extra dependencies that does not exist in the
original workload. Therefore, the workload replay effort
might not be as accurate as workload modeling effort. In
this work, we have demonstrated a method to make an
approximation of the I/O dependencies and found that
the dependency workload replay can reproduce original
application workload on a scaled storage device.

7. Conclusions and Future Work

In this paper, we have introduced new methods to re-
play intensive block I/O trace in a scaled or unscaled envi-
ronments with more accuracy. First, we have proposed a
detailed analysis of various points preventing an accurate
replay in Linux I/O stack. Second, we have considered
the notion of dependency between block I/O requests and
then described how the Afplayer infers and replays events
in a dependency aware fashion on a scaled system, effi-
ciently propagating I/O-related performance gains along
dependency chains. Finally, we have provided a careful
evaluation of the Afplayer in both scaled and unscaled
environments. In the future, we seek to port our replay
tool to IBM’s AIX operating system.

326 15th USENIX Conference on File and Storage Technologies

USENIX Association



8. Acknowledgments

We thank our shepherd, Remzi Arpaci-Dusseau and
Matias Bjgrling, and the anonymous reviewers for their
comments and suggestions. This work has been supported
by NSF I/UCRC Center for Research in Intelligent Stor-
age (CRIS) and the National Science Foundation (NSF)
under awards 130523, 1439622, and 1525617 as well as
the support from NetApp.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

(10]

(11]

[12]

[13]

fio mailing list, re: fio replay.

Intel storage performance development kit (spdk) official
web site.

Linux bug fix patch: Enable sysfs nomerge control for i/o
requests in the plug list.

Spc-1 benchmak results fot top 10 block storage by price-
performance.

ANDERSON, E. Buttress, a cautionary tale. In File and
Storage Systems Benchmarking Workshop (2008).

ANDERSON, E., KALLAHALLA, M., UYSAL,
M., AND SWAMINATHAN, R. Buttress: A toolkit for
flexible and high fidelity i/o benchmarking. In Proceed-
ings of the 3rd USENIX Conference on File and Storage
Technologies (2004).

BouriLKOV, D., AVERY, P. R., Fu, Y.,
PREScCOTT, C., AND KiM, B. The lustre filesystem
for petabyte storage at the florida hpc center. In HEPiX
Fall 2014 Workshop.

BRUNELLE, A. D. btrecord and btreplay user guide.

Joukov, N., WONG, T., AND ZADOK, E. Accu-
rate and efficient replaying of file system traces. In FAST
(2005), vol. 5, pp. 25-25.

Liu, Z., Wu, F., QIN, X., XIE, C., ZHOU, J.,
AND WANG, J. Tracer: A trace replay tool to evalu-
ate energy-efficiency of mass storage systems. In Cluster
Computing (CLUSTER), 2010 IEEE International Confer-
ence on (2010), pp. 68-77.

MESNIER, M. P., WACHS, M., SIMBASIVAN,
R. R., LoPEZ, J., HENDRICKS, J., GANGER,
G. R., AND O’HALLARON, D. R. //trace: paral-
lel trace replay with approximate causal events. USENIX.

MORTON, A., CIAVATTONE, L., RAMACHAN-
DRAN, G., SHALUNOV, S., AND PERSER, J.
Packet reordering metrics.  [ETF internet-standard:
RFC4737 (2006).

PEREIRA, T. E., BRASILEIRO, F., AND SAM-
PATO, L. File system trace replay methods through the
lens of metrology. 32nd International Conference on Mas-
sive Storage Systems and Technology (MSST 2016).

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

(25]

SCHROEDER, B., WIERMAN, A., AND
HARCHOL-BALTER, M. Open versus closed:
A cautionary tale. In Proceedings of the 3rd Conference
on Networked Systems Design and Implementation, NSDI
(2006), vol. 6, p. 18.

SCHBEL-THEUER, T. blkreplay and sonar diagrams.

SIVATHANU, S., KiM, J., KULKARNI, D., AND
Liu, L. Load-aware replay of i/o traces. In The 9th
USENIX Conference on File and Storage Technologies
(FAST), Work in progress (WiP) session (2011).

(SNIA), S. N. I. A. Block i/o trace common seman-
tics (working draft).

TARASOV, V. Multi-dimensional workload analysis
and synthesis for modern storage systems. PhD thesis,
Stony Brook University, 2013.

TARASOV, V., KUMAR, S., MA, J., HILDE-
BRAND, D., POVZNER, A., KUENNING, G.,
AND ZADOK, E. Extracting flexible, replayable models
from large block traces. In FAST (2012), p. 22.

TARASOV, V., KUMAR, S., MA, J., HILDE-
BRAND, D., POVZNER, A., KUENNING, G.,
AND ZADOK, E. Extracting flexible, replayable mod-
els from large block traces. In Proceedings of the 10th
USENIX Conference on File and Storage Technologies
(2012), vol. 12, p. 22.

TARASOV, V., ZADOK, E., AND SHEPLER, S.
Filebench: A flexible framework for file system bench-
marking.

TARIHI, M., ASADI, H., AND SARBAZI-AZAD,
H. Diskaccel: Accelerating disk-based experiments by
representative sampling. SIGMETRICS Perform. Eval.
Rev. 43, 1 (June 2015), 297-308.

TRAEGER, A., ZADOK, E., JOUKOV, N., AND
WRIGHT, C. P. A nine year study of file system and
storage benchmarking. ACM Transactions on Storage
(TOS) 4, 2 (2008), 5.

WEISS, Z., HARTER, T., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Root: Re-
playing multithreaded traces with resource-oriented order-
ing. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (New York, NY, USA,
2013), SOSP *13, ACM, pp. 373-387.

ZHU, N., CHEN, J., CHIUEH, T.-C., AND EL-
LARD, D. Tbbt: scalable and accurate trace replay for
file server evaluation. In ACM SIGMETRICS Performance

Evaluation Review (2005), vol. 33, ACM, pp. 392-393.

USENIX Association

15th USENIX Conference on File and Storage Technologies 327






