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Summary
Objectives: Biomedical Informatics as a whole faces a difficult
epistemological task, since there is no foundation to explain the
complexities of modeling clinical medicine and the many
relationships between genotype, phenotype, and environment. This
paper discusses current efforts to investigate such relationships,
intended to lead to better diagnostic and therapeutic procedures and
the development of treatments that could make personalized
medicine a reality.
Methods: To achieve this goal there are a number of issues to
overcome. Primary are the rapidly growing numbers of heterogeneous
data sources which must be integrated to support personalized
medicine. Solutions involving the use of domain driven information
models of heterogeneous data sources are described in conjunction
with controlled ontologies and terminologies. A number of such
applications are discussed.
Results: Researchers have realized that many dimensions of biology
and medicine aim to understand and model the informational
mechanisms that support more precise clinical diagnostic,
prognostic and therapeutic procedures. As long as data grows
exponentially, novel Biomedical Informatics approaches and tools
are needed to manage the data. Although researchers are typically
able to manage this information within specific, usually narrow
contexts of clinical investigation, novel approaches for both training
and clinical usage must be developed.
Conclusion: After some preliminary overoptimistic expectations, it
seems clear now that genetics alone cannot transform medicine.  In
order to achieve this, heterogeneous clinical and genomic data
source must be integrated in scientifically meaningful and productive
systems. This will include hypothesis-driven scientific research
systems along with well understood information systems to support
such research. These in turn will enable the faster advancement of
personalized medicine.
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Introduction

Crick’s dogma of biology, DNA to

RNA to Proteins [1], whatever recent

caveats reveal, did provide researchers

over almost four decades with an in-

formation processing model which led

to numerous breakthroughs and helped

facilitate the rapid completion of the

Human Genome Project. Biomedical

Informatics as a whole faces a much

more diff icult epistemological task,

since there is no similar foundation to

explain the complexities of modeling

clinical medicine and the many rela-

tionships between genotype, pheno-

type, and environment that might help.

This paper discusses current efforts to

investigate such relationships, intended

to lead to better diagnostic and thera-

peutic procedures and the development

of treatments that could make person-

alized medicine a reality.

To achieve this goal there are a num-

ber of issues to overcome. Primary are

the rapidly growing numbers of hetero-

geneous data sources which must be

integrated to support personalized medi-

cine. Solutions involving the use of

domain driven information models of

heterogeneous data sources are de-

scribed in conjunction with controlled

ontologies and terminologies. A num-

ber of such applications are discussed

that are currently being developed and

used in Europe and the United States.

These include genotype and phenotype

information models, clinical and ge-

netic concept linkages, grid technology

for sharing and analyzing data, and

combined approaches for biology and

medical systems. A combination of this

data-driven and other, more classical,

hypothesis-driven approaches, should

provide a stronger basis for scientif ic

research in these recent efforts of per-

sonalized medicine [2].

Over the last few years, researchers have

realized that many dimensions of biol-

ogy and medicine aim to understand and

model the informational mechanisms that

support more precise clinical diagnos-

tic, prognostic and therapeutic proce-

dures. As long as data grows exponen-

tially, novel Biomedical Informatics

approaches and tools are needed to man-

age the data. Although researchers are

typically able to manage this informa-

tion within specif ic, usually narrow

contexts of clinical investigation, novel

approaches for both training and clini-

cal usage must be developed. Most cli-

nicians are not familiar with this kind of

information; how to use it can be con-

troversial, so informatics tools must be

developed to help in this process. If not,

it is likely that the inclusion of genomic

information in clinical practice will be

delayed for years given the reluctance

of physicians to use complex, unclearly

and incompletely tested, and partly con-

nected biological information.

Additionally, the large and increasing

number of “omics” disciplines reflects
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the proliferation of informatics-based

biological disciplines during the last

decade in the biomedical area. While it

is a good indicator of growth and may

attract many students and researchers

to the field, the many disconnected sub-

disciplines also reflect the lack of basic

unifying informational principles and

focus, which is similar to what is seen

in biomedical informatics as a whole.

Personalized Medicine
After the Human Genome was com-

pleted and other “omics” technologies

began to proliferate and have an im-

pact, biomedical scientists and practi-

tioners proposed to use the new wealth

of biological information, such as

SNPs, microarray data, biomarkers,

with their ever-increasing data sets into

clinical practice. Researchers have ex-

pressed the hope that new f indings

could have immediate clinical applica-

tion, leading to new visions of medi-

cine, such as “genomic medicine” or

“personalized medicine” [3,4,5,6,7,8].

Personalized medicine aims to adapt

these mechanisms to individual patients

[9]. yet, each patient will not be treated

differently from every other patient

[10] but instead divided or stratif ied

into groups by genetic and other mark-

ers that predict disease progression and

treatment outcome. So, personalized

medicine, based on genetic factors or

markers and even specif ic pharmaco-

genomic drug effects [11], cannot be a

magical solution for every individual.

Instead, drugs will be tailored for

groups of people with similar or related

genetic characteristics.

In this scenario of personalized medi-

cine, pharmacogenetics/genomics is at

the center of research and practice

[10,12,13,14]. Pharmacogenetics ex-

plains the different responses of indi-

viduals to the same drugs. To validate

preliminary f indings and models, ex-

periments (e.g., clinical trials) must be

carried out with large number of pa-

tients [9]. Therefore, classical clinical

studies must be redesigned to adapt to

these new situations.

Weatherall [15] has emphasized the dif-

ferent steps to be taken with caution

before personalized medicine can be

applied in clinical medicine. Personal-

ized medicine can prove that diseases

such as cancer or diabetes type II, for-

merly classed as a unique and isolated

category, can be reconsidered and re-

classified, proving that they are due to

different causes. This reclassif ication

leads to new diagnostic and therapeu-

tic procedures. Once this process is es-

tablished, researchers must show that it

is cost-effective to test specific mark-

ers and use specific drugs. Otherwise,

health systems may not afford the enor-

mous demands of this new shift in medi-

cine, particularly if there is not enough

evidence of their signif icant impact in

changing medical outcomes in a large

enough part of the population.

Heterogeneous Data Sources
Over the last decade a whole area of

“data integration” has evolved and ex-

panded. It includes approaches such as

data warehousing, information linkage,

data translation and query translation

[16] as well as techniques such as on-

tologies [17] to enable their standard-

ized knowledge def inition. We have

earlier proposed that genomic data

could be integrated into health infor-

mation systems [18,19,20] but recent

research [2,21,22,23,24] suggests that

this bridging process will not be easy.

At the time of writing this paper,

around 900 biological public databases

(e.g., genomic, proteomic, me-

tabolomic, and others) are available to

researchers and other professionals.

These databases have been designed and

maintained as result of many biologi-

cal research projects that have produced

a huge amount of heterogeneous infor-

mation about genes, proteins and ge-

netic diseases. Public databases usually

include different data, ranging from

biochemical to public health data. A

larger number of organizations main-

tain their own databases, restricted to

public access for different reasons (e.g.,

socioeconomic, conf identiality, strate-

gic), often focused in one specific area

or topic.

Within biomedical databases informa-

tion is often inconsistent or missing. In

systems biology, for instance, we find

problems related to functional annota-

tions of genes and proteins, genotype-

phenotype relationships, kinetic values

for enzymes or components of pathways

[12]. In clinical systems, spanning pa-

tient information over decades, the in-

consistencies can be even higher.

Analysing old medical records in pa-

per, in settings where computerized

medical records were not available un-

til recently, the rate of missing or in-

consistent data can be quite variable and

often very high [25].

From a scientif ic perspective, such an

approach increases the problems of data

integration and analysis, due to the fre-

quent variability across different settings

regarding experiments, techniques, pro-

cedures, theoretical approaches, cogni-

tive biases, among others [2,26,27].

Given this lack of consistency, using

data obtained from heterogeneous

sources to advance scientif ic research

presents different problems, especially

in biomedicine. In the “omics” areas,

there has been a predominant data-

driven research approach.

Multiple sources of genomic-scale data

must be integrated to develop more

precise descriptions of clinical pheno-

types. For instance, gene expression

data reflects the effect of oncogenes on
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metabolic pathways leading to oncologi-

cal disease. We know now that cancer

is not a precise and unique disease, but

a number of pathologies, with differ-

ent causes and therapies. In fact, the

differences in all these databases, con-

sidering hardware, software applica-

tions (e.g., operating systems, database

management systems), semantics as well

as the differences mentioned above in

scientific approaches, cultural environ-

ments, cognitive biases and others, (of-

ten unclearly and even subtly hidden

in the stored data) must be solved if

the researchers want to really integrate

information and extract useful patterns.

Frequently, data must be normalized [2]

and some common data models and

coding systems must be used or devel-

oped to standardize the representation

of genotype-phenotype information.

Information Modeling
In this effort to enhance information

storage and data exchange, bioinfor-

maticians can draw on work that the

Object Management Group (OMG

http://www.omg.org) has done in the

development of the Model Driven Ar-

chitecture approach. This is an ap-

proach that represents systems with a

graphical object models. They propose

the development of platform indepen-

dent models using the Unif ied Model-

ing Language (UML). For modeling

complex systems that combine clinical

and genomic data, a special kind of

UML model, called a domain model,

should be used [28]. Such a domain

model incorporates the scientif ic do-

main knowledge that is necessary in

using clinical and genomic data for

personalized medicine. The models can

be used to communicate information

about the system to both developers and

users of the system. For example when

creating a system about transcription

and translation, the objects of DNA,

RNA and Proteins should be modeled

along with their associations.

Models that use domain information to

represent knowledge about the data are

needed in order for the f ield to create

systems that have better information

representations and data exchange.

Bioinformaticians are in a position to

communicate the underlying body of

knowledge to developers in order to

create such domain models. In bridg-

ing the technology and scientif ic com-

munities they can help in the creation

of domain models that communicate

semantically meaningful information

about the data. Semantically meaning-

ful information models allow develop-

ers to construct objects that have mean-

ingful counter parts in use in their area

of application. Since many systems are

being developed independently, if de-

velopers are enabled to represent ob-

jects in a meaningful way, then the

chances of having reusable objects or

at least objects that are easier to map

between systems is increased. Reuse of

objects between systems will help im-

prove information storage, data ex-

change and the development of inter-

operable systems.

Ontologies and Terminologies
An interesting effort to normalize and

reuse vocabularies and knowledge over

different projects and groups is related

to ontological development. Ontologies

provide the semantics needed to bridge

the existing gaps between heteroge-

neous data sources and a formal lan-

guage for information retrieval.

The underlying vocabularies that are

currently being used to support Model

Driven Architecture (MDA) develop-

ment at the National Cancer Institute

(NCI) are those provided by the Enter-

prise Vocabulary Services (EVS). They

support a number of terminologies

needed by the NCI. The two products

being used in MDA at NCI are the NCI

Thesaurus [29,30,31,32] and the NCI

Metathesaurus [33]. The former is a

reference terminology that has a vo-

cabulary for use in clinical care, trans-

lational research and basic research. It

contains information on 10,000 types

of cancer and related diseases and 8,000

therapies. The NCI Metathesaurus is a

mapping between multiple terminolo-

gies. It includes a specialized version

of the UMLS [34,35]. This version is

specialized in order to focus on termi-

nologies that can be related to cancer

terminologies [28]. Some of the ter-

minologies that the Metathesaurus in-

cludes are LOINC [36], SNOMED/CT

[37], Veterans Health Administration

National Drug File (VA NDF), Gene

Ontology (GO) [38] and MGED On-

tology [39]. The NCI Metathesaurus

contains 1,200,000 concepts mapped to

2,900,000 terms with 5,000,000 rela-

tionships. Mapping these terminologies

supports the goal of representing and

combining clinical and genomic infor-

mation. These terminologies help the

developers of domain UML models by

giving them a broad range of termi-

nologies. In this way the projects are

combining bioinformatics and clinical

informatics concepts in data models that

support interoperable systems for the

f ield. This is a key component for

building systems that support the de-

velopment of personalized medicine.

In the medical domain, vocabulary and

coding systems such as the ICD 9 and

10, SNOMED, LOINC, MeSH, UMLS,

ICNP, GALEN, the NCI thesaurus, and

others are now used for ontology-re-

lated tasks. Although it can be assumed

that they are not “true” ontologies from

a formal computing perspective, they

have been used in a number of specific

applications (e.g., the UMLS) [17]. The

Foundational Model of Anatomy
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(FMA) is an extended framework for

representing classes and relationships

describing anatomical structures in a

format that is understandable to humans

and also navigable by computers. Spe-

cif ically, the FMA is a domain ontol-

ogy that represents a coherent body of

explicit declarative knowledge about

human anatomy.

In genetics, Gene Ontology (GO) has

become a great success, leading onto-

logical development in the genetic area.

It is a collaborative effort among dif-

ferent organizations and professionals

to create a controlled vocabulary of

gene and protein roles in cells, to con-

sistently describe gene products in dif-

ferent databases. GO includes three

structured, controlled vocabularies (or

“light” ontologies) that describe gene

products in terms of their associated

biological processes, cellular compo-

nents and molecular functions.

There are no current world-wide stan-

dards that represent genotype-pheno-

type data with specific data models that

can be used to enhance information

storage and exchange. Likewise, dif-

ferent coding and vocabulary systems

have been used in clinical medical do-

mains for electronic health records,

HIS, epidemiological surveillance sys-

tems, and so on, but only recently have

some proposals been made to link clini-

cal and genetic concepts. The UMLS

has recently included genetics terms

[40] and Gene Ontology [41] within its

medical vocabularies and nomencla-

tures. These efforts have been proposed

and investigated by Medical Informatics

professionals over the past decade, more

recently attracting the attention of

bioinformaticians. In a semantic me-

diation system, the users (humans or

machines) do not care about the spe-

cific format of the information source,

but only about the terms contained in

the ontology for building the query in

a consistent way that will yield valid

computational results. In this sense,

ontologies can be understood and used

by both humans and machines.

Applications
In a research environment where thou-

sands of devices, databases, Web-based

documents and other sources are used

in research, effective software tools

from clinico-genomics, semantic me-

diation and novel computing techniques

for such computationally demanding

tasks will be needed. For instance, “data

grids” can be used in the short term to

enhance access to computationally de-

manding clinico-“omics” applications

from remote sites [42, 43]. Bioinfor-

matics web and grid services can be

orchestrated to organize intelligent

work flows of different applications,

organized by using program managers

and semantic mediators. Semantic me-

diation will be needed to intelli-

gently organize such “choreography”

[42,44].

ACGT (Advancing Clinico-Genomics

Trials on Cancer) [45] is an European

Commission supported integrated

project funded to design new methods

and resources for cancer research.

Twenty f ive partners from Europe and

Japan participate in ACGT. The goal of

the project is to identify technological

gaps and barriers in cancer research and

create novel techniques for diagnosis

and prevention, as well as to design new

models of clinico-genomic trials that

will facilitate the creation of new drugs

and therapies in the context of person-

alized medicine.

From a biomedical informatics per-

spective, ACGT aims to develop a Bio-

medical Grid infrastructure at a Euro-

pean level to conduct research on two

different kinds of cancer: pediatric

nephroblastoma and breast cancer. In

this Grid-based scenario, research on

systems interoperability (based on the

development of the “ACGT master on-

tology for nephroblastoma” and a se-

mantic mediator to organize the chore-

ography of different web and Grid

services), in-silico simulation of drug

design, data mining, and clinico-ge-

nomic information modeling and man-

agement are being developed to enable

novel approaches to clinico-genomic

trials.

In this framework, heterogeneous data

from three on-going clinical trials are

linked with “omic” information into a

common virtual repository, by using an

ontology-based approach. Such a re-

pository includes different types of

clinical and genomic information, such

as including numerical data, text and

images from patients participating in

the trials, external public databases and

in-silico simulation. This project, end-

ing in 2010, aims to solve some of the

problems that arise in this kind of re-

search. For instance, to build an eff i-

cient biomedical Grid infrastructure or

carry out in-silico simulations to de-

sign and test new drugs in the context

of personalized medicine.

In the United States, the National Can-

cer Institute has taken up the challenge

of combining genomic and clinical data

for cancer research and treatment. The

approach has been one of building a

well specified infrastructure to support

the development of interoperable tools

built upon that infrastructure. The ef-

fort has been undertaken by the Cancer

Biomedical Informatics Grid

(caBIG™) community. Their approach

based on binding controlled terminol-

ogy is described below. Additionally

some of the tooling developed for

caBIG is described.

The UML models in caBIG™ contain

class diagrams that represent the scien-

tif ically relevant objects that are part

of running software systems. These are

objects like DNA sequence, RNA se-
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quence and protein. The classes are com-

posed of the class name itself (e.g.,

Protein) and the attributes that are in

the class (e.g., uniProtKB, name, sym-

bol, etc.) Between the classes there are

association links that convey the rela-

tionships between the classes. A de-

scription is required for each class and

attribute and is stored in the UML

model.

Using UML domain models to instan-

tiate the MDA framework gives a con-

ceptual representation of the underly-

ing scientif ic objects via the classes,

attributes, associations and descriptions.

This model does not provide an unam-

biguous representation because devel-

opers at different sites, while using the

same scientific domain knowledge, can

create similar classes and attributes, but

with different names, conf igurations

and descriptions. The binding of con-

trolled terminology to the model can

mitigate the latter problem of different

semantics associated with the scientific

concepts in the model. The binding does

this by unambiguously specifying the

description in the model with controlled

terminology.

The binding is accomplished by map-

ping concepts from the EVS NCI The-

saurus and Metathesaurus to the classes

and attributes in the UML model. These

are bound using the Concept Codes or

Concept Unique Identif iers (CUIs)

which are maintained by EVS. The

descriptions for the classes and at-

tributes are used to determine what

CUIs from the EVS terminology should

be used for the mapping. This mapping

is then used in the creation of the

metadata for the data elements that rep-

resent the model. This generation of

metadata is supported by a suite of tools

and infrastructure developed at the NCI.

The NCI has implemented the

ISO11179 standard for representing

metadata in their Cancer Data Standards

Repository (caDSR). This incorporates

the data structures and format of

ISO11179 to store a data element (DE)

using a combination of a data element

concept (DEC) and a value domain

(VD). The DEC maintains the set of

CUIs associated with the DE and the

VD specifies the data type and permis-

sible values associated with the DE.

Since ISO11179 does not have asso-

ciations in its representation, the caDSR

extends upon the standard to store the

metadata for the associations between

the UML classes. This is in order to

more fully support the MDA approach

and incorporate the associations that are

in the UML information models [28].

The potential benef it of binding UML

models to terminology is the ability to

more readily support reuse of model

elements. Once the attributes are

mapped to the terminology, it has a

def ining series of concept codes. This

along with the value domain specif ies

the data element. Hence, if another

model has an attribute mapped to the

same series of concept codes and value

domain, then the two models share an

identical attribute. This is regardless of

differences in the naming conventions

in the two models and any differences

in the descriptions in the two models.

The scientif ic meaning is encapsulated

in the series of concept codes and the

value domain which is identical for both

models. The point of this system is to

help developers and users reach con-

sensus and converge to common mod-

els for their systems. In this way tool-

ing can be built in an interoperability

fashion.

Three tissue banking and pathology

tools have been developed using the

caBIG™ infrastructure to coordinate

the underlying information models.

These are caTISSUE Core, caTISSUE

Clinical Annotation Engine (CAE) and

the cancer Text Information Extraction

System (caTIES). The caTISSUE Core

system is used to inventory and track

biospecimens. This includes searching

for specimens and requesting them for

studies. The CAE annotation system is

based on the College of American Pa-

thologist (CAP) cancer protocols [46].

It has the functionality to import data

from anatomic pathology laboratory

systems, cancer tumor registries and

clinical pathology laboratory systems.

The information is clinically oriented

and is tightly tied in with the caDSR,

enabling the def initions from the EVS

terminology to be displayed for f ield

titles in the interface. The tool caTIES

extracts structured text from free text

surgical pathology reports and encodes

it in caBIG™ compliant terminology.

This enables researchers to search for

annotated tissue over structured termi-

nology instead of free text in order to

obtain relevant biospecimens.

The Cancer Translational Research

Informatics Platform (caTRIP) system

( h t t p s : / / c a b i g . n c i . n i h . g ov / t o o l s /

caTRIP) utilizes the EVS terminology

and metadata in caDSR to run distrib-

uted queries on federated data re-

sources. This includes the caTISSUE

tools that have their metadata registered

in the caDSR. This is an example of

the UML models bound to controlled

terminology enabling systems to

interoperate more effectively.

The caIntegrator system (https://

cabig.nci.nih.gov/tools/caIntegrator)

combines a variety of biomedical data

related to clinical trials together with

bioinformatics experimental data. These

latter data types include Immunohis-

tochemistry (IHC), microarray-based

gene expression and SNPs. The tools

support the analysis of these data in an

integrated system.

Some recent proposals aim to link geno-

type and phenotype information. One

example is the Polymorphism Markup

Language (PML), to represent and store

SNP (single nucleotide polymorphism)

information [41]. This project,
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launched by a broad international con-

sortium, aims to model the variation

of genetic information, including a

whole range of mutations.

Following a different direction, the IBM

Haifa Group has led the HL7 Clinical

Genomics special interest group (SIG)

to create standards for exchanging clini-

cal and genomic data [47]. By using

genomic data in health care to support

personalized medicine, or integrating

genomic data into classical electronic

health records, linked to emerging

bioinformatics formats such as MAGE-

ML for gene expression or BSML for

sequencing data. Its genotype model

includes various types of genomic data

such as sequencing, expression and

proteomics data. Developers have

tested this model on cystic-f ibrosis

data, bone-marrow transplantation and

pharmacogenetics projects [47].

From a European perspective, the Eu-

ropean Commission has launched sev-

eral initiatives since 2001 in the spe-

cif ic contributions that biomedical

informatics can make to personalized

medicine. A preliminary conference,

called “Synergy between Research in

Medical Informatics, Bioinformatics

and Neuroinformatics. Knowledge

Empowering Individualized Healthcare

and Well-Being” was held in Brussels

in 2001. In June 2006, another meet-

ing, “ICT for BIO Medical Sciences

2006”, analyzed the results obtained in

these f ive years. In this time various

conferences, projects, and different ac-

tivities were carried out. The

BIOINFOMED study [18] was deliv-

ered in 2002, defining various signif i-

cant challenges in biomedical infor-

matics at a European level. These

challenges were related to linking clini-

cal and genomic information for bio-

medical research and practice, in issues

such as biobanking, genomic-based

computerized medical records, pharma-

informatics, integrated ontologies or

integrated access to clinical and ge-

nomic databases. In summary, the goal

was to introduce a strong scientific bio-

logical basis to clinical medicine that

could lead to better diagnostic and

therapeutic procedures.

This initiative started in 2004 to pro-

mote biomedical informatics in Europe

in support of personalized healthcare.

The “Network of Excellence” (NoE)

[48] was created to launch different

directions and ideas, aiming to estab-

lish a common meeting place within the

European Union in the biomedical

informatics area. In this NoE, several

work packages were envisioned to deal

with dissemination, training and mo-

bility, data modeling, integration and

mining as well as four clinical pilots,

all of them linking different types of

biomedical information. These pilots

were designed to create new biomedi-

cal informatics approaches in (1) phar-

macoinformatics, (2) genomics and in-

fectious diseases, (3) periodontitis, and

(4) genetics and colon cancer.

These four pilots are examples of the

different approaches and problems that

biomedical informatics can face in the

new environment of genomic medicine,

previously described [49]. For instance,

the periodontitis pilot project, led at the

VU University Medical Center in

Amsterdam, aimed to develop infor-

matics methods to store and analyse

clinical and genomic information. Pe-

riodontitis is an example of chronic

infectious and inflammatory disease

caused by multiple factors (genetics,

infectious, geographical and environ-

mental) that affect the teeth-support-

ing tissues. It affects more than 10%

of the adult population and nearly 30%

of elderly people, increasing the risk

of cardiovascular diseases in this group

of people. Periodontitis was selected

since it seems to have a small number

of triggering factors, facilitating

clinico-genomic research. A database

has been built including clinico-ge-

nomic information. PML and other

models are being used for representing

genotype-phenotype links. In such

datasets, data mining methods are be-

ing used to discover links between clini-

cal information and genetic traits.

Recently, an initiative called the i2b2

(Informatics for Integrating Biology

and the Bedside), an NIH-funded Na-

tional Center for Biomedical Comput-

ing, is “developing a scalable infor-

matics framework that will bridge

clinical research data and the vast data

banks arising from basic science re-

search in order to better understand the

genetic bases of complex diseases”. The

objective of this center is the research

of new diagnostic and therapeutic ap-

proaches in the framework of person-

alized medicine, in areas such as dia-

betes, hypertension, or Huntington’s

disease [53].

Researchers in Iceland are gathering

genetic data from a genetically isolated

population. The hypothesis behind is

that such historically restricted group

of people will show significant relation-

ships between genetic and clinical data

in some specif ic genetic diseases [54].

Similarly, the Mayo Clinic/IBM Com-

putational Biology Collaboration, led

by Prof. De Groen, is developing a

comprehensive computerized system for

access to and interpretation of clinical,

genomic and proteomic data. Data

from over four million patients are

stored to link genomic and phenotypic

information. Mining such large data

sources might not increase the feasibil-

ity of extracting breakthrough knowl-

edge, as compared to smaller datasets,

but they include a large range of data

where new hypothesis can be elaborated

and tested —particularly linking ge-

nomic and clinical traits [55].

Several health sciences centers and in-

dividuals have begun to investigate how

personalized medicine might be actu-
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alized from an informatics standpoint.

These include Harvard Partners Health

Care at Harvard University [24,56], the

Mayo Clinic in Minnesota [57], Duke

University [58] and the University of

Utah [59,60], among others. These ef-

forts include considerations of how to

store genomic data as part of a person-

alized health record [24,20,21,61,57],

an important consideration since the

current method has information loss

[59] which promotes the potential of

repeat testing. Since genetic analyses

and sequencing are expensive, the stor-

age and retrieval and reanalysis of ge-

nomic data is essential for the field to

move forward, especially with the rapid

expansion in molecular diagnostics

[62,63]. Security concerns arise fre-

quently when genomic data are dis-

cussed because of the threat of discrimi-

nation from insurance and employers

and the ability to link genotype and

phenotype data [64,65]. Clinical deci-

sion support is an essential component

of personalized medicine since the com-

plexity of the genomic data and its in-

teraction with laboratory or pharmacy

data requires computer assistance for

alerts and reminders [61,66,67]. This

underlies the overall complexity of the

complex path from the gene or protein

sequence data into various genetic test-

ing scenarios and into actionable items

in the Electronic Medical Record.

Conclusion
Like all interdisciplinary areas, educa-

tional needs are demanding and com-

plex. In the case of Medical Infor-

matics, basic training included topics

related, of course, to medicine (includ-

ing clinical medicine and decision mak-

ing, public health, or health services

research) and computer science (includ-

ing AI, probability or statistics). Per-

sonalized medicine will also demand

new knowledge and expertise. For in-

stance, physicians will need to learn

concepts related to genetics or systems

biology, whereas biologists and bioin-

formaticians will have to deal with

clinical data and issues that have been

unknown to them until now. Such com-

plexity may even increase more dra-

matically if nanotechnology begins

to have a significant impact on clinical

practice beyond current laboratory re-

search. Large initiatives will be neces-

sary to create the tooling, inter-

operability and scientific domain driven

knowledge base to effectively advance

personalized medicine.

After some preliminary overoptimistic

expectations, it seems clear now that

genetics alone cannot transform medi-

cine [50,51]. Research on biomarker

discovery, that can be detected before

clinical onset, has signalled molecular

prof iling as a great challenge for per-

sonalized medicine, but biomarkers

with adequate specif icity and sensitiv-

ity values are still scarce for most dis-

eases. Biomarkers must be evaluated in

order to demonstrate their medical sig-

nif icance and cost-effectiveness [52].

In order to achieve this, heterogeneous

clinical and genomic data source must

be integrated in scientifically meaning-

ful and productive systems. This will

include hypothesis-driven scientif ic

research systems along with well un-

derstood information systems to sup-

port such research. These in turn will

enable the faster advancement of per-

sonalized medicine.
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