Detecting Concept Drift in Malware Classification Models

Roberto Jordaney⁺, Kumar Sharad[§], Santanu Kumar Dash[‡], Zhi Wang[†], Davide Papini[•], Ilia Nouretdinov⁺, Lorenzo Cavallaro⁺

USENIX Security Symposium Thu Aug 17, 2017

⁺Royal Holloway, University of London
[§]NEC Laboratories Europe
[‡]University College London
[†]Nankai University
•Elettronica S.p.A.

Usually, a 2-phase process:

- Training: build a model *M*, given labeled objects
- 2. Testing: given *M*, predict the labels of unknown objects

Objects are described as vectors of features

Usually, a 2-phase process:

- Training: build a model *M*, given labeled objects
- 2. Testing: given *M*, predict the labels of unknown objects

Objects are described as vectors of features

Usually, a 2-phase process:

- Training: build a model *M*, given labeled objects
- 2. Testing: given *M*, predict the labels of unknown objects

Objects are described as vectors of features

- Concept drift is the change in the statistical properties of an object in unforeseen ways
- Drifted objects will likely be wrongly classified

- Concept drift is the change in the statistical properties of an object in unforeseen ways
- Drifted objects will likely be wrongly classified

- Concept drift is the change in the statistical properties of an object in unforeseen ways
- Drifted objects will likely be wrongly classified

Of course, the problem exists in multiclass classification settings...

• Multiclass classification is a generalization of the binary case

- In non-stationary contexts classifiers will suffer from concept drift due to:
 - malware evolution 44, 39
 - new malware families 💦
- Need a way to assess the predictions of classifiers
 - Ideally classifier-agnostic assessments
- Need to identify objects that fit a model and those drifting away

- In non-stationary contexts classifiers will suffer from concept drift due to:
 - malware evolution 候, 🌮
 - new malware families 💦
- Need a way to assess the predictions of classifiers
 - Ideally classifier-agnostic assessments
- Need to identify objects that fit a model and those drifting away

Our Contributions

- Conformal Evaluator: statistical evaluation of ML classifiers
- Per-class quality threshold to identify reliable and unreliable predictions

Conformal Evaluator

- Assesses decisions made by a classifier
 - Mark each decision as reliable or unreliable
- Builds and makes use of p-value as assessment criteria
- Computes per-class thresholds to divide reliable decisions from unreliable ones

Conformal Evaluator: P-value?

- Used to measure "how well" a sample fits into a single class
- Conformal Evaluator computes a p-value for each class, for each test element

Definition

 $lpha_t$ = Non-conformity score for test element t

$$\begin{array}{lll} \forall i \in \mathcal{K}, \alpha_i &=& \text{Non-conformity score for train element } \\ \text{p-value} &=& \frac{|\{i : \alpha_i \ge \alpha_t\}|}{|\mathcal{K}|} \\ \mathcal{K} &=& \text{Total number of element} \end{array}$$

P-value

Ratio between the number of training elements that are more dissimilar than the element under test

ML classifier: distance from centroid

1. Setting: 3-class classification

ML classifier: distance from centroid

- 1. Setting: 3-class classification
- 2. Test object

ML classifier: distance from centroid

- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class

ML classifier: distance from centroid

- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class
 - 3.2 How many objects are more
 - dissimilar than the one under test?

ML classifier: distance from centroid

- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class
 - 3.2 How many objects are more

dissimilar than the one under test?

3.3 9

ML classifier: distance from centroid

- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class
 - 3.2 How many objects are more dissimilar than the one under test?
 - 3.3 9
 - 3.4 P-value $\star = \frac{9}{10}$

Machine learning classifier: distance from centroid

- 1. Initial situation: three classes
- 2. Test object
 - 4.1 Calculate distance to green class
 - 4.2 How many objects are more dissimilar than the one under test?

4.3 4

4.4 P-value $\star = \frac{4}{12}$

Machine learning classifier: distance from centroid

- 1. Initial situation: three classes
- 2. Test object
 - 5.1 Calculate distance to red class
 - 5.2 How many objects are more dissimilar than the one under test?

5.3 0

5.4 P-value $\star = \frac{0}{11}$

Machine learning classifier: distance from centroid

- 1. Initial situation: three classes
- 2. Test object
 - 5.1 Calculate distance to red class
 - 5.2 How many objects are more dissimilar than the one under test?

5.3 0

5.4 P-value $\star = \frac{0}{11}$

Let's see how p-values are used within Conformal Evaluator.

Conformal Evaluator: How Does it Work?

- 1. Extracts the non-conformity measure (NCM) from the decision making algorithm
 - NCM provides non-conformity scores for p-value computations
 - Example: distance from hyperplane, Random Forest probability (adapted to satisfy the non-conformity requirement)

Conformal Evaluator: How Does it Work?

- 1. Extracts the non-conformity measure (NCM) from the decision making algorithm
- 2. Builds p-values for all training samples in a cross-validation fashion

Conformal Evaluator: How Does it Work?

- 1. Extracts the non-conformity measure (NCM) from the decision making algorithm
- 2. Builds p-values for all training samples in a cross-validation fashion
- 3. Computes per-class threshold to divide reliable predictions from unreliable ones

Customizable constraints:

- Desired performance (of the predictions marked as reliable)
 - E.g.: high-level performance will raise the threshold
- Number of unreliable prediction tolerated
 - E.g.: low number of unreliable prediction will lower the threshold

Assumptions

- Performance of *non-drifted* elements are similar to the one declared by the algorithm
- Predictions with high confidence will have higher p-values

Conformal Evaluator: Identifying per-class Thresholds

- We use the p-values and prediction labels from training samples
- From the thresholds that satisfy the constraints we chose the one that maximize one or the other

Experimental Results

Experimental Results: Case Studies

- Binary case study: Android malware detection algorithm
 - Reimplemented Drebin¹ algorithm with similar results (0.95-0.92 precision-recall on malicious apps and 0.99-0.99 precision-recall on benign apps)
 - Static features of Android apps, linear SVM (used as NCM)
 - Concept drift scenario: malware evolution
- Multiclass case study: Microsoft malware classification algorithm
 - Solution to Microsoft Kaggle competition², ranked among the top ones
 - Static features from Windows PE binaries, Random Forest (used as NCM)
 - Concept drift scenario: family discovery

¹Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. Drebin: Effective and Explainable Detection of Android Malware in Your Pocket. In 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, California, USA, February 23-26, 2014.

²KAGGLE INC. Microsoft Malware Classification Challenge (BIG 2015). https://www.kaggle.com/c/malware-classification, 2015.

Experimental Results: Case Studies

- Binary case study: Android malware detection algorithm
 - Reimplemented Drebin¹ algorithm with similar results (0.95-0.92 precision-recall on malicious apps and 0.99-0.99 precision-recall on benign apps)
 - Static features of Android apps, linear SVM (used as NCM)
 - Concept drift scenario: malware evolution

¹Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. Drebin: Effective and Explainable Detection of Android Malware in Your Pocket. In 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, California, USA, February 23-26, 2014.

²KAGGLE INC. Microsoft Malware Classification Challenge (BIG 2015). https://www.kaggle.com/c/malware-classification, 2015.

- Drebin dataset: samples collected from 2010 to 2012
- Marvin dataset³: malware apps collected from 2010 to 2014 (no duplicates)
 - We expect some object to drift from objects in the Drebin dataset

Drebin Dataset	
уре	Samples
nign	123,435
alware	5,560

³Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. MARVIN: Efficient and Comprehensive Mobile App Classification through Static And Dynamic Analysis. In 39th IEEE Annual Computer Software and Applications Conference (COMPSAC), Taichung, Taiwan, July 1-5, 2015.

Experiment: Drift Confirmation

- Training dataset: Drebin dataset
- Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

	Prediction label					
Original label	Benign	Malicious	Recall			
Benign	4,498	2	1			
Malicious	2,890	1,610	0.36			
Precision	0.61	1				

Experiment: Drift Confirmation

- Training dataset: Drebin dataset
- Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

	Prediction label					
Original label	Benign	Malicious	Recall			
Benign	4,498	2	1			
Malicious	2,890	1,610	0.36			
Precision	0.61	1				

Experiment: Drift Confirmation

- Training dataset: Drebin dataset
- Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

	Prediction label					
Original label	Benign	Malicious	Recall			
Benign	4,498	2	1			
Malicious	2,890	1,610	0.36			
Precision	0.61	1				

Experiment: Threshold Identification

- Training dataset: Drebin dataset
- Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset
- Make use of Conformal Evaluator's prediction assessment algorithm
 - Constraints: F1-score of 0.99 and 0.76 of elements marked as reliable

Original label	Benign	Malicious	Recall
Benign	4,257	2	1
Malicious	504	1,610	0.76
Precision	0.89	1	

Prediction label

Experiment: Retraining

- Training dataset: Drebin dataset + samples marked as unreliable from previous experiment
- Testing dataset: 4,500 benign and 4,500 malicious random samples of Marvin dataset (no sample overlap from previous experiment)

	Assigned label						
Sample	Benign	Malicious	Recall				
Benign	4,413	87	0.98				
Malicious	255	4,245	0.94				
Precision	0.96	0.98					

Assigned label

Experiment: Threshold Comparison

- Compare probability- and p-value-based thresholds
 - Central tendency and dispersion points of true positive distribution
- Training dataset: Drebin dataset
- Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

	TPR		TPR		I	-PR	FPR		
	(reliable	predictions)	(unreliable predictions)		(reliable predictions)		(unreliable predictions)		
	p-value	probability	p-value	probability	p-value	probability	p-value	probability	
1st quartile	0.9045	0.6654	0.0000	0.3176	0.0007	0.0	0.0000	0.0013	
Median	0.8737	0.8061	0.3080	0.3300	0.0000	0.0	0.0008	0.0008	
Mean	0.8737	0.4352	0.3080	0.3433	0.0000	0.0	0.0008	0.0018	
3rd quartile	0.8723	0.6327	0.3411	0.3548	0.0000	0.0	0.0005	0.0005	

Experiment: Threshold Comparison

- Compare probability- and p-value-based thresholds
 - Central tendency and dispersion points of true positive distribution
- Training dataset: Drebin dataset
- Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

	TPR		TPR		I	-PR	FPR		
	(reliable	predictions)	(unreliable predictions)		(reliable predictions)		(unreliable predictions)		
	p-value	probability	p-value	probability	p-value	probability	p-value	probability	
1st quartile	0.9045	0.6654	0.0000	0.3176	0.0007	0.0	0.0000	0.0013	
Median	0.8737	0.8061	0.3080	0.3300	0.0000	0.0	0.0008	0.0008	
Mean	0.8737	0.4352	0.3080	0.3433	0.0000	0.0	0.0008	0.0018	
3rd quartile	0.8723	0.6327	0.3411	0.3548	0.0000	0.0	0.0005	0.0005	

Experiment: Threshold Comparison

- Compare probability- and p-value-based thresholds
 - Central tendency and dispersion points of true positive distribution
- Training dataset: Drebin dataset
- Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

	-	TPR		TPR		FPR		FPR	
	(reliable	predictions)	(unreliable predictions)		(reliable predictions)		(unreliable predictions)		
	p-value	probability	p-value	probability	p-value	probability	p-value	probability	
1st quartile	0.9045	0.6654	0.0000	0.3176	0.0007	0.0	0.0000	0.0013	
Median	0.8737	0.8061	0.3080	0.3300	0.0000	0.0	0.0008	0.0008	
Mean	0.8737	0.4352	0.3080	0.3433	0.0000	0.0	0.0008	0.0018	
3rd quartile	0.8723	0.6327	0.3411	0.3548	0.0000	0.0	0.0005	0.0005	

Conformal Evaluator (CE)

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

Conformal Evaluator (CE)

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

Algorithm Agnostic: Uses non-conformity measure (NCM) from the ML classifier **Statistical Support:** Builds p-values from NCM to statistically-support predictions **Quality Thresholds:** Builds thresholds from p-values to identify unreliable predictions

Conformal Evaluator (CE)

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

Algorithm Agnostic: Uses non-conformity measure (NCM) from the ML classifier **Statistical Support:** Builds p-values from NCM to statistically-support predictions **Quality Thresholds:** Builds thresholds from p-values to identify unreliable predictions

- We evaluate the proposed solution on different ML classifiers and case studies
 - Android malware apps in binary classification settings
 - Windows PE binaries in multi-class classification settings
- Information on CE's python code and dataset availability at:

https://s2lab.isg.rhul.ac.uk/projects/ce

Backup Slides

	-	TPR	I	FPR		TPR		FPR	MAL	ICIOUS	BE	IGN
	of kept	t elements	of kep	t elements	of discar	ded elements	of discar	ded elements	kept	elements	kept	elements
	p-value	probability	p-value	probability	p-value	probability	p-value	probability	p-value	probability	p-value	probability
1st quartile	0.9045	0.6654	0.0007	0.0	0.0000	0.3176	0.0000	0.0013	0.3956	0.1156	0.6480	0.6673
Median	0.8737	0.8061	0.0000	0.0	0.3080	0.3300	0.0008	0.0008	0.0880	0.0584	0.4136	0.4304
Mean	0.8737	0.4352	0.0000	0.0	0.3080	0.3433	0.0008	0.0018	0.0880	0.1578	0.4136	0.7513
3rd quartile	0.8723	0.6327	0.0000	0.0	0.3411	0.3548	0.0005	0.0005	0.0313	0.0109	0.1573	0.1629

Table 4: Thresholds comparison between p-value and probability. The results show, together with the performance of the sample marked as unreliable, a clear advantage of the p-value metric compared to the probability one.

P-value vs Probability: situation 1

	P-value	Probability
Red	0.0	0.5
Green	0.0	0.5

P-value vs Probability: situation 2

	P-value	Probability
Red	0.5	0.5
Green	0.5	0.5

Experimental Results: Multiclass classification (new family discovery)

• Dataset: Microsoft Malware Classification Challenge (2015)

Malware	Samples	Malware	Samples
Ramnit	1 541	Obfuscator.ACY	1 228
Lollipop	2 478	Gatak	1013
Kelihos_ver3	2942	Kelihos_ver1	398
Vundo	475	Tracur	751

MICROSOFT MALWARE CLASSIFICATION CHALLENGE DATASET

Experiment: Family Discovery

- Training families: Ramnit, Lollipop, Kelihos_ver3, Vundo, Obfuscator.ACY, Gatak, Kelihos_ver1
- Testing family: Tracur

Classification results:

Lollipop	Kelihos_ver3	Vundo	${\sf Kelihos_ver1}$	Obfuscator.ACY
5	6	358	140	242

Experimental Results: Multiclass classification (new family discovery)

P-value distribution for samples of Tracur family; as expected, the values are all close to zero.

Experimental Results: Multiclass classification (new family discovery)

Probability distribution for samples of Tracur family; bounded to sum to one, the values are different than zero.

