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Summary

Tensors – or high-dimensional arrays – are ubiquitous in science and provide the founda-
tion for numerous numerical algorithms in scientific computing, machine learning, signal
processing, and other fields. With their high demands in memory and computational
time, tensor computations constitute the bottleneck of many such algorithms. This has
led to the development of sparse and low-rank tensor decompositions (Kolda and Bader
2009). One such decomposition, which was first developed under the name “matrix prod-
uct state” (MPS) in the study of entanglement in quantum physics (Fannes, Nachtergaele,
and Werner 1992), is the matrix product or tensor train (TT) representation (Schollwöck
2011; Oseledets 2011).
The matrix product tensor format is often used in practice (Latorre 2005; Savostyanov et
al. 2014; Szalay et al. 2015; Zhang et al. 2015; Novikov et al. 2015; Stoudenmire and
Schwab 2016) for two reasons: On the one hand, it captures the low-dimensional structure
of many problems well. Therefore, it can be used model those problems computationally
in an efficient way. On the other hand, the matrix product tensor format also allows for
performing crucial tensor operations – such as addition, contraction, or low-rank approxi-
mation – efficiently (Schollwöck 2011; Oseledets 2011; Orús 2014; Bridgeman and Chubb
2017).
The library mpnum (Suess and Holzäpfel 2017) provides a flexible, user-friendly, and
expandable toolbox for prototyping algorithms based on the matrix-product tensor format.
Its fundamental data structure is the MPArray which represents a tensor with an arbitrary
number of dimensions and local structure. Based on the MPArray, mpnum implements
basic linear algebraic operations such as addition, contraction, approximate eigenvalue
computation, etc. as well as specialized matrix-product decomposition operations such
as compression or canonicalization. With these facilities, the user can express algorithms
in high-level, readable code. Examples from quantum physics include matrix-product
state (MPS) and matrix-product operator (MPO) computations, DMRG, low-rank tensor
recovery, and efficient quantum state estimation.
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