
Detecting Concept Drift in Malware Classification Models

Roberto Jordaney+, Kumar Sharad§, Santanu Kumar Dash‡, Zhi Wang†, Davide Papini•,

Ilia Nouretdinov+, Lorenzo Cavallaro+

USENIX Security Symposium

Thu Aug 17, 2017

+Royal Holloway, University of London
§NEC Laboratories Europe
‡University College London
†Nankai University
•Elettronica S.p.A.

Machine Learning Classification

Usually, a 2-phase process:

1. Training: build a model M, given

labeled objects

2. Testing: given M, predict the labels

of unknown objects

Objects are described as vectors of features

1

Machine Learning Classification

Usually, a 2-phase process:

1. Training: build a model M, given

labeled objects

2. Testing: given M, predict the labels

of unknown objects

Objects are described as vectors of features

Pikachu

Charmander

1

Machine Learning Classification

Usually, a 2-phase process:

1. Training: build a model M, given

labeled objects

2. Testing: given M, predict the labels

of unknown objects

Objects are described as vectors of features

Pikachu

Charmander

1

Machine Learning Classification Problem: Concept Drift

• Concept drift is the change in the

statistical properties of an object in

unforeseen ways

• Drifted objects will likely be wrongly

classified

Hitmonlee
(new pokémon family)

Raichu
(evolution of Pikachu)

Charmeleon
(evolution of Charmander)

2

Machine Learning Classification Problem: Concept Drift

• Concept drift is the change in the

statistical properties of an object in

unforeseen ways

• Drifted objects will likely be wrongly

classified

2

Machine Learning Classification Problem: Concept Drift

• Concept drift is the change in the

statistical properties of an object in

unforeseen ways

• Drifted objects will likely be wrongly

classified

2

Of course, the problem exists in multiclass classification settings. . .

Machine Learning Classification Problem: Concept Drift

• Multiclass classification is a generalization of the binary case

3

Concept Drift

• In non-stationary contexts classifiers will suffer from concept drift due to:

• malware evolution ,

• new malware families

• Need a way to assess the predictions of classifiers

• Ideally classifier-agnostic assessments

• Need to identify objects that fit a model and those drifting away

Our Contributions

• Conformal Evaluator: statistical evaluation of ML classifiers

• Per-class quality threshold to identify reliable and unreliable predictions

4

Concept Drift

• In non-stationary contexts classifiers will suffer from concept drift due to:

• malware evolution ,

• new malware families

• Need a way to assess the predictions of classifiers

• Ideally classifier-agnostic assessments

• Need to identify objects that fit a model and those drifting away

Our Contributions

• Conformal Evaluator: statistical evaluation of ML classifiers

• Per-class quality threshold to identify reliable and unreliable predictions
4

Conformal Evaluator

Conformal Evaluator

• Assesses decisions made by a classifier

• Mark each decision as reliable or unreliable

• Builds and makes use of p-value as assessment criteria

• Computes per-class thresholds to divide reliable decisions from unreliable ones

5

Conformal Evaluator: P-value?

• Used to measure “how well” a sample fits into a single class

• Conformal Evaluator computes a p-value for each class, for each test element

Definition

αt = Non-conformity score for test element t

∀i ∈ K, αi = Non-conformity score for train element i

p-value =
|{i : αi ≥ αt}|

|K|
K = Total number of element

P-value

Ratio between the number of training elements that are more dissimilar than the

element under test

6

Conformal Evaluator: P-value Example

ML classifier:

distance from centroid

1. Setting: 3-class classification

2. Test object

3.1 Compute distance to blue class

3.2 How many objects are more

dissimilar than the one under test?

3.3 9

3.4 P-valueF = 9
10

7

Conformal Evaluator: P-value Example

ML classifier:

distance from centroid

1. Setting: 3-class classification

2. Test object

3.1 Compute distance to blue class

3.2 How many objects are more

dissimilar than the one under test?

3.3 9

3.4 P-valueF = 9
10

7

Conformal Evaluator: P-value Example

ML classifier:

distance from centroid

1. Setting: 3-class classification

2. Test object

3.1 Compute distance to blue class

3.2 How many objects are more

dissimilar than the one under test?

3.3 9

3.4 P-valueF = 9
10

7

Conformal Evaluator: P-value Example

ML classifier:

distance from centroid

1. Setting: 3-class classification

2. Test object

3.1 Compute distance to blue class

3.2 How many objects are more

dissimilar than the one under test?

3.3 9

3.4 P-valueF = 9
10

7

Conformal Evaluator: P-value Example

ML classifier:

distance from centroid

1. Setting: 3-class classification

2. Test object

3.1 Compute distance to blue class

3.2 How many objects are more

dissimilar than the one under test?

3.3 9

3.4 P-valueF = 9
10

7

Conformal Evaluator: P-value Example

ML classifier:

distance from centroid

1. Setting: 3-class classification

2. Test object

3.1 Compute distance to blue class

3.2 How many objects are more

dissimilar than the one under test?

3.3 9

3.4 P-valueF = 9
10

7

Conformal Evaluator: P-value Example

Machine learning classifier:

distance from centroid

1. Initial situation: three classes

2. Test object

4.1 Calculate distance to green class

4.2 How many objects are more

dissimilar than the one under test?

4.3 4

4.4 P-valueF = 4
12

8

Conformal Evaluator: P-value Example

Machine learning classifier:

distance from centroid

1. Initial situation: three classes

2. Test object

5.1 Calculate distance to red class

5.2 How many objects are more

dissimilar than the one under test?

5.3 0

5.4 P-valueF = 0
11

8

Conformal Evaluator: P-value Example

Machine learning classifier:

distance from centroid

1. Initial situation: three classes

2. Test object

5.1 Calculate distance to red class

5.2 How many objects are more

dissimilar than the one under test?

5.3 0

5.4 P-valueF = 0
11

8

Let’s see how p-values are used within Conformal Evaluator.

Conformal Evaluator: How Does it Work?

1. Extracts the non-conformity measure (NCM) from the decision making algorithm
• NCM provides non-conformity scores for p-value computations

• Example: distance from hyperplane, Random Forest probability (adapted to satisfy the

non-conformity requirement)

2. Builds p-values for all training samples in a cross-validation fashion

3. Computes per-class threshold to divide reliable predictions from unreliable ones

Training dataset

Decision algorithm Non-conformity measure Threshold analysis

Threshold for class A

Threshold for class B
.

1 2 3

9

Conformal Evaluator: How Does it Work?

1. Extracts the non-conformity measure (NCM) from the decision making algorithm

2. Builds p-values for all training samples in a cross-validation fashion

3. Computes per-class threshold to divide reliable predictions from unreliable ones

Training dataset

Decision algorithm Non-conformity measure Threshold analysis

Threshold for class A

Threshold for class B
.

1 2 3

9

Conformal Evaluator: How Does it Work?

1. Extracts the non-conformity measure (NCM) from the decision making algorithm

2. Builds p-values for all training samples in a cross-validation fashion

3. Computes per-class threshold to divide reliable predictions from unreliable ones

Training dataset

Decision algorithm Non-conformity measure Threshold analysis

Threshold for class A

Threshold for class B
.

1 2 3

9

Conformal Evaluator: Identifying per-class Thresholds

Customizable constraints:

• Desired performance (of the predictions marked as reliable)

• E.g.: high-level performance will raise the threshold

• Number of unreliable prediction tolerated

• E.g.: low number of unreliable prediction will lower the threshold

Assumptions

• Performance of non-drifted elements are similar to the one declared by the algorithm

• Predictions with high confidence will have higher p-values

10

Conformal Evaluator: Identifying per-class Thresholds

• We use the p-values and prediction labels from training samples

• From the thresholds that satisfy the constraints we chose the one that maximize

one or the other

P-value

1.0

0.0 Correct Decisions Incorrect Decisions

Identified
Threshold

11

Experimental Results

Experimental Results: Case Studies

• Binary case study: Android malware detection algorithm

• Reimplemented Drebin1 algorithm with similar results

(0.95-0.92 precision-recall on malicious apps and 0.99-0.99 precision-recall on benign apps)

• Static features of Android apps, linear SVM (used as NCM)

• Concept drift scenario: malware evolution

• Multiclass case study: Microsoft malware classification algorithm

• Solution to Microsoft Kaggle competition2, ranked among the top ones

• Static features from Windows PE binaries, Random Forest (used as NCM)

• Concept drift scenario: family discovery

1
Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. Drebin: Effective and Explainable Detection of Android

Malware in Your Pocket. In 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, California, USA, February 23-26,

2014.
2

KAGGLE INC. Microsoft Malware Classification Challenge (BIG 2015). https://www.kaggle.com/c/malware-classification, 2015.

12

Experimental Results: Case Studies

• Binary case study: Android malware detection algorithm

• Reimplemented Drebin1 algorithm with similar results

(0.95-0.92 precision-recall on malicious apps and 0.99-0.99 precision-recall on benign apps)

• Static features of Android apps, linear SVM (used as NCM)

• Concept drift scenario: malware evolution

• Multiclass case study: Microsoft malware classification algorithm

• Solution to Microsoft Kaggle competition2, ranked among the top ones

• Static features from Windows PE binaries, Random Forest (used as NCM)

• Concept drift scenario: family discovery

1
Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. Drebin: Effective and Explainable Detection of Android

Malware in Your Pocket. In 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, California, USA, February 23-26,

2014.
2

KAGGLE INC. Microsoft Malware Classification Challenge (BIG 2015). https://www.kaggle.com/c/malware-classification, 2015.

12

Experimental Results: Binary Classification (Malware Evolution)

• Drebin dataset: samples collected from 2010 to 2012

• Marvin dataset3: malware apps collected from 2010 to 2014 (no duplicates)

• We expect some object to drift from objects in the Drebin dataset

Drebin Dataset

Type Samples

Benign 123,435

Malware 5,560

Marvin Dataset

Type Samples

Benign 9,592

Malware 9,179

3
Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. MARVIN: Efficient and Comprehensive Mobile App Classification through

Static And Dynamic Analysis. In 39th IEEE Annual Computer Software and Applications Conference (COMPSAC), Taichung, Taiwan, July 1-5, 2015.

13

Experimental Results: Binary Classification (Malware Evolution)

Experiment: Drift Confirmation

• Training dataset: Drebin dataset

• Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

Prediction label

Original label Benign Malicious Recall

Benign 4,498 2 1

Malicious 2,890 1,610 0.36

Precision 0.61 1

Marvin malicious app Drebin malicious app

14

Experimental Results: Binary Classification (Malware Evolution)

Experiment: Drift Confirmation

• Training dataset: Drebin dataset

• Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

Prediction label

Original label Benign Malicious Recall

Benign 4,498 2 1

Malicious 2,890 1,610 0.36

Precision 0.61 1

Marvin malicious app Drebin malicious app

14

Experimental Results: Binary Classification (Malware Evolution)

Experiment: Drift Confirmation

• Training dataset: Drebin dataset

• Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

Prediction label

Original label Benign Malicious Recall

Benign 4,498 2 1

Malicious 2,890 1,610 0.36

Precision 0.61 1

Marvin malicious app
Drebin malicious app

Drebin benign app

14

Experimental Results: Binary Classification (Malware Evolution)

Experiment: Threshold Identification

• Training dataset: Drebin dataset

• Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

• Make use of Conformal Evaluator’s prediction assessment algorithm

• Constraints: F1-score of 0.99 and 0.76 of elements marked as reliable

Prediction label

Original label Benign Malicious Recall

Benign 4,257 2 1

Malicious 504 1,610 0.76

Precision 0.89 1

15

Experimental Results: Binary Classification (Malware Evolution)

Experiment: Retraining

• Training dataset: Drebin dataset + samples marked as unreliable from previous experiment

• Testing dataset: 4,500 benign and 4,500 malicious random samples of Marvin dataset

(no sample overlap from previous experiment)

Assigned label

Sample Benign Malicious Recall

Benign 4,413 87 0.98

Malicious 255 4,245 0.94

Precision 0.96 0.98

16

Experimental Results: Binary Classification (Malware Evolution)

Experiment: Threshold Comparison

• Compare probability- and p-value-based thresholds

• Central tendency and dispersion points of true positive distribution

• Training dataset: Drebin dataset

• Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

TPR TPR FPR FPR

(reliable predictions) (unreliable predictions) (reliable predictions) (unreliable predictions)

p-value probability p-value probability p-value probability p-value probability

1st quartile 0.9045 0.6654 0.0000 0.3176 0.0007 0.0 0.0000 0.0013

Median 0.8737 0.8061 0.3080 0.3300 0.0000 0.0 0.0008 0.0008

Mean 0.8737 0.4352 0.3080 0.3433 0.0000 0.0 0.0008 0.0018

3rd quartile 0.8723 0.6327 0.3411 0.3548 0.0000 0.0 0.0005 0.0005

17

Experimental Results: Binary Classification (Malware Evolution)

Experiment: Threshold Comparison

• Compare probability- and p-value-based thresholds

• Central tendency and dispersion points of true positive distribution

• Training dataset: Drebin dataset

• Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

TPR TPR FPR FPR

(reliable predictions) (unreliable predictions) (reliable predictions) (unreliable predictions)

p-value probability p-value probability p-value probability p-value probability

1st quartile 0.9045 0.6654 0.0000 0.3176 0.0007 0.0 0.0000 0.0013

Median 0.8737 0.8061 0.3080 0.3300 0.0000 0.0 0.0008 0.0008

Mean 0.8737 0.4352 0.3080 0.3433 0.0000 0.0 0.0008 0.0018

3rd quartile 0.8723 0.6327 0.3411 0.3548 0.0000 0.0 0.0005 0.0005

17

Experimental Results: Binary Classification (Malware Evolution)

Experiment: Threshold Comparison

• Compare probability- and p-value-based thresholds

• Central tendency and dispersion points of true positive distribution

• Training dataset: Drebin dataset

• Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

TPR TPR FPR FPR

(reliable predictions) (unreliable predictions) (reliable predictions) (unreliable predictions)

p-value probability p-value probability p-value probability p-value probability

1st quartile 0.9045 0.6654 0.0000 0.3176 0.0007 0.0 0.0000 0.0013

Median 0.8737 0.8061 0.3080 0.3300 0.0000 0.0 0.0008 0.0008

Mean 0.8737 0.4352 0.3080 0.3433 0.0000 0.0 0.0008 0.0018

3rd quartile 0.8723 0.6327 0.3411 0.3548 0.0000 0.0 0.0005 0.0005

17

Conclusion

Conclusion

Conformal Evaluator (CE)

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

Algorithm Agnostic: Uses non-conformity measure (NCM) from the ML classifier

Statistical Support: Builds p-values from NCM to statistically-support predictions

Quality Thresholds: Builds thresholds from p-values to identify unreliable predictions

• We evaluate the proposed solution on different ML classifiers and case studies

• Android malware apps in binary classification settings

• Windows PE binaries in multi-class classification settings

• Information on CE’s python code and dataset availability at:

https://s2lab.isg.rhul.ac.uk/projects/ce

18

https://s2lab.isg.rhul.ac.uk/projects/ce

Conclusion

Conformal Evaluator (CE)

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

Algorithm Agnostic: Uses non-conformity measure (NCM) from the ML classifier

Statistical Support: Builds p-values from NCM to statistically-support predictions

Quality Thresholds: Builds thresholds from p-values to identify unreliable predictions

• We evaluate the proposed solution on different ML classifiers and case studies

• Android malware apps in binary classification settings

• Windows PE binaries in multi-class classification settings

• Information on CE’s python code and dataset availability at:

https://s2lab.isg.rhul.ac.uk/projects/ce

18

https://s2lab.isg.rhul.ac.uk/projects/ce

Conclusion

Conformal Evaluator (CE)

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

Algorithm Agnostic: Uses non-conformity measure (NCM) from the ML classifier

Statistical Support: Builds p-values from NCM to statistically-support predictions

Quality Thresholds: Builds thresholds from p-values to identify unreliable predictions

• We evaluate the proposed solution on different ML classifiers and case studies

• Android malware apps in binary classification settings

• Windows PE binaries in multi-class classification settings

• Information on CE’s python code and dataset availability at:

https://s2lab.isg.rhul.ac.uk/projects/ce

18

https://s2lab.isg.rhul.ac.uk/projects/ce

Backup Slides

Binary Classification Case Study: Comparison with Probability

TPR FPR TPR FPR MALICIOUS BENIGN

of kept elements of kept elements of discarded elements of discarded elements kept elements kept elements

p-value probability p-value probability p-value probability p-value probability p-value probability p-value probability

1st quartile 0.9045 0.6654 0.0007 0.0 0.0000 0.3176 0.0000 0.0013 0.3956 0.1156 0.6480 0.6673

Median 0.8737 0.8061 0.0000 0.0 0.3080 0.3300 0.0008 0.0008 0.0880 0.0584 0.4136 0.4304

Mean 0.8737 0.4352 0.0000 0.0 0.3080 0.3433 0.0008 0.0018 0.0880 0.1578 0.4136 0.7513

3rd quartile 0.8723 0.6327 0.0000 0.0 0.3411 0.3548 0.0005 0.0005 0.0313 0.0109 0.1573 0.1629

Table 4: Thresholds comparison between p-value and probability. The results show,

together with the performance of the sample marked as unreliable, a clear advantage

of the p-value metric compared to the probability one.

19

P-value vs Probability: situation 1

P-value Probability

Red 0.0 0.5

Green 0.0 0.5

20

P-value vs Probability: situation 2

P-value Probability

Red 0.5 0.5

Green 0.5 0.5

21

Experimental Results: Multiclass classification (new family discovery)

• Dataset: Microsoft Malware Classification Challenge (2015)

Microsoft Malware Classification Challenge Dataset

Malware Samples Malware Samples

Ramnit 1 541 Obfuscator.ACY 1 228

Lollipop 2 478 Gatak 1 013

Kelihos ver3 2 942 Kelihos ver1 398

Vundo 4 75 Tracur 751

22

Experimental Results: Multiclass classification (new family discovery)

Experiment: Family Discovery

• Training families: Ramnit, Lollipop, Kelihos ver3, Vundo, Obfuscator.ACY, Gatak, Kelihos ver1

• Testing family: Tracur

Classification results:

Lollipop Kelihos ver3 Vundo Kelihos ver1 Obfuscator.ACY

5 6 358 140 242

23

Experimental Results: Multiclass classification (new family discovery)

P-value distribution for samples of Tracur family; as expected, the values are all close to zero.

Prediction:
Ramnit

Prediction:
Lollipop

Prediction:
Kelihos_ver3

Prediction:
Vundo

Prediction:
Kelihos_ver1

Prediction:
Obfuscator.ACY

Prediction:
Gatak

0.0

0.2

0.4

0.6

0.8

1.0

P-
va

lu
es

P-values: Ramnit
P-values: Lollipop
P-values: Kelihos_ver3

P-values: Vundo
P-values: Kelihos_ver1

P-values: Obfuscator.ACY
P-values: Gatak

24

Experimental Results: Multiclass classification (new family discovery)

Probability distribution for samples of Tracur family; bounded to sum to one, the

values are different than zero.

Prediction:
Ramnit

Prediction:
Lollipop

Prediction:
Kelihos_ver3

Prediction:
Vundo

Prediction:
Kelihos_ver1

Prediction:
Obfuscator.ACY

Prediction:
Gatak

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ti
e
s

Probabilities: Ramnit

Probabilities: Lollipop

Probabilities: Kelihos_ver3

Probabilities: Vundo

Probabilities: Kelihos_ver1

Probabilities: Obfuscator.ACY

Probabilities: Gatak

25

	Conformal Evaluator
	Experimental Results
	Conclusion
	Backup Slides

