
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Boosting Full-Node Repair in Erasure-Coded Storage
Shiyao Lin, Guowen Gong, and Zhirong Shen, Xiamen University; Patrick P. C. Lee,

The Chinese University of Hong Kong; Jiwu Shu, Xiamen University and Tsinghua University

https://www.usenix.org/conference/atc21/presentation/lin

Boosting Full-Node Repair in Erasure-Coded Storage

Shiyao Lin1, Guowen Gong1, Zhirong Shen1∗, Patrick P. C. Lee2, and Jiwu Shu1,3

1Xiamen University 2The Chinese University of Hong Kong 3Tsinghua University

Abstract
As a common choice for fault tolerance in today’s storage
systems, erasure coding is still hampered by the induced sub-
stantial traffic in repair. A variety of erasure codes and repair
algorithms are designed in recent years to relieve the repair
traffic, yet we unveil via careful analysis that they are still
plagued by several limitations, which restrict or even negate
the performance gains. We present RepairBoost, a scheduling
framework that can assist existing linear erasure codes and
repair algorithms to boost the full-node repair performance.
RepairBoost builds on three design primitives: (i) repair ab-
straction, which employs a directed acyclic graph to character-
ize a single-chunk repair process; (ii) repair traffic balancing,
which balances the upload and download repair traffic simul-
taneously; and (iii) transmission scheduling, which carefully
dispatches the requested chunks to saturate the most unoccu-
pied bandwidth. Extensive experiments on Amazon EC2 show
that RepairBoost can accelerate the repair by 35.0-97.1% for
various erasure codes and repair algorithms.

1 Introduction

Today’s storage systems are often composed of a large number
of storage nodes (called “nodes" for brevity) to accommodate
the explosively increasing data volume, making failures arise
unexpectedly yet prevalently. To protect data reliability even
in the presence of failures, many storage systems resort to
replication [14] and erasure coding [47], both of which rely
on pre-storing additional redundancy to repair the lost data.
As opposed to replication that simply stores identical replicas,
erasure coding can assuredly attain the same fault tolerance
degree with much less storage consumption [59], and hence is
much more preferable in commodity storage systems [4–6,41,
43]. In principle, erasure coding consists of two lightweight
computational operations, namely encoding (i.e., generating
redundant chunks based on the original data chunks) and
decoding (i.e., repairing the original data chunks based on the

∗Corresponding author: Zhirong Shen (shenzr@xmu.edu.cn).

surviving chunks), so as to realize the efficient transformation
between the original data and redundancy.

Although being storage-efficient, erasure coding is prone
to substantial repair traffic (i.e., the amount of data transmit-
ted over the network for repair), as it often needs to retrieve
multiple surviving chunks to repair a single chunk. To re-
lieve the I/O amplification problem in repair, existing studies
mainly resort to the following approaches: (i) constructing
new theoretical erasure codes with provably reduced repair
traffic (e.g., Locally Repairable Codes [21, 28, 52], Rotated-
RS codes [27], and regenerating codes [13, 44, 49, 58]); (ii)
designing efficient repair algorithms to parallelize the repair
process [22, 32, 40, 56]; and (iii) utilizing machine-learning-
based prediction techniques [16, 34, 42] to proactively re-
store the data with the repair algorithms before failure occur-
rence [38, 54] (see §2.2 for details).

Our observation is that most existing erasure codes and
repair algorithms mainly focus on the single-chunk repair,
yet the full-node failure (i.e., all the chunks in a node are
permanently lost) must simultaneously manipulate the repair
of multiple chunks. Thus, there exists a gap between the de-
ployment of existing repair approaches and the requirement
of full-node repair. Such a gap leads to several practical lim-
itations: (i) they do not specifically leverage the full-duplex
transmission to saturate the available bandwidth; (ii) they
fail to carefully schedule the transmission of chunks to fully
utilize the bandwidth at all times; (iii) they neglect the elastic
cooperation of different repair algorithms to meet diverse reli-
ability guarantees [25] and access popularities [9,23]; and (iv)
they have dedicated repair strategies with the pre-specified
data routing among nodes, thereby increasing the implemen-
tation complexity (see §2.3 for details). Therefore, how to
seamlessly deploy existing repair approaches to efficiently
tackle the full-node repair remains a challenging yet crucial
issue in erasure-coded storage.

We bridge this gap by designing RepairBoost, a schedul-
ing framework that can assist a variety of erasure codes and
repair algorithms to speed up a full-node repair. The main
idea behind RepairBoost is to formulate a single-chunk re-

USENIX Association 2021 USENIX Annual Technical Conference 641

pair through a repair directed acyclic graph (RDAG), which
characterizes the data routing over the network and the depen-
dencies among the requested chunks for repair. RepairBoost
then decomposes an RDAG into multiple repair tasks, each of
which performs data uploads and downloads to facilitate the
repair. RepairBoost balances the repair traffic and bandwidth
utilization in the full-node repair through the following two
steps: (i) it carefully dispatches the repair tasks of multiple
RDAGs to the corresponding nodes for balancing the overall
upload and download repair traffic; and (ii) it coordinates the
execution orders of repair tasks to saturate the utilization of
the available upload and download bandwidth. To summarize,
our main contributions include:

• [Design] We propose RepairBoost to assist existing era-
sure codes and repair algorithms for speeding up the
full-node repair. RepairBoost formulates a single-chunk
repair through an RDAG. It then balances the upload
and download repair traffic via carefully assigning the
repair tasks of RDAGs to the nodes. RepairBoost also
formulates the maximum flow problem [57] to sched-
ule the data transmission for saturating the unoccupied
bandwidths (§3.1-§3.3).

• [Generality] We also show that RepairBoost can be
extended to tackle multiple node failures and boost the
repair in heterogeneous environments (§3.4).

• [Implementation] We implement a prototype of Repair-
Boost with C++, which can be an independent middle-
ware deployed atop existing storage systems for repair
scheduling. We also demonstrate the portability of Re-
pairBoost by integrating it into Hadoop HDFS 3.1.4 with
limited modifications to the codebase (with around 270
LoC added) (§4).

• [Evaluation] We evaluate the performance of Repair-
Boost on Amazon EC2 [8], showing that it can support
a variety of erasure codes and repair algorithms and in-
crease the repair throughput by 35.0-97.1% (§5).

The source code of our RepairBoost prototype can be
reached via https://github.com/shenzr/repairboost-code.

2 Background

We start with the basics of erasure coding (§2.1) and elaborate
on existing attempts for repair acceleration in erasure-coded
storage (§2.2). We also summarize the limitations that remain
to be addressed (§2.3).

2.1 Basics
Erasure coding introduces slight computational operations to
reduce the storage overhead for reliability assurance [59].
It operates on data in units of chunks, which are a col-
lection of data with the size of several megabytes (e.g.,
64 MB in Hadoop HDFS [6] and 256 MB in Facebook’s data-
warehouse cluster [48]). Formally, erasure coding can be con-

figured via two integer parameters, namely k and m, which
tune the storage efficiency and fault tolerance assurance. A
(k,m) erasure code encodes every k equal-sized data chunks
{D1,D2, · · · ,Dk} at a time to generate additional m redundant
chunks (called parity chunks) {Pk+1,Pk+2, · · · ,Pk+m}. In this
paper, we mainly consider the linear erasure codes, where
each parity chunk can be expressed as a linear combination of
the k data chunks via the Galois Field arithmetic [46], given
by Pk+ j = ∑

k
i=1 αi, jDi, where αi, j (1≤ i≤ k and 1≤ j ≤ m)

is the encoding coefficient used by the data chunk Di to calcu-
late the parity chunk Pk+ j. Such k+m data and parity chunks
that are encoded together collectively constitute a stripe (or
a coding group [33, 62]), ensuring that any k out of k +m
chunks of the same stripe always suffice to restore (decode)
the original k data chunks (a.k.a. Maximum Distance Sepa-
rable (MDS) property in coding theory). In other words, the
(k,m) erasure code can tolerate any m chunk failures for every
stripe.

In practice, data chunks in storage systems are often orga-
nized into multiple stripes, which are independently manip-
ulated by erasure coding. Hence, by distributing the k+m
chunks of each stripe across k+m distinct nodes (i.e., one
chunk per node), we can always guarantee data reliability in
the face of no more than any m node failures. In this paper,
we equally treat the data and parity chunks in repair, and just
refer to them as “chunks.”

A variety of erasure codes have been proposed for decades,
where Reed-Solomon (RS) codes [51] are the most popular
code construction used in production storage (e.g., Ceph [4],
Hadoop HDFS [6], QFS [43], Facebook f4 [41], and Yahoo
Cloud Object Store [5]), since they support any parameters
of k and m. For simplicity, we denote the RS code configured
by the parameters k and m as RS(k,m) and use it as our case
study throughout the paper. For example, Figure 1(a) depicts
a stripe of RS(4,2). We also show that our work is applicable
to other linear erasure codes (§5.3).

2.2 Repair
Repair in erasure-coded storage is often classified into (i) full-
node repair, which restores all lost chunks in a failed node
(e.g., caused by a disk failure), and (ii) degraded reads to
the temporarily unavailable chunks (e.g., caused by system
upgrades and network disconnections) or the chunks that
have not yet been repaired in the full-node repair. In this
paper, we mainly focus on the single full-node repair, which is
recognized as one of the top causes of service downtime [35].
Our work can also tackle multiple node failures (§3.4).

The full-node repair has to manipulate the repair across
multiple stripes. Although being storage-efficient, erasure cod-
ing is prone to a high repair penalty. For example, RS(k,m)
needs to retrieve k surviving chunks of the same stripe to
recover a lost chunk, thereby amplifying the storage and net-
work I/Os in repair by k times. Specifically, suppose that a
chunk C∗ fails and {C1,C2, · · · ,Ck} is the set of k chunks

642 2021 USENIX Annual Technical Conference USENIX Association

D1 D2 D3 D4 P5 P6

D1 D2 D3 D4 P5 P6

L1 L2

Group 1 Group 2

(a) A stripe of RS(4,2). (b) A stripe of LRC(4,2,2).

Figure 1: Examples of RS codes and LRCs.

D2 D3 D4 P5

Switch

N5N4N3N2N1

D1

Congestion

D1
D4 P5

I2

❶
❶

❷
❸

Switch

D3D2

I1

N5N4N3N2N1

(a) A repair solution of
conventional repair (CR)

(b) A repair solution of
PPR [40]

Figure 2: Repair solutions for RS(4,2). D1 indicates the repaired
chunk. N1 is the destination node.

within the same stripe of C∗. We can repair C∗ using a linear
combination of the k chunks as:

C∗ =
k

∑
i=1

βiCi, (1)

where βi is the decoding coefficient used by Ci for repairing
C∗. In this paper, we refer to the node storing the repaired
chunk as the destination node.

In view of the high repair penalty, existing studies design
solutions that mitigate the repair penalty as follows.

Repair-efficient erasure codes: They relieve the repair traffic
with theoretical guarantees through the construction of erasure
codes, where Locally Repairable Codes (LRCs) [21, 52] and
regenerating codes [13, 44, 48, 49, 58] are two representatives.
LRCs are configured via three parameters, namely k, l, and
m. LRC(k, l,m) extends RS(k,m) by organizing the k data
chunks of a stripe into l groups (assuming that k is divisible
by l) and maintaining an additional local parity chunk for
each group. This design allows a single data chunk to be
repairable by retrieving merely k

l surviving chunks within
the same group1. Figure 1(b) shows a stripe of LRC(4,2,2),
where Li is the local parity chunk of the i-th group (1≤ i≤ 2).

On the other hand, regenerating codes reduce the repair
traffic by (i) requiring surviving nodes to send the linear com-
bination of the locally stored data [13] and (ii) contacting
more surviving nodes to assist the repair [49]. Recently pro-
posed regenerating codes (e.g., Butterfly codes [44] and Clay
codes [58]) further eliminate the needs of computations in
the surviving nodes, which can simply retrieve the required
sub-chunks directly from surviving nodes for repair.

Repair algorithms: While erasure codes specify which
chunks should be retrieved for repair, repair algorithms mainly
focus on how to quickly retrieve the surviving chunks over

1LRC(k, l,m) also needs k chunks to repair a global parity chunk (e.g.,
P5 and P6 in Figure 1(b)).

the network for existing erasure codes. They accelerate the
repair by exploiting the unoccupied bandwidth without re-
ducing the repair traffic. Each repair algorithm specifies a
repair solution for a lost chunk, including the data routing
and execution orders among the surviving nodes. Figure 2(a)
shows the repair solution of D1 under the conventional repair
(CR) for RS(4,2), where it transmits four surviving chunks
{D2,D3,D4,P5} at the same time to the destination node N1.
Suppose that a chunk can be transmitted over a network link
in a timeslot. The conventional repair takes four timeslots for
N1 to download the four chunks, because of the congestion of
the download link of N1. PPR [40] relieves the network con-
gestion by decomposing a single-chunk repair into multiple
sub-stages and executing them in parallel, so as to fully utilize
the available bandwidth. Figure 2(b) depicts a single-chunk
repair solution under PPR for RS(4,2), which accomplishes
the repair in three timeslots: (i) in the first timeslot (¶), we
transmit D3 to D2 and add them together (as in Equation (1))
to generate an intermediate chunk I1, while at the same time
sending P5 to D4 to generate another intermediate chunk I2;
(ii) in the second timeslot (·), we transmit I2 to I1 and add I2
with I1 to restore the lost chunk D1 (as in Equation (1)); and
(iii) in the third timeslot (¸), we deliver D1 to the destina-
tion node. Thus, PPR exploits the available bandwidth across
multiple nodes at each timeslot to mitigate the network con-
gestion in a single-chunk repair. ECPipe [32] further reduces
the repair time to almost one timeslot by decomposing the
repair of a lost chunk into the pipelined repair operations of
multiple smaller sub-chunks.
Proactive repair with erasure coding: Both repair-efficient
erasure codes and repair algorithms are reactive, implying
that they launch the repair operation only after failures truly
occur. Proactive repair [38,54] further reduces the window of
data vulnerability by using machine-learning-based failure
prediction models (e.g., Bayes classifier [16], support vector
machines [42], and random forest [34]), such that it can detect
in advance the nodes impending to fail and proactively repair
the data in such nodes before the failure occurrence. Proactive
repair can be realized by the data migration and the decoding
of chunks based on erasure coding [54], where we mainly
focus on the latter in this paper.

2.3 Limitations
By examining existing attempts to accelerate the repair of
erasure-coded storage, we identify the following limitations
that, if not properly addressed, will limit the performance
gains when they are directly employed for the full-node repair.
Limitation 1 (L1): Failing to utilize the full duplex trans-
mission. Most existing studies overlook the full duplex trans-
mission [12, 36] in repair, which enables a node to send (up-
load) and receive (download) data simultaneously and inde-
pendently; as a result, they cannot properly balance the upload
and download repair traffic in the full-node repair. Figure 3
shows two examples of repair under CR (where Ni is the i-th

USENIX Association 2021 USENIX Annual Technical Conference 643

N5N4N3N2N1

Upload 1 1 2 2

Download 0 4 0 2

Upload 1 1 2 2

Download 2 2 0 2

N5N4N3N2N1

(a) Unbalanced repair solutions (b) Balanced repair solutions

Figure 3: L1 (Failing to utilize the full duplex transmission). The
repair time is determined by the most loaded node (with the red color
in the background).

node), where the first example needs to download four chunks
(at N3) to accomplish the repair, while the latter only uploads
and downloads at most two chunks for repair. This example
indicates that balancing the upload and download repair traffic
in the full duplex transmission has the potential to reduce the
overall repair time, which is determined by the node with the
most upload or download repair traffic.

Specifically, the repair-efficient codes [13,21,44,48,49,58]
reduce a single chunk’s repair traffic without concerning traf-
fic balancing. Some repair algorithms (e.g., ECPipe [32] and
PPR [40]) mainly focus on accelerating a single chunk’s re-
pair, while paying limited attention to balance the upload and
download repair traffic in the full-node repair. Although Clus-
terSR [55] balances the inter-cluster upload and download
repair traffic, it still does not balance the upload and download
bandwidths in general storage systems.
Limitation 2 (L2): Failing to fully utilize the bandwidth at
each timeslot. While existing repair algorithms can relieve
the download bottleneck within a single-chunk repair (e.g.,
PPR [40] and ECPipe [32]), they simply combine the repair
solutions of multiple chunks to cope with the full-node repair.
This may unintentionally lead to the link congestion again
and make the bandwidth under-utilized in the full-node repair.

Figure 4 shows how transmission scheduling affects the
repair. In Figure 4(a), after the transmissions of C2 and C4 in
the first timeslot, the transmissions of C3 (from the node N5
to N3) and C7 (from N2 to N3) compete for the bandwidth of
the download link of N3. Figure 4(a) gives priority to C3 in
the second timeslot. Since C6 can only be transmitted after
receiving C7, Figure 4(a) finally needs four timeslots. As
a comparison, Figure 4(b) sends C7 at the second timeslot,
allowing the transmission of C6 and C3 to be performed in
parallel without bandwidth competition. Hence, Figure 4(b)
only uses three timeslots. This example indicates that the
repair solutions in the full-node repair should be carefully
scheduled.
Limitation 3 (L3): Inflexibility. Many repair algorithms
[22, 32, 40, 55, 56] treat every chunk equally and repair all
the lost chunks using the same repair algorithm. This repair
fashion is simple yet inflexible, as it cannot elastically com-
bine different repair algorithms, and make them cooperate for
diverse reliability requirements [25] and skewed access popu-

❶ ❶

❷
❷

N5N4N3N2N1


❸

C7

C2 C4 C3

C5C6

❶ ❶

❸❷

❸
N5N4N3N2N1

C3

C7

C2 C4

❷
C5C6

(a) Repair using four timeslots (b) Repair using three timeslots

Figure 4: L2 (Failing to fully utilize the bandwidth at each timeslot).
The transmission scheduling affects the bandwidth utilization.

larity in real-world storage systems [9, 23]. For example, we
can combine ECPipe [32] and CR, such that we use ECPipe
to repair the chunks that require higher reliability guarantee,
while employing CR to restore the remaining ones, so as to
regulate the repair traffic and foreground traffic.

Limitation 4 (L4): Lack of a general framework for the
full-node repair. Existing distributed storage systems deploy
different specific repair algorithms for a single-chunk repair.
For example, many commodity storage systems (e.g., Hadoop
HDFS [7] and Windows Azure Storage [21]) still rely on CR
in a single-chunk repair due to its simplicity, while PPR [40]
and CAR [56] can be used in hierarchical storage systems to
reduce inter-rack repair traffic. It is desirable to have a general
framework that simultaneously supports different types of
repair algorithms for different deployment scenarios.

3 RepairBoost Design

We present RepairBoost, a scheduling framework that can
assist a variety of erasure codes and repair algorithms to boost
the full-node repair performance.

Assumptions: RepairBoost is designed based on the follow-
ing assumptions. First, RepairBoost mainly focuses on a sin-
gle full-node repair, which is reported as the most predom-
inant failure event in practice (e.g., 98% of the total failure
events [50]). Nevertheless, RepairBoost can be extended to
tackle a multi-node failure (i.e., more than one node in a stripe
fails) (§3.4). Second, to simplify our discussion, we elaborate
RepairBoost using RS codes in homogeneous environments
(i.e., with identical link bandwidth), yet we also show that
RepairBoost works for other erasure codes (§5.3) and can be
deployed in heterogeneous environments (i.e., with different
link bandwidth) (§3.4).

Overview: RepairBoost uses the following techniques to ad-
dress the limitations aforementioned (§2.3). It first abstracts
a single-chunk repair solution via a general repair directed
acyclic graph (RDAG) (§3.1). By supporting the scheduling
of multiple RDAGs, RepairBoost can achieve both flexibility
(i.e., allowing the collaboration of different repair algorithms;
L3 addressed) and generality (i.e., being workable for various
erasure codes and repair algorithms; L4 addressed).

RepairBoost then decomposes multiple RDAGs into ver-
tices that have dedicated repair tasks. It then carefully assigns

644 2021 USENIX Annual Technical Conference USENIX Association

the repair tasks to the nodes, so as to balance the overall up-
load and download repair traffic across the surviving nodes
(§3.2; L1 addressed).

RepairBoost finally constructs a directed network based
on the surviving nodes and the corresponding repair tasks.
It then determines the chunks to be transmitted by solving
a maximum flow problem [57], so as to fully saturate the
unoccupied upload and download bandwidth at each timeslot
(§3.3; L2 addressed).

3.1 Repair Abstraction
RDAG construction: We first formalize a single-chunk repair
solution through a directed acyclic graph (DAG), which is
called the Repair DAG (RDAG). For RS(k,m), the RDAG
of a lost chunk can be initialized over k+1 vertices, where
the k vertices {v1,v2, · · · ,vk} represent the k nodes that store
the requested surviving chunks for repair, while vk+1 denotes
the destination node. Also, we employ directed edges among
vertices to represent the data routing directions specified in
repair algorithms.

We construct the edges based on the following rules. Given
two vertices vi and v j (1≤ i 6= j ≤ k+1), we use a directed
edge ei, j to indicate that vi is designated to send a surviving
chunk to v j. Hence, if ei, j exists, we say that vi is a child
of v j, and conversely v j is the parent of vi. For v j (where
j 6= k+1), it has to collect all the requested surviving chunks
from its children, add them together with the local data it
stores using the decoding coefficient (see Equation (1)), and
send the result to its parent. Therefore, in this RDAG, v j
can send a chunk for repair once all the chunks required
from its children are received. As the full-node repair has to
recover multiple chunks, a node may have multiple parents
and children across different RDAGs.
Repair process guided by RDAG: The repair starts from
the leaf vertices (i.e., those that do not have any child) and
ends at vk+1: for each edge ei, j (1≤ i 6= j ≤ k+1), if vi has
sent the requested chunk to v j for repair, we remove ei, j from
the RDAG; further, for each leaf vertex vi, if there is no edge
connecting to it (indicating that vi has already transmitted all
the requested chunks to its parents), we remove vi from the
RDAG as well. Hence, as the repair proceeds, the number
of vertices in the RDAG will gradually decrease and the lost
chunk is successfully repaired once the vertex vk+1 becomes
a leaf vertex eventually.
Example: We take the RDAG of PPR in Figure 5 as an exam-
ple, where k = 4. Suppose that the four requested surviving
chunks in {v1,v2, · · · ,v4} are denoted by {C1,C2, · · · ,C4}, re-
spectively. In the first stage, v1 sends a chunk β1C1 to its
parent v2 (where β1 is the decoding coefficient of C1; see
Equation (1)), while at the same time v3 sends another chunk
β3C3 to its parent v4. We also update the RDAG by removing
e1,2, e3,4, v1, and v3. In the second stage, the leaf vertex v2
combines β1C1 with its stored chunk C2 and sends the result
β1C1 +β2C2 to its parent v4. In the third stage, after collect-

Leaf vertices

❶ ❷ ❸

V1 V3

V2 V4

V5

V2 V4

V5

V4

V5

V5

Update Update Update

V1  V2

V3  V4

V2  V4 V4  V5

Finish

Figure 5: Example of an RDAG of PPR [40] when k = 4. The vertex
with pink color indicates the leaf vertex. We repeatedly update an
RDAG as the repair proceeds.

ing two chunks from its children, v4 combines β1C1 +β2C2,
β3C3, and its locally stored chunk C4 to restore the lost chunk
C∗ = ∑

4
i=1 βiCi, and finally sends C∗ to v5. The repair of C∗

completes when v5 becomes a leaf vertex.

Advantages of an RDAG: The RDAG design has the follow-
ing advantages. First, an RDAG is a general formalization
of a single-chunk repair solution. That is, we can construct
an RDAG for any given repair algorithm once we identify
the surviving chunks needed for repair and the data routing
strategy performed among them. Thus, RepairBoost is appli-
cable to a variety of erasure codes (e.g., RS codes, LRCs, and
regenerating codes) and single-stripe repair algorithms (e.g.,
CR, PPR, and ECPipe). This design also resolves the tensions
of deploying specific repair algorithms (i.e., being general)
and facilitates their co-existence (i.e., being flexible).

Second, an RDAG describes how data is transmitted over
the network and also the dependency (or relationship) among
the k surviving chunks involved in the repair. Given an RDAG,
we can readily identify that the leaf vertices with different
parents in an RDAG can be potentially transmitted in parallel
to occupy the available bandwidth without network conges-
tion (e.g., v1 and v3 in Figure 5). We leverage this property in
the transmission scheduling (§3.3).

Third, an RDAG also indicates the repair tasks of each
vertex. For example, we can learn that v4 in Figure 5 needs to
download two chunks and upload one chunk in the repair. We
explore the traffic balancing through the assignment of repair
tasks (§3.2).

Discussion: OpenEC [29] proposes an ECDAG to character-
ize the encoding and decoding processes. Both an RDAG and
an ECDAG are fundamentally different in the following as-
pects: (i) physical meanings of edges: the edges in an ECDAG
represent the encoding and decoding operations, while the
edges in an RDAG specify the routing and dependencies in
repair; (ii) graph structures: an ECDAG introduces virtual
vertices to denote the intermediate chunks generated, while
an RDAG is built over the chunk repaired and the surviving
chunks for repair; and (iii) graph maintenance: an ECDAG
keeps the graph unchanged throughout the encoding and de-
coding processes, while an RDAG is iteratively updated with
the repair progress.

USENIX Association 2021 USENIX Annual Technical Conference 645

Algorithm 1 Mapping of Intermediate Vertices
Input: T (set of intermediate vertices)
Output: The mapping M from intermediate vertices to nodes

1: procedure MAIN(T)
2: Set M = φ

3: Sort T in descending order
4: while T 6= φ do
5: v = POP(T)
6: Establish N
7: N∗ = MAP(v, N)
8: Append (v,N∗) to M
9: end while

10: return M
11: end procedure
12: function MAP(v, N)
13: Set N∗ = argmin{dNi |Ni ∈N }
14: T = T − v
15: uN∗ = uN∗ +uv
16: dN∗ = dN∗ +dv
17: return N∗

18: end function

3.2 Repair Traffic Balancing
After constructing the RDAGs for the lost chunks in a failed
node, RepairBoost then assigns the repair tasks by mapping
the vertices to the nodes, such that (i) the fault tolerance
degree (i.e., the tolerable number of failed nodes) offered by
erasure coding must be preserved after repair, and (ii) the
upload and download repair traffic across the whole system
should be as balanced as possible.

Retaining fault tolerance degree: Given an RDAG of a
lost chunk, we assign the k vertices {v1,v2, · · · ,vk} to the k
nodes that store the surviving chunks of the same stripe. We
also map vk+1 to the node that does not store any chunk of
the same stripe before the repair. By doing so, RepairBoost
ensures that the k+m chunks of the same stripe still reside
in k +m different nodes after repair, thereby retaining the
node-level fault tolerance offered by erasure coding (§2.1).

Balancing repair traffic: Given an RDAG, we represent the
repair task of a vertex vi by a tuple (uvi ,dvi) (where 1≤ i≤
k+1), which indicates the numbers of chunks being uploaded
and downloaded by vi in this RDAG, respectively.

We classify the vertices of an RDAG into three categories:
(i) the leaf vertex vi, which only sends (uploads) surviving
chunks for repair (i.e., uvi > 0 and dvi = 0); (ii) the root vertex,
which only receives (downloads) data for repair (i.e., uvi = 0
and dvi > 0); and (iii) the intermediate vertex, which receives
(downloads) multiple chunks from its children and sends
(uploads) one intermediate chunk to its parent (i.e., uvi = 1
and dvi > 0). For example, in Figure 5, v1 is a leaf vertex, v2
is an intermediate vertex, and v5 is the root vertex.

After collecting the three kinds of vertices from multiple
RDAGs, our main idea is to give priority to map the intermedi-
ate and root vertices to the nodes, with the primary objective

of balancing the download repair traffic at first. We then care-
fully assign the leaf vertices to further balance the upload
repair traffic. Algorithm 1 shows the pseudo-code of the map-
ping algorithm for the intermediate vertices.
Algorithm details: Let T be the set of the intermediate ver-
tices that have not been assigned yet. Let M be the map-
ping established. RepairBoost first initializes M as an empty
set and sorts the intermediate vertices in T by the number
of chunks required to be downloaded in descending order
(Lines 2-3 in Algorithm 1). It then pinpoints the vertex v
that needs to download the most chunks for repair among the
vertices of T (Line 5). RepairBoost finds the set of nodes
(denoted by N) that store the surviving chunks requested in
the RDAG of v but have not been assigned the repair task of
this RDAG (Line 6). It then searches the node for v by calling
the MAP function (Line 7).

In the MAP function, RepairBoost selects the node N∗ that
has the least download traffic among the ones in N (Line 13,
where dNi denotes the number of downloaded chunks of the
node Ni). It then maps v to N∗. RepairBoost later excludes
v from the set of T (Line 14), and increases the numbers of
the uploaded and downloaded chunks (denoted by uN∗ and
dN∗) of N∗ by the task of v (Lines 15-16). The mapping indi-
cates that N∗ will serve as v in the corresponding RDAG by
uploading and downloading the requested surviving chunks
specified to v. RepairBoost repeats the above steps until all the
intermediate vertices have been assigned to the corresponding
nodes (Lines 4-9).

We analyze the computational complexity of Algorithm 1.
Suppose that the number of nodes participating in repair is
n and |T | is the number of intermediate vertices in T . We
note that: (i) the sorting of the intermediate vertices (Line 3)
incurs a computational complexity of O(|T | · log(|T |)), and
(ii) the mapping of an intermediate vertex (Lines 5-8) incurs
a computational complexity of O(n · logn), which will be exe-
cuted for |T | times (Line 4). Thus, the overall computational
complexity of Algorithm 1 is O(|T | · log(|T |)+ |T | ·n · logn).

RepairBoost then maps the root and leaf vertices to the
corresponding nodes in the similar way, except the following
differences: (i) when mapping the root vertex of an RDAG,
RepairBoost selects the node with the lightest download repair
traffic among the ones, which does not store any chunk within
the same stripe of the repaired chunk; (ii) when mapping the
leaf vertices of an RDAG, RepairBoost chooses the nodes
with the lightest upload repair traffic among the ones, which
not only store the surviving chunks within the same stripe of
the repaired chunk, but also have not been mapped with any
vertex of this RDAG.
Example: Figure 6 shows an example of mapping an RDAG
to the nodes. Given an RDAG, we decompose it into ver-
tices with the tuples (uvi ,dvi) (1≤ i≤ k+1 and k = 4 in this
example), which specify the numbers of uploaded and down-
loaded chunks for repair (Step ¶). For example, v2 needs
to upload and download one chunk. To map the intermedi-

646 2021 USENIX Annual Technical Conference USENIX Association

N5N4N3N2N1

V2 (1,1)
Decompose V1 (1,0) V3 (1,0)

V4 (1,2)

V5 (0,1)

N6

N2

N3

N1

N5

N4

V1 V3

V2 V4

V5

V1V3 V2 V4V5

Map vertices
to nodes

(10,15) (9,23) (19,14) (17, 20) (17,13) (17,20)

(uN, dN) (11,15) (10,23) (20,15) (17,21) (18,15) (17,20)

Before mapping

After mapping

Data routing
among nodes

❶

❷
❸

Vertex of an RDAG

Nodes with
surviving chunks

(uN, dN)

Figure 6: Example of mapping vertices of an RDAG to nodes. We
select an RDAG of PPR to repair a chunk of RS(4,2). N2 and N1 are
the leaf vertices of this RDAG after mapping. The numbers in red
(resp. green) denotes the upload and download traffics afforded by a
node before (resp. after) the mapping.

ate vertices (i.e., v2 and v4), we first consider v4 as it needs
to download the most chunks. Since N5 needs to download
the fewest chunks (i.e., 13) among {N1,N2,N3,N5,N6} that
store the surviving chunks, we map v4 to N5, and update the
numbers of uploaded and downloaded chunks afforded by N5
afterwards (Step ·). After all the five vertices of an RDAG
have been assigned, we can learn the data routings among
nodes {N1,N2, · · · ,N5} to repair the chunk (Step ¸).

3.3 Transmission Scheduling
After establishing the mapping from the RDAGs to the nodes
for balancing the overall upload and download repair traffic
(§3.2), it does not necessarily achieve the lower-bound of
the repair time, as the bandwidth may not be utilized at each
timeslot during the repair (L2 in §2.3).

To further saturate the bandwidth utilization, RepairBoost
formulates the transmission scheduling as a maximum flow
problem [57]. Specifically, suppose that there are n nodes par-
ticipating in the full-node repair. We can construct a network
based on the RDAGs of the lost chunks. This network is built
over 2n+ 2 vertices (Figure 7), with a source s, a sink t, n
sender vertices {S1,S2, · · · ,Sn} representing the n nodes that
can potentially send data for repair, and another n receiver
vertices {R1,R2, · · · ,Rn} representing the n nodes that may re-
ceive data at the same time. We then establish the connections
as follows: for any two vertices Si and R j (1≤ i 6= j ≤ n), we
establish the connection between Si and R j once Si can send
a chunk to R j according to the RDAGs. Each connection be-
tween Si and R j is assigned with the capacity of one, implying
that we can send one surviving chunk at a time from Si and
R j. Thus, our objective is to find a maximum flow over the
network whose capacity denotes the most chunks that can be
transmitted simultaneously at this timeslot, so as to saturate
the available upload and download bandwidth.

After establishing the maximum flow, we dispatch the
chunks according to the selected edges of the maximum flow.
If Si has many chunks to be sent, we prefer to send a chunk,
such that sending this chunk can make a parent of Si become
a leaf vertex in an RDAG in the next timeslot (§3.1). Our

N2

N3

N1

N5

N4

N4

N3

N2

N1

N5
N5N4N2N1

N5N4N3N2N1

s

t

N3

RDAG of
Chunk 1

RDAG of
Chunk 2

N2

N3 N5

N4

N3 N1

N5

RDAG of
Chunk 1

RDAG of
Chunk 2

❶
❷

❸

N3

N5N4N3N2N1

s

t

N5N4N2N1

Sender

Sender

Receiver

Receiver

❶ Construct a network ❷ Establish a maximum flow

❸ Update the RDAG  Construct a new network



Figure 7: Example of transmission scheduling (where k = 4 and
n = 5). The red arrows means the maximum flows established.

objective is to establish the maximum flow, while at the same
time helping increase the number of edges of the network in
the next scheduling. This can potentially increase the capacity
of the maximum flow in the next transmission.

Once the chunks associated with the edges of the maximum
flow have all been transmitted, we accordingly delete the
corresponding edges in the RDAGs and update the network
based on the residual RDAGs. We repeat the scheduling until
all the lost chunks of the failed node have been repaired.

Example: Figure 7 shows an example to repair two chunks
among five surviving nodes (i.e., n= 5). There are three nodes
(i.e., N1, N2, and N4) that can send chunks for repair (marked
in yellow color) in the RDAGs at the very beginning. We
construct the network (Step ¶) based on the two RDAGs and
find the maximum flow (Step ·). The maximum flow indi-
cates that we can send the chunks as follows for transmitting
the most chunks simultaneously: N1→ N5 (in the RDAG of
the chunk 1), N2 → N1 (in the RDAG of the chunk 2), and
N4→ N3 (in the RDAG of the chunk 2). We then update the
RDAGs by removing the edges associated with the transmit-
ted chunks and marking the leaf vertex at this time (Step ¸).
We repeat the construction of the network and the finding of
the maximum flow for the residual RDAGs (Step ¹).

Complexity analysis: Suppose that there are n nodes and
e edges in a network. We can use Dinic’s algorithm [24] to
find the maximum flow, whose computational complexity is
O(n2e).

3.4 Extensions
Multi-node repair: We offer two options when using Re-
pairBoost to cope with multi-node repair. The first approach
is to simply repair each failed node individually until all the
failed nodes are repaired successfully. The second approach
is to give priority to repairing the stripes that comprise more
failed chunks or popularly accessed chunks, so as to meet the
requirements on system reliability and access performance.

USENIX Association 2021 USENIX Annual Technical Conference 647

Heterogeneous environments: RepairBoost can also be
adapted to heterogeneous environments. When given the avail-
able link bandwidth, RepairBoost can deduce the time to up-
load and download a chunk at first. It can amend the repair
traffic balancing (§3.2) by mapping the vertices to the nodes
based on the times for uploading and downloading a chunk
(rather than the numbers of uploaded and downloaded chunks
in the design for homogeneous environment). This can en-
sure that the upload and download times are almost the same
across the nodes.

RepairBoost then adopts the following ways in the polling
mode for transmission scheduling: (i) it pinpoints the node
(denoted by N′) that spends the least time in uploading and
downloading data for repair; (ii) it sorts the set of links L
connected to N′ based on the available bandwidth; and (iii) it
picks the link from L that owns the largest upload or download
bandwidth for data transmission. RepairBoost repeats the
above steps until all the requested chunks are transmitted.

Adaptation to network conditions: RepairBoost can also
adapt to network conditions (e.g., random network conges-
tion). Specifically, RepairBoost can break an entire full-node
repair process into several subprocesses, each of which repairs
a number of single chunks. RepairBoost can then monitor the
completion times of nodes in each subprocess to infer the
network status, and proactively adjust the repair solutions of
next subprocesses. For the node that takes the longest (resp.
shortest) time in a subprocess, we can speculatively lessen
(resp. increase) the upload and download repair traffic it af-
fords in the next subprocess to balance the repair time across
the surviving nodes.

4 Implementation

We implement a prototype of RepairBoost in C++ with around
3,200 lines of codes (LoC), which can serve as an independent
middleware running atop existing storage systems to instruct
the repair operations on behalf of them. We realize the encod-
ing and decoding functionalities based on the coding library
Jerasure v2.0 [2]. We maintain an in-memory key-value store
in each node and transmit data through the interfaces of Re-
dis [3].

System architecture: Figure 8 presents the architecture of
RepairBoost, which comprises a coordinator sitting on the
metadata server and multiple agents running on the nodes
(with one agent per node). The coordinator manages the meta-
data of stripes (e.g., the mapping from chunks to stripes, and
the nodes that the k+m chunks of every stripe reside), while
the agents are standby to wait for the repair commands and
perform the repair operations cooperatively.

Operating flow: Once a node failure event is reported to the
metadata server, the coordinator first pinpoints the IDs of the
lost chunks as well as the identities of the associated stripes.
It then establishes the repair solution of each lost chunk,

Agent

Metadata Server

Coordinator

❶

❷

Node

Agent

Node

Agent

Node

Agent

Node

Read (Local)
Recv (Sour.)
Decode
Send (Dest.)
Write (Local)

Agent

❷❷

❶

Coordinator

Calculate (Solu.)
Interact (Agents)

Command Repair traffic

Figure 8: System architecture of RepairBoost. For simplicity, we
only illustrate the repair of a single stripe. The node with green color
denotes the destination node of this stripe.

including the k surviving chunks selected to participate in the
repair, the data routing among the nodes, and the destination
node to store the repaired chunk. The repair solutions are
sealed into repair commands whose format is pre-determined
and understood by the agents, which will then be sent to the
agents that involve in the repair operations (Step ¶).

Upon receiving the repair commands, the agents first ex-
tract the repair solutions. They then work cooperatively by
(i) reading the requested surviving chunks locally stored, (ii)
sending them to the appointed relay nodes, and (iii) decoding
(repairing) the lost chunks and storing them locally (Step ·).
To accelerate the repair operations, RepairBoost partitions a
chunk into many smaller packets and uses the multi-threading
technique to pipeline the disk I/O, network transmission, and
computation in unit of packets.

Integration with Hadoop HDFS: We also integrate Repair-
Boost into Hadoop HDFS 3.1.4 [6] by adding around 270 LoC
2. We deploy the coordinator in the NameNode and run agents
in the DataNodes. Specifically, when the NameNode is aware
of the node failure through periodical heartbeats issued by the
DataNodes, the coordinator intercepts the repair commands
and calculates the repair solutions via extracting the metadata
information (about the addressing of stripes and chunks) from
the NameNode 3. We then trigger RepairBoost to repair the
lost data on behalf of HDFS. To facilitate the integration, Re-
pairBoost also adds a RepairBoostReconstructor class in
the erasurecode package of the DataNode, which collects
the repaired chunks from its agent and writes them to the
underlying storage of HDFS.

5 Performance Evaluation

We carry out extensive testbed experiments to evaluate the per-
formance of RepairBoost. We summarize our major findings
as follows: (i) RepairBoost can improve the repair throughput
by 35.0-97.1% (§5.2-§5.4); (ii) RepairBoost can assist the

2Although Hadoop HDFS 3.1.4 employs Intel ISA-L [1] for erasure
coding realizations, we can still employ Jerasure Library to repair the lost
data with the same Cauchy matrix [2]. We have confirmed the decoding
correctness in our evaluation.

3RepairBoost accesses the metadata of the Namenode via executing the
command “hdfs fsck / -files -blocks -locations".

648 2021 USENIX Annual Technical Conference USENIX Association

repair for a variety of erasure codes and repair algorithms
(§5.3); (iii) RepairBoost is more advantageous in the environ-
ment with lower network bandwidth (§5.2); (iv) RepairBoost
retains its effectiveness when being used in heterogeneous
environments and multi-failure repair (§5.4).

5.1 Setup
Testbed and preparations: We evaluate the performance of
RepairBoost on Amazon EC2 [8] to unveil its performance
in a real-world cloud scenario. We set up 17 virtual machine
instances with the type of m5.large in the US East (North
Virginia) region. Each instance runs Ubuntu 16.04.7 LTS, and
is equipped with two vCPUs with 2.5 GHz Intel Xeon Plat-
inum, 8 GB RAM, and 40 GB of EBS storage. The network
bandwidth between any two instances is around 1 Gb/s (mea-
sured by iperf) and the disk bandwidth is around 130 MB/s.
Among the 17 instances, we run the RepairBoost coordinator
on one instance and deploy the RepairBoost agents on the
remaining 16 instances.

Before triggering the repair, we first warm up the system
by writing sufficient data encoded by the selected erasure
coding scheme. We then erase the data of one instance to
mimic a node failure and launch RepairBoost for data repair.
We measure the latency, from the time when the failure event
is reported to the time when all the lost data is repaired and
persisted. We mainly focus on the repair throughput, defined
as the size of data repaired per time unit. A higher repair
throughput indicates a shorter window of vulnerability and
hence stronger data reliability.
Erasure codes and repair algorithms: We demonstrate
the flexibility, generality, and effectiveness of RepairBoost
via deploying RepairBoost atop the following representative
erasure codes and repair algorithms. We mainly consider
three representative erasure codes: (i) the conventional RS
codes [51] that are popularly used in today’s storage systems;
(ii) LRCs [21, 52] that trade additional storage overhead for
reducing the repair traffic, and (iii) Butterfly code [44], a sys-
tematic minimum storage regenerating (MSR) code with the
minimum repair traffic for a single-node repair.

We also focus on three typical repair algorithms: (i) the
conventional repair that transmits k chunks directly to the
destination node for repair; (ii) PPR [40], which decomposes a
single-chunk repair into sub-stages and exploits the execution
parallelism of the sub-stages; and (iii) ECPipe [32], which
partitions a chunk into equal-sized slices and pipelines their
transmission across the surviving nodes for repair.
Selection of baseline: To select an appropriate baseline ap-
proach for comparison, we consider two candidates: a random
selection (RAN) approach and an LRU-based selection ap-
proach. Specifically, the random selection randomly chooses
k nodes for data retrieval from the k+m−1 nodes that store
the surviving chunks of the corresponding stripe, and also
a destination node for data repair from the remaining nodes
(§3.2). In the LRU-based selection, we track the timestamp of

Code
CR ECPipe PPR

RAN LRU RAN LRU RAN LRU
RS(6,3) 1.64 1.65 1.25 1.44 1.30 1.43

RS(10,4) 1.67 1.82 1.14 1.41 1.25 2.01
LRC(6,2,2) 1.67 1.68 1.34 1.32 1.46 1.37
LRC(8,2,2) 1.63 1.65 1.25 1.26 1.33 1.43
RC(4,2,5) 1.71 1.74 1.29 1.31 1.37 1.32
RC(5,3,6) 1.70 1.73 1.25 1.30 1.33 1.35

Table 1: Comparison of the random selection and LRU-based selec-
tion in terms of their load balancing degrees.

each node when it was last selected for repair, and choose the
k nodes for data retrieval from the k+m−1 corresponding
nodes and a destination one for data repair with the smallest
timestamps. When the nodes to be selected have the same
timestamp, the LRU-based selection always chooses the one
with the smallest node ID.

We evaluate the load balancing degrees of the two ap-
proaches as Lmax

Lbalanced
, where Lmax represents the maximum

upload and download repair traffic of a node across the sys-
tem, while Lbalanced denotes the upload (or download) repair
traffic that is balanced on a node. We can determine Lbalanced
by dividing the amount of repair traffic by the number of
surviving nodes.

We consider two representative configurations for each
erasure code: RS(6,3) (also used in QFS [43] and Hadoop
HDFS [6]), RS(10,4) (used in Facebook f4 [41]), LRC(6,2,2)
(also deployed in Windows Azure Storage [21]), LRC(8,2,2)
[28], RC(4,2,5) 4 [44] and RC(5,3,6) (a high-rate MSR code
that requires d = k + 1 [53]). We randomly distribute the
chunks of a stripe across 16 nodes and repeat the test for five
runs.

Table 1 gives the load balancing degrees of both the random
selection and the LRU-based selection. We see that the ran-
dom selection generates more balanced repair traffic in most
cases. The reason is that the LRU-based selection prioritizes
the nodes that have the smallest timestamps and IDs, and the
repair traffic becomes progressively imbalanced when more
chunks are repaired. Thus, we choose the random selection
as the baseline for comparison.

Default configurations: Unless otherwise specified, we
select the following default configurations throughout the
evaluation. We set the chunk size to 64 MB (the default
value in Hadoop HDFS) and the packet size to 1 MB. We
mainly consider the following erasure codes: RS(6,3) [6, 43],
LRC(6,2,2) [21], and Butterfly(4,2) [44]. We repair 100
chunks in each test and repeat it for five runs.

5.2 Experiments on Sensitivity
We first study the effectiveness of the parameters configured
in RepairBoost on the actual repair performance.

4We use RC(k,m,d) to represent the regenerating code that encodes k
data chunks into k+m coded chunks, where a data chunk can be repaired by
retrieving data from any d ≥ k surviving coded chunks [13].

USENIX Association 2021 USENIX Annual Technical Conference 649

Baseline RepairBoost

0

100

200

300

400

0.5 1 5
Bandwidth (Gb/s)

T
hp

t (
M

B
/s

)

0

50

100

150

200

1 4 16 64
Packet Size (MB)

T
hp

t (
M

B
/s

)

(a) CR: throughput vs.
network bandwidth

(b) CR: throughput vs.
packet size

0

100

200

300

400

0.5 1 5
Bandwidth (Gb/s)

T
hp

t (
M

B
/s

)

0

50

100

150

200

1 4 16 64
Packet Size (MB)

T
hp

t(
M

B
/s

)

(c) PPR: throughput vs.
network bandwidth

(d) PPR: throughput vs.
packet size

0

100

200

300

400

0.5 1 5
Bandwidth (Gb/s)

T
hp

t (
M

B
/s

)

0

50

100

150

200

1 4 16 64
Packet Size (MB)

T
hp

t (
M

B
/s

)

(e) ECPipe: throughput vs.
network bandwidth

(f) ECPipe: throughput vs.
packet size

Figure 9: Experiment 1 (Impact of network bandwidth and packet
size).

Experiment 1 (Impact of network bandwidth and packet
size): We first assess the impact of network bandwidth on
the repair throughput when coupling RepairBoost with exist-
ing repair algorithms. We vary the network bandwidth from
0.5 Gb/s (i.e., the network bandwidth dominates the repair)
to 5 Gb/s (i.e., the disk bandwidth dominates the repair), and
evaluate the repair throughput in different repair scenarios.

Figures 9(a), 9(c), and 9(e) show that the repair throughput
generally increases with the available network bandwidth,
as more data can be transmitted per time unit. Overall, Re-
pairBoost can improve the repair throughput by 72.3% on
average for different repair algorithms when compared to the
baseline. In addition, we identify that RepairBoost is more
advantageous in the network-bandwidth-dominated scenario,
as RepairBoost balances the repair traffic and arranges the
data transmission for maximizing the utilization of network
bandwidth in repair. Specifically, the improvement of Repair-
Boost on the repair throughput increases from 53.0% (when
the network bandwidth is 5 Gb/s) to 96.4% (when the net-
work bandwidth is 0.5 Gb/s). It is worth noting that Repair-
Boost mainly considers the application scenario where the
data transfers across the network dominate the repair perfor-
mance, which conforms to the assumptions made by many
previous studies [19, 40, 56, 58]. Even in the scenario with
high-performance network systems (e.g., InfiniBand [45]) for
fast memories (e.g., Intel Optane DIMM [61]), RepairBoost
can still maintain its performance gain, since the network

0.0

0.2

0.4

0.6

0.8

200 400 600 800 1000
of Repaired Chunks

T
im

e
(S

ec
)

n=50
n=100

n=200
n=400

Figure 10: Experiment 2 (Computation time).

bandwidth is likely to be more stringent than the aggregated
memory bandwidth (e.g., 44.8 Gb/s of the network bandwidth
in RDMA versus 84.8Gb/s of the write bandwidth in six Op-
tane DIMMs [26]).

As RepairBoost employs multi-threading to pipeline the
disk I/O and data transmission in repair, we also study the
impact of packet size on the repair performance, where the
packet size is changed from 1 MB (i.e., 64 packets per chunk)
to 64 MB (i.e., one packet per chunk).

Figures 9(b), 9(d), and 9(f) indicate that the repair through-
put decreases when the packet size increases, since the avail-
able disk and network bandwidth can be more extensively
utilized in repair when a chunk comprises more packets. The
multi-threading feature has no effect when the packet size
reaches 64 MB (i.e., the chunk size), thereby leading to the
lowest repair throughput. Overall, RepairBoost improves the
repair throughput by 97.1% compared to the baseline under
different packet sizes.
Experiment 2 (Computation time): We allocate one in-
stance on Amazon EC2 with the same configurations as de-
scribed in §5.1. We measure the computation time needed by
RepairBoost to generate the repair solutions under different
numbers of nodes (denoted by n) and repaired chunks.

Figure 10 shows the results. We make three observations.
First, when the number of nodes is fixed, the computation time
of RepairBoost gradually increases with the number of chunks
being repaired, as RepairBoost has to process more RDAGs
in the repair traffic balancing and transmission scheduling.
Second, when the number of repaired chunks is fixed, the
computation time drops when more nodes can participate
in the repair, as RepairBoost can dispatch more chunks at a
time. Third, the computation time needed by RepairBoost is
always less than 0.9 seconds, thereby demonstrating that it is
qualified to be deployed in the online repair scenario.

As the coordinator is only in charge of solving for the repair
solutions and interacting with agents (§4), this experiment can
evaluate the scalability of RepairBoost to some extent. When
RepairBoost is deployed in a large-scale system (e.g., with
thousands of nodes), we offer two options to further reduce
the computation time. First, we can break a full-node repair
into several subprocesses and iteratively repair a small number
of chunks for each subprocess. Second, we can compute the
repair solutions in advance and perform the repair based on
the pre-computed results when a failure happens.

650 2021 USENIX Annual Technical Conference USENIX Association

Baseline RepairBoost

0

50

100

150

200

CR PPR ECPipe
Repair Algorithm

T
hp

t (
M

B
/s

)

0

100

200

300

CR PPR ECPipe
Repair Algorithm

T
hp

t (
M

B
/s

)
0

100

200

300

400

CR
Repair Algorithm

T
hp

t (
M

B
/s

)

(a) RS(6,3) (b) LRC(6,2,2) (c) Butterfly(4,2)

Figure 11: Experiment 3 (Generality).

5.3 Experiments on RepairBoost Property
We also analyze the properties of RepairBoost, in terms of
generality and technique breakdown.

Experiment 3 (Generality): We validate the generality of
RepairBoost using a variety of representative erasure codes.
Given an erasure code, we measure the repair throughput
when RepairBoost is coupled with different repair algorithms.
Note that we only consider CR for Butterfly(4,2) as it repairs
a chunk with multiple sub-chunks coming from different sur-
viving chunks.

Figure 11 shows that all the repair algorithms assisted by
RepairBoost can boost the repair for different erasure codes,
thereby demonstrating the generality of RepairBoost. Over-
all, RepairBoost can improve the repair throughput by 60.4%
on average for different erasure codes when compared to
the baseline. RS(6,3) has the lowest repair throughput (Fig-
ure 11(a)), as most of the time it needs to retrieve the most
chunks for repair. While LRC(6,2,2) comprises the same
number of data chunks (i.e., k) as RS(6,3) within a stripe, it
achieves a higher repair throughput (Figure 11(b)), as it only
retrieves three chunks to accomplish most of a single-chunk
repair. Butterfly(4,2) reaches the highest repair throughput
(Figure 11(c)), as it needs to fetch only half of the remaining
data (i.e., k+1

2 surviving chunks on average per failed chunk).
We also identify that ECPipe reaches the lowest repair

throughput for both RS(6,3) and LRC(6,2,2). The root cause
is that an RDAG under ECPipe only has one chunk to be
transmitted at a time, hence limiting the repair parallelism.

Experiment 4 (Breakdown analysis): We decompose Re-
pairBoost to demonstrate the effectiveness of each designed
technique. For simplicity of presentation, we abbreviate the
techniques of RepairBoost as follows: (i) repair traffic balanc-
ing (RTB), which balances the upload and download repair
traffic (§3.2) without performing transmission scheduling,
and (ii) transmission scheduling (TS), which simply sched-
ules data transmission (§3.3) without considering repair traffic
balancing.

Figure 12 shows the repair throughput of the baseline, RTB,
TS, and RepairBoost. We make two observations. First, the
effectiveness of RTB and TS varies across different repair
algorithms. For example, TS outperforms RTB for PPR and
ECPipe, but reaches a lower repair throughput for CR. Sec-

0

50

100

150

200

CR PPR ECPipe
Repair Algorithm

T
hp

t (
M

B
/s

)

Baseline RTB TS RepairBoost

Figure 12: Experiment 4 (Breakdown analysis).

0

50

100

150

200

1 2 3
of Failed Nodes

T
hp

t (
M

B
/s

)

Baseline+CR
RepairBoost+CR

Baseline+PPR
RepairBoost+PPR

Baseline+ECPipe
RepairBoost+ECPipe

Figure 13: Experiment 5 (Performance on multi-node repair).

ond, RepairBoost always reaches the highest repair through-
put, indicating that the two techniques in RepairBoost are
complementary without comprising the effectiveness of each
other. Specifically, RepairBoost achieves 45.7% and 19.8%
higher repair throughput than RTB and TS, respectively.

5.4 Experiments on Practicality
We further assess the practicality of RepairBoost by measur-
ing its performance when tackling multi-failure repair and the
single-node failure in heterogeneous environments.

Experiment 5 (Performance on multi-node repair): We
extend RepairBoost and study its performance when repairing
multiple failed nodes. We erase the data stored in a number of
nodes to mimic multiple node failures. We then schedule the
RDAGs of the lost chunks for repair. As RS(6,3) can tolerate
at most three node failures, this experiment measures the
repair throughput when the number of failed nodes increases
from one to three.

Figure 13 indicates that RepairBoost also speeds up the
repair for multiple failures. Specifically, RepairBoost can im-
prove the repair throughput by 39.5% (when tackling a single
node failure) and by 35.7% (when tackling triple node fail-
ures). The repair throughput gained by RepairBoost drops
slightly when more nodes fail, as fewer surviving nodes can
be selected for RepairBoost to balance repair traffic and sched-
ule transmission.

Experiment 6 (Performance with bandwidth heterogene-
ity): We finally assess the performance of RepairBoost in the
presence of bandwidth heterogeneity. We organize the 16 in-
stances with agents into four clusters, where each cluster com-
prises four instances and the intra-cluster bandwidth is 1 Gb/s.
We then use the Linux bandwidth control tool tc to throttle
the inter-cluster bandwidth for producing the bandwidth diver-

USENIX Association 2021 USENIX Annual Technical Conference 651

0

10

20

30

CR PPR ECPipe
Repair Algorithm

T
hp

t (
M

B
/s

)

Baseline RepairBoost

0

5

10

15

20

CR PPR ECPipe
Repair Algorithm

T
hp

t (
M

B
/s

)

Baseline RepairBoost

(a) Inter-cluster bandwidth:
0.1 Gb/s

(b) Inter-cluster bandwidth:
0.05 Gb/s

Figure 14: Experiment 6 (Performance with bandwidth heterogene-
ity).

sity phenomenon in data centers [10,15]. Specifically, we vary
the inter-cluster bandwidth from 0.05 Gb/s to 0.1 Gb/s, such
that the over-subscription ratio (i.e., calculated by dividing
the intra-cluster bandwidth by the inter-cluster bandwidth)
ranges from 10 to 20, as shown in prior studies [10, 15, 55].

Figure 14 shows that RepairBoost retains its effective-
ness on accelerating the full-node repair in heterogeneous
environments, especially when the inter-cluster bandwidth is
more scarce. Specifically, the improvement of repair through-
put gained by RepairBoost is 35.0% when the inter-cluster
bandwidth is 0.1 Gb/s (Figure 14(a)), and increases to 36.8%
when the inter-cluster bandwidth reduces to 0.05 Gb/s (Fig-
ure 14(b)).

6 Related Work

We review existing studies to accelerate full-node repair from
the following aspects: repair-efficient codes, repair algorithms,
and proactive repair with erasure coding.

Repair-efficient codes: LRCs [21, 52] and Rotated-RS codes
[27] reduce the repair traffic via loosening the storage ef-
ficiency requirement (i.e., increasing a handful of storage
overhead). Regenerating codes [13] alleviate the repair traffic
by requiring the surviving nodes to send a linear combination
of the locally stored data or requiring more surviving nodes to
participate in the repair (e.g., product-matrix MSR codes [49]).
Butterfly code [44] and Clay code [58] can directly send the lo-
cally stored data for repair. Hitchhiker [48] makes the chunks
across stripes dependent in the code construction for reducing
the repair traffic. Different from the concrete constructions of
erasure codes, RepairBoost is a scheduling approach that can
assist the full-node repair for a variety of erasure codes.

Repair algorithms: Degraded-first scheduling [31] proposes
to launch the degraded read tasks with a higher priority to
leverage the unused network bandwidth. PUSH [22] pipelines
the transmission of the requested chunks to alleviate the net-
work congestion in repair. PPR [40] partitions an entire repair
solution into small sub-stages and executes them in parallel.
ECPipe [32] further partitions a chunk into smaller slices and
pipelines the transmission of the slices, such that the com-
plexity of the repair time approaches to O(1) in homogeneous

environment. In view of the bandwidth diversity in hierarchi-
cal data centers, CAR [56] and ClusterSR [55] reduce and
balance the inter-cluster repair traffic, which is considered
more scarce than intra-cluster repair traffic. ECWide [18] ad-
dresses the repair of wide stripes with ultra-low redundancy
in hierarchical data centers. Most of these studies pay special
attention to the single-chunk repair, while RepairBoost can
help different repair algorithms accelerate the full-node repair.

Proactive repair with erasure coding: Existing mature
machine-learning-based failure prediction often take input the
SMART attributes [11,17,30,38,64] combined with additional
system events [60] and performance metrics [37], and exhibit
high prediction accuracy (e.g., at least 95% [11, 30, 39, 64])
with low false alarm rate (also called false positive rate, e.g.,
up to 2.5% [38], 0.2-0.4% [63]). FastPR [54] couples migra-
tion and erasure-coding-based repair to accelerate the proac-
tive repair. Hu et al. [20] suggest proactively launching de-
graded reads to bypassing the hotspots, so as to reduce the tail
latency in read operations. As an orthogonal study, Repair-
Boost is also applicable to the proactive repair that employs
erasure coding for data recovery.

7 Conclusion

Erasure coding is a storage-efficient means to assure data
reliability, yet it is prone to magnify the repair traffic. We
present RepairBoost, a scheduling framework that boosts the
full-node repair for various erasure codes and repair algo-
rithms. RepairBoost employs a graph abstraction, called an
RDAG, to characterize the single-chunk repair solution. It
then carefully assigns the repair tasks of the RDAGs to the
nodes for balancing the upload and download repair traffic.
RepairBoost further schedules the transmission of chunks to
saturate the unoccupied bandwidths. Extensive experiments
on Amazon EC2 demonstrate the generality, flexibility, and
effectiveness of RepairBoost.

Acknowledgments

We thank our shepherd, Mike Mesnier, and the anonymous
reviewers for the comments on our camera-ready prepara-
tions. This work is supported by Natural Science Founda-
tion of China (62072381, 61832011), CCF-Tencent Open
Fund WeBank Special Fund, Xiamen Youth Innovation
Fund (3502Z20206052), Zhejiang Lab (2021KF0AB01), the
Natural Science Foundation of Fujian Province of China
(2020J01002), and Research Grants Council of Hong Kong
(AoE/P-404/18).

References

[1] Intel(R) Intelligent Storage Acceleration Library.
https://github.com/intel/isa-l.

652 2021 USENIX Annual Technical Conference USENIX Association

https://github.com/intel/isa-l

[2] Jerasure: Erasure Coding Library. https://jerasure.
org/.

[3] Redis. https://redis.io/.

[4] Erasure Coding in Ceph. https://ceph.com/planet/
erasure-coding-in-ceph/, 2014.

[5] Yahoo Cloud Object Store - Object
Storage at Exabyte Scale. https://
yahooeng.tumblr.com/post/116391291701/
yahoo-cloud-object-store-object-storage-at,
2015.

[6] Apache Hadoop 3.1.4. https://hadoop.apache.
org/docs/r3.1.4/, 2020.

[7] HDFS Erasure Coding. https://hadoop.apache.
org/docs/current/hadoop-project-dist/
hadoop-hdfs/HDFSErasureCoding.html, 2020.

[8] Amazon EC2. https://aws.amazon.com/ec2/,
2021.

[9] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, I. Stoica, D. Harlan, and E. Harris.
Scarlett: Coping with Skewed Content Popularity in
Mapreduce Clusters. In Proc. of ACM EuroSys, 2011.

[10] T. Benson, A. Akella, and D. Maltz. Network Traffic
Characteristics of Data Centers in the Wild. In Proc. of
ACM IMC, 2010.

[11] M. M. Botezatu, I. Giurgiu, J. Bogojeska, and D. Wies-
mann. Predicting Disk Replacement towards Reliable
Data Centers. In Proc. of ACM SIGKDD, 2016.

[12] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. HUG:
Multi-Resource Fairness for Correlated and Elastic De-
mands. In Proc. of USENIX NSDI, 2016.

[13] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and
K. Ramchandran. Network Coding for Distributed Stor-
age Systems. IEEE Transactions on Information Theory,
56(9):4539–4551, 2010.

[14] S. Ghemawat, H. Gobioff, and S. Leung. The Google
File System. In Proc. of ACM SOSP, 2003.

[15] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In Proc. of
ACM SIGCOMM, 2009.

[16] G. Hamerly and C. Elkan. Bayesian Approaches to
Failure Prediction for Disk Drives. In Proc. of ICML,
2001.

[17] S. Han, P. P. C. Lee, Z. Shen, C. He, Y. Liu, and T. Huang.
Toward Adaptive Disk Failure Prediction via Stream
Mining. In Proc. of IEEE ICDCS, 2020.

[18] Y. Hu, L. Cheng, Q. Yao, P. P. Lee, W. Wang, and
W. Chen. Exploiting Combined Locality for Wide-Stripe
Erasure Coding in Distributed Storage. In Proc. of
USENIX FAST, 2021.

[19] Y. Hu, X. Li, M. Zhang, P. P. C. Lee, X. Zhang, P. Zhou,
and D. Feng. Optimal Repair Layering for Erasure-
Coded Data Centers: From Theory to Practice. ACM
Transactions on Storage, 13(4):33, 2017.

[20] Y. Hu, Y. Wang, B. Liu, D. Niu, and C. Huang. La-
tency Reduction and Load Balancing in Coded Storage
Systems. In Proc. of ACM SoCC, 2017.

[21] C. Huang, H. Simitci, Y. Xu, et al. Erasure Coding in
Windows Azure Storage. In Proc. of USENIX ATC,
2012.

[22] J. Huang, X. Liang, X. Qin, Q. Cao, and C. Xie. Push: A
Pipelined Reconstruction I/O for Erasure-Coded Storage
Clusters. IEEE Transactions on Parallel and Distributed
Systems, 26(2):516–526, 2014.

[23] Q. Huang, K. Birman, R. Van Renesse, W. Lloyd, S. Ku-
mar, and H. C. Li. An Analysis of Facebook Photo
Caching. In Proc. of ACM SOSP, 2013.

[24] A. Itai, Y. Perl, and Y. Shiloach. The Complexity of Find-
ing Maximum Disjoint Paths with Length Constraints.
Networks, 12(3):277–286, 1982.

[25] S. Kadekodi, K. Rashmi, and G. R. Ganger. Cluster Stor-
age Systems Gotta Have HeART: Improving Storage
Efficiency by Exploiting Disk-Reliability Heterogeneity.
In Proc. of USENIX FAST, 2019.

[26] A. Kalia, D. Andersen, and M. Kaminsky. Challenges
and Solutions for Fast Remote Persistent Memory Ac-
cess. In Proc. of ACM SoCC, 2020.

[27] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang.
Rethinking Erasure Codes for Cloud File Systems: Min-
imizing I/O for Recovery and Degraded Reads. In Proc.
of USENIX FAST, 2012.

[28] O. Kolosov, G. Yadgar, M. Liram, I. Tamo, and A. Barg.
On Fault Tolerance, Locality, and Optimality in Locally
Repairable Codes. In Proc. of USENIX ATC, 2018.

[29] H. Li, Y. Zhang, D. Li, Z. Zhang, S. Liu, P. Huang,
Z. Qin, K. Chen, and Y. Xiong. URSA: Hybrid Block
Storage for Cloud-Scale Virtual Disks. In Proc. of Eu-
roSys, 2019.

[30] J. Li, X. Ji, Y. Jia, B. Zhu, G. Wang, Z. Li, and X. Liu.
Hard Drive Failure Prediction Using Classification and
Regression Trees. In Proc. of IEEE/IFIP DSN, 2014.

[31] R. Li, P. P. Lee, and Y. Hu. Degraded-First Scheduling
for Mapreduce in Erasure-Coded Storage Clusters. In
Proc. of IEEE/IFIP DSN, 2014.

[32] R. Li, X. Li, P. P. C. Lee, and Q. Huang. Repair Pipelin-
ing for Erasure-Coded Storage. In Proc. of USENIX
ATC, 2017.

[33] X. Li, R. Li, P. P. C. Lee, and Y. Hu. OpenEC: Toward
Unified and Configurable Erasure Coding Management

USENIX Association 2021 USENIX Annual Technical Conference 653

https://jerasure.org/
https://jerasure.org/
https://redis.io/
https://ceph.com/planet/erasure-coding-in-ceph/
https://ceph.com/planet/erasure-coding-in-ceph/
https://yahooeng.tumblr.com/post/116391291701/yahoo-cloud-object-store-object-storage-at
https://yahooeng.tumblr.com/post/116391291701/yahoo-cloud-object-store-object-storage-at
https://yahooeng.tumblr.com/post/116391291701/yahoo-cloud-object-store-object-storage-at
https://hadoop.apache.org/docs/r3.1.4/
https://hadoop.apache.org/docs/r3.1.4/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://aws.amazon.com/ec2/

in Distributed Storage Systems. In Proc. of USENIX
FAST, 2019.

[34] A. Liaw, M. Wiener, et al. Classification and Regression
by randomForest. R news, 2(3):18–22, 2002.

[35] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G.
Lou, C. Li, Y. Wu, R. Yao, et al. Predicting Node Failure
in Cloud Service Systems. In Proc. of ESEC/FSE, 2018.

[36] H. Liu, M. Mukerjee, C. Li, et al. Scheduling Techniques
for Hybrid Circuit/Packet Networks. In Proc. of ACM
CoNEXT, 2015.

[37] S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi.
Making Disk Failure Predictions SMARTer! In Proc. of
USENIX FAST, 2020.

[38] A. Ma, F. Douglis, G. Lu, D. Sawyer, S. Chandra, and
W. Hsu. RAIDShield: Characterizing, Monitoring, and
Proactively Protecting Against Disk Failures. In Proc.
of USENIX FAST, 2015.

[39] F. Mahdisoltani, I. Stefanovici, and B. Schroeder. Proac-
tive Error Prediction to Improve Storage System Relia-
bility. In Proc. of USENIX ATC, 2017.

[40] S. Mitra, R. Panta, M. Ra, and S. Bagchi. Partial-Parallel-
Repair (PPR): A Distributed Technique for Repairing
Erasure Coded Storage. In Proc. of ACM EuroSys, 2016.

[41] S. Muralidhar, W. Lloyd, S. Roy, et al. f4: Facebook’s
Warm Blob Storage System. In Proc. of USENIX OSDI,
2014.

[42] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado.
Machine Learning Methods for Predicting Failures in
Hard Drives: A Multiple-Instance Application. Journal
of Machine Learning Research, 2005.

[43] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao,
and J. Kelly. The Quantcast File System. Proceedings
of the VLDB Endowment, 6(11):1092–1101, 2013.

[44] L. Pamies-Juarez, F. Blagojevic, R. Mateescu, C. Gyuot,
E. E. Gad, and Z. Bandic. Opening the Chrysalis: On
the Real Repair Performance of MSR Codes. In Proc.
of USENIX FAST, 2016.

[45] G. F. Pfister. An Introduction to the Infiniband Architec-
ture. High performance mass storage and parallel I/O,
42(617-632):102, 2001.

[46] J. Plank, S. Simmerman, and C. Schuman. Jerasure: A
Library in C/C++ Facilitating Erasure Coding for Stor-
age Applications-Version 1.2. University of Tennessee,
Tech. Rep. CS-08-627, 23, 2008.

[47] J. S. Plank and C. Huang. Tutorial: Erasure Coding
for Storage Applications. Slides presented at USENIX
FAST 2013, Feb 2013.

[48] K. Rashmi, N. Shah, D. Gu, H. Kuang, D. Borthakur,
and K. Ramchandran. A Hitchhiker’s Guide to Fast and

Efficient Data Reconstruction in Erasure-Coded Data
Centers. In Proc. of ACM SIGCOMM, 2015.

[49] K. V. Rashmi, N. Shah, and P. V. Kumar. Optimal Exact-
Regenerating Codes for Distributed Storage at The MSR
and MBR Points via A Product-Matrix Construction.
IEEE Transactions on Information Theory, 57(8):5227–
5239, 2011.

[50] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang,
D. Borthakur, and K. Ramchandran. A Solution to the
Network Challenges of Data Recovery in Erasure-coded
Distributed Storage Systems: A Study on the Facebook-
Warehouse Cluster. In Proc. of USENIX HotStorage,
2013.

[51] I. Reed and G. Solomon. Polynomial Codes over Certain
Finite Fields. Journal of the society for industrial and
applied mathematics, 8(2):300–304, 1960.

[52] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. Di-
makis, R. Vadali, S. Chen, and D. Borthakur. Xoring
Elephants: Novel Erasure Codes for Big Data. Proceed-
ings of the VLDB Endowment, 6(5):325–336, 2013.

[53] N. B. Shah, K. Rashmi, P. V. Kumar, and K. Ramchan-
dran. Interference Alignment in Regenerating Codes for
Distributed Storage: Necessity and Code Constructions.
IEEE Transactions on Information Theory, 58(4):2134–
2158, 2011.

[54] Z. Shen, X. Li, and P. P. C. Lee. Fast Predictive Repair
in Erasure-Coded Storage. In Proc. of IEEE/IFIP DSN,
2019.

[55] Z. Shen, J. Shu, Z. Huang, and Y. Fu. ClusterSR: Cluster-
Aware Scattered Repair in Erasure-Coded Storage. In
Proc. of IEEE IPDPS, 2020.

[56] Z. Shen, J. Shu, and P. P. C. Lee. Reconsidering Single
Failure Recovery in Clustered File Systems. In Proc. of
IEEE/IFIP DSN, 2016.

[57] R. E. Tarjan. Data Structures and Network Algorithms.
SIAM, 1983.

[58] M. Vajha, V. Ramkumar, B. Puranik, G. Kini, E. Lobo,
B. Sasidharan, P. V. Kumar, A. Barg, M. Ye, S. Narayana-
murthy, et al. Clay Codes: Moulding MDS Codes to
Yield an MSR Code. In Proc. of USENIX FAST, 2018.

[59] H. Weatherspoon and J. Kubiatowicz. Erasure Coding
vs. Replication: A Quantitative Comparison. In Proc. of
IPTPS, 2002.

[60] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li,
K. Jiang, W. Zhang, J.-G. Lou, et al. Improving Service
Availability of Cloud Systems by Predicting Disk Error.
In Proc. of USENIX ATC, 2018.

[61] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and
S. Swanson. An Empirical Guide to the Behavior and

654 2021 USENIX Annual Technical Conference USENIX Association

Use of Scalable Persistent Memory. In Proc. of USENIX
FAST, 2020.

[62] H. Zhang, M. Dong, and H. Chen. Efficient and Avail-
able In-memory KV-Store with Hybrid Erasure Coding
and Replication. In Proc. of USENIX FAST, 2016.

[63] J. Zhang, P. Huang, K. Zhou, M. Xie, and S. Schelter.
HDDse: Enabling High-Dimensional Disk State Embed-
ding for Generic Failure Detection System of Heteroge-
neous Disks in Large Data Centers. In Proc. of USENIX
ATC, 2020.

[64] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma. Proac-
tive Drive Failure Prediction for Large Scale Storage
Systems. In Proc. of IEEE MSST, 2013.

USENIX Association 2021 USENIX Annual Technical Conference 655

	Introduction
	Background
	Basics
	Repair
	Limitations

	RepairBoost Design
	Repair Abstraction
	Repair Traffic Balancing
	Transmission Scheduling
	Extensions

	Implementation
	Performance Evaluation
	Setup
	Experiments on Sensitivity
	Experiments on RepairBoost Property
	Experiments on Practicality

	Related Work
	Conclusion

