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Abstract: This paper investigates the kernel entropy based extended Kalman
filter (EKF) as the navigation processor for the Global Navigation Satellite
Systems (GNSS), such as the Global Positioning System (GPS). The algorithm
is effective for dealing with non-Gaussian errors or heavy-tailed (or impul-
sive) interference errors, such as the multipath. The kernel minimum error
entropy (MEE) and maximum correntropy criterion (MCC) based filtering for
satellite navigation system is involved for dealing with non-Gaussian errors
or heavy-tailed interference errors or outliers of the GPS. The standard EKF
method is derived based on minimization of mean square error (MSE) and
is optimal only under Gaussian assumption in case the system models are
precisely established. The GPS navigation algorithm based on kernel entropy
related principles, including the MEE criterion and the MCC will be per-
formed, which is utilized not only for the time-varying adaptation but the
outlier type of interference errors. The kernel entropy based design is a new
approach using information from higher-order signal statistics. In information
theoretic learning (ITL), the entropy principle based measure uses information
from higher-order signal statistics and captures more statistical information as
compared to MSE. To improve the performance under non-Gaussian environ-
ments, the proposed filter which adopts the MEE/MCC as the optimization
criterion instead of using the minimum mean square error (MMSE) is uti-
lized for mitigation of the heavy-tailed type of multipath errors. Performance
assessment will be carried out to show the effectiveness of the proposed
approach for positioning improvement in GPS navigation processing.

Keywords: GPS; satellite navigation; extended Kalman filter; entropy;
correntropy; multipath; non-Gaussian

1 Introduction

Non-Gaussian noise is often encountered in many practical environments where the estimation
performance deteriorates dramatically. Multipath [1] is known to be one of the dominant error
sources in high accuracy global navigation satellite systems (GNSS) positioning systems, such as
the Global Positioning System (GPS) [1,2]. Multipath effects occur when GPS signals arrive at
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a receiver site via multiple paths due to reflections from nearby objects, such as the ground and
water surfaces, buildings, vehicles, hills, trees, etc. Many estimation algorithms have been studied to
eliminate the positioning error caused by multipath. Since multipath errors are among uncorrelated
errors that are not cancelled out during observation differencing, the performance of high preci-
sion GPS receivers are mostly limited by the multipath induced errors. One of the most important
issues in GPS system performance improvement is the interference suppression techniques.

Due to its simple structure, stable performance and low computational complexity, the conven-
tional adaptive filtering algorithm where the least mean square error (MSE) is involved has been
widely used in a variety of applications in the fields of adaptive signal processing and machine
learning. However, the MSE criterion is limited to the assumption of linearity and Gaussianity
while most of the noise in real word is non-Gaussian. The performance deteriorates significantly
in the non-Gaussian noise environment. The well-known Kalman filter (KF) [2,3] provides optimal
(minimum MSE) estimate of the system state vector and has been recognized as one of the most
powerful state estimation techniques. The traditional Kalman-type filter provides the best filter
estimate when the noise is Gaussian, but most noise in real life is unknown, uncertain and non-
Gaussian. Since the Kalman filter uses only second order signal information, it is not optimal
when the system is disturbed by heavy-tailed (or impulsive) non-Gaussian noises. The extended
Kalman filter (EKF) is a nonlinear version of the KF and has been widely employed as the
GPS navigation processor. The fact that EKF highly depends on a predefined dynamics model
forms a major drawback. To solve the performance degradation problem with non-Gaussian errors
or heavy-tailed non-Gaussian noises, some robust Kalman filters have been developed by using
non-minimum MSE criterion as the optimality criterion.

As a unified probabilistic measure of uncertainty quantification, entropy [4-6] has been widely
used in information theory. The novel schemes using entropy principle based nonlinear filters are
suitable as alternatives for GPS navigation processing. The robustness of algorithms has become
a crucial issue when dealing with the practical GPS navigation application in non-Gaussian noise
environments. In the cases where the additive noises in signal processing is supposed as Gaussian
process, the MSE can be adopted for construction of the kernel adaptive filtering algorithms. The
algorithm can suppress the effects of impulsive noise through kernel function in entropy, thus
guarantees a good performance for non-Gaussian application. By introducing entropy/correntropy,
kernel recursive algorithm based on minimum error entropy/maximum correntropy criterion can
be employed to overcome the deteriorating performance where the LMS algorithm is involved for
non-Gaussian signal. The minimum error entropy (MEE) criterion [7-9] and maximum corren-
tropy criterion (MCC) [10-16] are information theoretic learning (ITL) approaches, which have
been successfully applied in robust regression, classification, system identification and adaptive
filtering. The algorithm updates equation recursively by minimizing the error entropy/maximizing
the correntropy between output of the system and the desired signal. As compared with LMS,
both the MEE and MCC algorithm possess better stability in non-Gaussian environments.

As a novel performance index, some of filters applied to non-Gaussian systems have been pro-
posed. The MEE criterion is an important learning criterion in ITL, which has been successfully
applied in robust regression, classification, system identification and adaptive filtering and has been
widely adopted in non-Gaussian signal processing. The MEE scheme is designed by introducing
an additional term, which and is tuned according to the higher order moment of the estimation
error. The algorithm has a high accuracy in estimation because entropy can characterize all the
randomness of the residual. The MEE adopted to minimize the error to obtain the maximum
amount of information through measuring error information and ensures the local stability of the
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error dynamic. The MEE is a method of information theory learning which has been successfully
applied to Kalman filters to improve robustness against pulsed noise. Information theory learning
has been successfully applied to robust regression, classification, system recognition and adaptive
filtering. The MCC is another important learning criterion which has been successfully used
to handle the heavy-tailed non-Gaussian noise. Maximizing the mutual information between a
state and the estimate is equivalent to minimizing the entropy of the estimation error. Based on
information theory, another entropy criterion is proposed. Many experiments have shown that
although MEE achieves excellent performance, the computational complexity is slightly higher
than MCC.

The kernel entropy based EKF is adopted for the GPS navigation processing. Performance
evaluation will be conducted to investigate the performance based on the two alternative entropy-
related criteria: MEE and MCC. Results will be given to demonstrate the superiority of the
designs with appropriate kernel bandwidth. Adaptive algorithms under MEE and MCC show
enhanced robustness in the presence of non-Gaussian disturbances or heavy-tailed interference
errors, such as the multipath interference. The remainder of this paper is organized as follows.
In Section 2, preliminary background on the EKF and AEKEF is reviewed. Section 3 addresses
the basic principles on entropy theory, includes the MEE and MCC. The MEE- and MCC-
based EKF’s are introduced in Section 4, where the MCC-based AEKF is also presented. In
Section 5, numerical experiments are carried out to evaluate the performance using the proposed
MCC-AEKF as compared to the other approaches. Conclusion is given in Section 6.

2 The Extended Kalman Filter and Covariance Scaling

Given a non-linear single model equation in discrete time

Xp+1 = (Xg) + Wi )
zj =h (Xg) + Vi (2)
where the state vector x; € N”, process noise vector wi € R, measurement vector z; € RN,

measurement noise vector vp € R, Qy is the process noise covariance matrix and Ry is the
measurement noise covariance matrix.

The vectors w; and v, in Egs. (1) and (2) are zero mean Gaussian white sequences has zero
cross-correlation with each other:

E [wkw,-T] =Qiéy; E [vkvl-T] =Riéy; E [kaiT] =0 for all £k and i 3)
where E[-] represents expectation, and superscript “T” denotes matrix transpose. The symbol §;;
stands for the Kronecker delta function:
5 1, i=k

"=
o, i#k

The discrete-time adaptive extended Kalman filter algorithm is summarized as follow:
—Initialize state vector and state covariance matrix: X and Py

Stage 1: correction steps/measurement update equations
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(1) Compute Kalman gain matrix:
Ki = Pey HY [HePy HT 4R, 4
ke = Pripe—1Hy |HiPrpe—1Hy + Ry “4)

(2) Update state vector:
X = Xppk—1 + Ki [z —h (Rpe—1) ] 5)

(3) Update error covariance

The error covariance relationships for a discrete filter with the same structure as the Kalman
filter, but with an arbitrary gain matrix are written as

Py = [1 — K Hi] P [T — K Hi " + KR K (6)

Stage 2: Prediction steps/time update equations
(4) Predict state vector

K1k = f () (7)
(5) Predict state covariance matrix
Pii1k = ©xPr @) + Qy 8)

where the linear approximation equations for system and measurement matrices are obtained
through the relations

k 9x k

X=X} k—1

The discrete-time adaptive extended Kalman filter (AEKF) algorithm is summarized as follow.
(1) Compute measurement residual:

From the incoming measurement z; and the optimal prediction Xyx—; obtained in the previ-
ous step, the innovations sequence is defined as vy, =z, — h(f(k‘k_l). The innovation reflects the

discrepancy between the predicted measurement h (fik|k—1) and the actual measurement z;. It rep-
resents the additional information available to the filter as a consequence of the new observation.

(2) The covariance of measurement residual matrix

By taking variances on both sides, we have the theoretical covariance, the covariance matrix
of the innovation sequence is given by

Cuk =F [vkvz] = HkPka—le + Ry 9)

(3) Estimate the innovation covariance

Defining évk as the statistical sample variance estimate of C,,, matrix évk can be computed
through averaging inside a moving estimation window of size N

k
A 1
Co=5 D ) (10)
J=io
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where N is the number of samples (usually called the window size); jo =k — N + 1 is the first
sample inside the estimation window. The window size N is chosen empirically (a good size for
the moving window may vary from 10 to 30, and N =15 has been used in this paper) to give
some statistical smoothing.

(4) Compute the forgetting factor

trace [évk]
Ar =max {1,

(11)

trace [Cvk]

One of the other approaches for adaptive processing is on the incorporation of fading factors.
The idea of fading memory is to apply a factor matrix to the predicted covariance matrix to
deliberately increase the variance of the predicted state vector:

Piyije = c®rPr®] +Qy (12)

where A, = diag (A1, A2, ..., Ay). The main difference between different fading memory algorithms
is on the calculation of scale factor matrix A;. One approach is to assign the scale factors as
constants. When A; <1 (i=1, 2, ..., m), the filtering is in a steady state processing while A; > 1, the
filtering may tend to be unstable. For the case A; =1, it deteriorates to the standard Kalman filter.

3 Entropy

From the definition of the information theoretic and kernel methods, entropy is a measure of
the uncertainty associated with random variables. ITL is a framework to non-parametrically adapt
systems based on entropy and divergence. Correntropy denotes a generalized similarity measure
between two random variables.

3.1 Minimum Error Entropy

Originally presented by Shannon in 1948, many definitions of entropy have been introduced
for various purposes, such as Shannon entropy and Renyi’s entropy. Renyi’s entropy, named after
Alfred Renyi, is usually used for quantifying the diversity, uncertainty or randomness of a random
variable. The quadratic Renyi’s entropy, which has the form

H> (X) = —log / 12 (x) dx (13)

There are numerous methods to estimate the probability density. The kernel density estimation
(KDE) has wide applicability and is closely related to the Renyi’s entropy. Kernel density estima-
tion, also called Parzen window method, is a nonparametric method to estimate the probability
density function of a random process. One can estimate the quadratic information potential of
error entropy using a sample mean estimator as follow as

A | | NN
VZ(e):NZ;GU(‘?Z‘):WZZKU(@_%‘) (14)

i=1 j=1
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where
1 elz
o

denotes the Gaussian kernel, which is the most popular kernel function and is also adopted in
this paper. Due to the negative logarithmic function monotonically decreasing function, it can be
seen that minimizing the error entropy Hj (¢) means maximizing the information potential V7 (e).

3.2 Maximum Correntropy Criterion

In recent years, the maximum correntropy criterion has been successfully applied in many
areas of signal processing, pattern recognition and machine learning with the existence of non-
Gaussian noise, especially the large outliers.

Correntropy between two scalar variables measures the second-order information as well as
higher-order statistical information in the joint probability density function. The correntropy of
two random scalar variables X and Y is defined as

V, (X, ¥) = Elky (X, V)] = f o (%, 1) dF .y (x,7) = f o (%, ) Sy (¥, ) dxdy (16)

where E[-] represents the expectation operator, Fy, y (x, y) is the joint distribution, fxy (x, y) is the
joint probability density function, and «, (x, ) is a positive definite kernel function that satisfies
the Mercer theory. In most practical situations, only limited amount of data is available and the
joint distribution is usually unknown. In these cases, one can estimate the correntropy using a
sample mean estimator as follow as

A 1 Y 1
Vo (X, =53 Gy €)= ) Ko (Xi =) (17)
i=1 i=1

where ¢; = x; — y;, 0 > 0 denotes the kernel bandwidth. In most practical applications, the number
of data we could access is scant and the joint distribution Fy, y (x, y) is usually unavailable. For
solving this problem, one can use the sample mean square to estimate the correntropy. Taking the
Taylor series expansion of the Gaussian kernel, we have

(=n"

g 2np)

Vo (X, Y)=)_

n=

EBX—YWﬂ (18)

It can been seen that correntropy represents a weighted sum of all even order moments of
the two random variables X and Y. The kernel bandwidth appears as a parameter weighting the
second order and higher order moments. With a very large (compared to the dynamic range of
the data), the correntropy will be dominated by the second order moment, and then the maximum
correntropy criterion will be approximately equal to the minimum mean square error criterion.
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4 The Kernel Entropy Based Extended Kalman Filter

Consider an augmented model given by state prediction error with the measurement
equation as

|:§(k|k—1i| _ |:Xk } N |:3ij| (19)
2 h (x) Vic

where 8xy is the state prediction error as éx; = Xyk—1 — X, and we have

o= |:ka—1 - ij| (20)

Vi

The covariance matrix for ¢, can be represented by the joint matrix composed of Pyj_; and
R matrices, and B; can be obtained by Cholesky decomposition of the joint matrix.

Pk\k—l 0 Bp,klk—lBTk k—1 0
Elpro]=BiB] = = e '
0 Ry 0 B, B,
. @1
_ | Bpkik—1 0 By k-1 0
o B..||0 B,/
Multiplying both sides on Eq. (19) by B;'!, we have
& = Dj — gk (X) (22)
where
1| Xkik—1 Xk KLY >
D; =B} , 8k(xx)=B , €=B =B, o, (23)
g |:Zk } “ 1 hxp) “ v g
T 1 T (a-1\]
E[ekek]:E B, 'oi0] <Bk ) —E[l=1 (24)
where I is denoted the n x n identity matrix, and the i-th row element in & is
ik =4 — ik (Xg) (25)
4.1 Minimum Error Entropy-Based Extended Kalman Filter
The idea for the MEE-based EKF is to optimize the following cost function Jygg
| Lo L
JMEE (X)) = 7 Z Z Go(&j.k —€ik) (26)
i=1 j=1
Taking its derivative with respect to x; and setting it to zero
aJ
MEE (Xk) _ 0 27

0XJ
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we have
L L
Xk, = arg II)I(Z]lX JmEE (X)) = argmax Z Z Gs (ej,k — Ei,k) (28)

X
Fiml =1

The solution cannot be obtained in closed form even for a simple linear regression problem,
so one has to solve it using an iterative update algorithm such as the gradient based methods. The
gradient based methods are simple and widely used. However, they depend on a free parameter
step-size and usually converge to an optimal solution slowly. The fixed-point iterative algorithm is
an alternative efficient way to solve the solution, which involves no step-size and may converge to
the solution very fast. The computation procedures for the minimum error entropy based extended
Kalman filter (MEE-EKF) are summarized as follows:

(1) Choose a kernel bandwidth o and the error tolerance ¢ with small positive value. Set the
initial estimate and covariance Xg, Py;

(2) Perform Cholesky decomposition to obtain B, jjx—1;

(3) Let X 0=Xkk—1, Where X, , represents the state estimate at the fixed-point iteration #;

(4) Iteration loop: Calculation of X, ; using the following steps:

D) € r=di—gik (X ()
2) [®kl;=Go (&j.k —€ik)

L L
3) Wy =diag{Z Go(erk—€ik)s-» Y GoleLk—€ik)
i=1

i=1

~

~ Cor  Covx
4) Cr=@ -, =|_" 7
C C

k
~ —1 T~ —1
5) Pux kjk—1= (Bp,klk—1> Ca B, ki1

~ _1 T ~ _1
6) sz,klk—l = (Bp,klk—l) sz,kB,,,k

7) P — (87} €. B
) zx, klk—1 = rk 2,k klk—1
~ N = o
8) Re=(B}) C..B )
~ ~ ~ ~ ~ _1 ~ ~
9) K = (Px,kk—1 + HI Pz sqie—1 + (Pox, k-1 + H{ Re) Hy) — (Poy -1 + HIRy)
10) i ¢ = K1+ Kie [z — e (Rppe—1) ]
(5) Compare the estimation for the current steps with the previous steps for convergence check

H’A(k,z - ?A‘k,t—l ”

| %k, i-1

If the above condition holds, then set X; =X, ,, go to Step 6, otherwise, go back to
Step 4
(6) Calculation of update covariance matrix:

P, = (I — ﬁka) Pk|k—1 (I — Kka)T + KkRkklz



CMC, 2021, vol.68, no.1

(7) Predict Xy 1k and Pk Set k+1— k, and go back to Step 2
Kicpie = (Xx)
Pii1jk = ®xPc @) +Qy

4.2 Maximum Correntropy Criterion-Based Extended Kalman Filter
The idea to optimize the following cost function Jy;cc

L
Jmce (X)) = Z Gy (di k — ik (X1))
i=1

can be obtained by solving

0 mcc (Xk)
8Xk

0

and we have
L

L
X|fe = Arg max Jmcc (Xi) = arg max 21: Gy (d; x — ik (X)) =arg max 21: Go (ei.x)
1= 1=

The covariance matrices Pyr—1 and Ry can be further expressed as

_ 1 T
Prg—1 0 | | Bpr—1 0 Cir O B, k-1 0
0 Ri| |0 B.i||0 C.i| |0 B,

r -1
Bp,k\k—lcx, kBpT,k\k—l 0
0 B, kC;}(BZ: .

where we have
—1pT
Prii—1 =By kk—1C 1By pi1

—1pT
R, =B, ,C B/,

865

(29)

(30)

(31

(32)

(33)
(34)

The computation procedures for the maximum correntropy criterion based extended Kalman

filter (MCC-EKF) are summarized as follows:

(1) Choose a kernel bandwidth o and the error tolerance ¢ with small positive value. Set the

initial estimate and covariance Xg, Py;
(2) Perform Cholesky decomposition to obtain B, jjx—1;

(3) Let Xi 0=Xkk—1, Where X, , represents the state estimate at the fixed-point iteration #;

(4) Iteration loop: Calculation of X , using the following steps:
1) @ x=dir—gir(Xi.1)
2) Cik= diag (Gg (El,k) s Gy (Zn,k))



866 CMC, 2021, vol.68, no.l

3) C..x =diag Gy (Bus1.4) s ---» Go Crrmr))
4) Prp—1 =By ip-1C 4B 4

5) Ry =B, ,C B!,

6) Ki = Py H} [H Py HJ + ﬁk]_l

7) Rie,r = Kir—1 + Kk [z — e (Ree—1) ]
(5) Compare the estimation for the current steps with the previous steps for convergence check

H’A‘k,z —’A(k,t—l ”

| %01 ]|

If the above condition holds, then set X; =X ;, go to Step 6, otherwise, go back to
Step 4
(6) Calculation of update covariance matrix:

~ ~ T ~ ~
P = (I- K¢Hy) Pt (1-KeHy) ' + KeReK/
(7) Predict Xy and Pryqk. Set k41— k, and go back to Step 2
Kipic = (Xg)
Piiip = 4 Pr®) + Q

4.3 Maximum Correntropy Criterion-Based Adaptive Extended Kalman Filter

Utilization of the MCC-AEKF is a treatment for further performance enhancement. Fig. 1
provides the flow chart for one cycle of the maximum correntropy criterion-based adaptive
extended Kalman filter (MCC-AEKF), which involves the computation procedure in both MCC
and AEKF.

To fulfil the requirement, an adaptive Kalman filter can be utilized as the noise-adaptive
filter to estimate the noise covariance matrices and overcome the deficiency of Kalman filter. The
benefit of the adaptive algorithm is that it keeps the covariance consistent with the real perfor-
mance. The innovation sequences have been utilized by the correlation and covariance-matching
techniques to estimate the noise covariances. The basic idea behind the covariance-matching
approach is to make the actual value of the covariance of the residual consistent with its
theoretical value.

5 Results and Discussion

To validate the effectiveness of the proposed approaches, simulation experiments have been
carried out to evaluate the performance of the proposed kernel entropy based approach in com-
parison with the other conventional methods for GPS navigation processing. The kernel entropy
principle assisted EKF for GPS navigation processing is presented. Two scenarios dealing with two
types of interferences are carried out, including pseudorange observable errors involving (1) time-
varying variance in the measurement noise, and (2) outlier type of multipath interferences, during
the vehicle moving.
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Initialize X, and P,

rPk\A—l 0 —| _ (Bp‘k\kfl ;A'\kfl 0 —‘
Lo mJTL 0 BB
— (%, X,
D, =B ”‘} ; g‘(f(A)_Bk{ K }
L Z h(x,)
| X = ﬁ/:\k—l;t 1
ék =D, _gk(ik)
2, =G (e D
Pk\/ﬂ = Bp‘l\'\kflcpl‘/(Bpj\/(fl
R, = B»-,k\Aflc:,IkBr.A
t=1t+1 ‘
- . -
C,=HP, H +R,
2 D T 5 T 5 -l Input measurement value
‘ K, = Pk\k—lHk (HkPk\k—lHk +R,)
¢ Z():Z]a"‘azk
¥ =% 2 2 |
X, =X, +K, [z, 7h(xk‘k71)]|‘
No
Yes
X, =X
Set k+1 —k k kot
. N N . - -, Obtain state estimation
P = _KkH/c)PAkl(; -K.H) +K RK, ’A‘o’f‘w'"a’}k
A k w
C,=—> v,
J=Jo
trace[éu 1
A, =max{l, ————
l trace[C“A ]J
ikﬂ\k = f(;‘k)

P

= )"k(DkPk(I): +Q,

k+1lk

Figure 1: Flow chart for on cycle of the maximum correntropy criterion-based adaptive extended
Kalman filter (MCC-AEKF)
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The computer codes were developed by the authors using the Matlab® software. The com-
mercial software Satellite Navigation (SATNAV) Toolbox by GPSoft LLC [17] was employed for
generation of the GPS satellite orbits/positions and thereafter, the satellite pseudoranges, carrier
phase measurement, and constellation, required for simulation. The simulated pseudorange error
sources corrupting GPS measurements include ionospheric delay, tropospheric delay, receiver noise
and multipath. Assume that the differential GPS (DGPS) mode is available and therefore most
of the receiver-independent common errors can be corrected, while the multipath and receiver
thermal noise cannot be eliminated. The multipath interferences are added into the GPS pseudo-
range observation data during the vehicle moving. Since the research focus on the mitigation of
multipath errors, the influence of measurement noise is relatively critical.

In the simulation, there are 9 GPS satellites available. The test trajectory for the simulated
vehicle and the skyplot during the simulation time interval are shown as in Fig. 2. A vehicle is
designed to perform the uniform accelerated motion to reduce the impact caused by unmodel-
ing system dynamic errors. Performance comparison presented will cover two parts for each of
the scenarios. Firstly, performance comparison for EKF, MEE-EKF and MCC-EKF is shown.
Secondly, performance enhancement using covariance scaling is presented, where various types of
approaches including EKF, AEKF MCC-EKF and MCC-AEKF are involved.

SATELLITE SKYPLOT
o [ NORTH
— L —T

120 T | /ﬂ/f”/\\\\\

100 J———" // LT~ ™~ ™~

80 L — 5 ——/ \
t _/S«“ﬂ'ﬂﬁ; pulnt/_/‘ N~
e s0l—T | == | ™~
3 ) // /‘/\ \\
2 w11 LT ™ N~ WEST EAST
< // N

/
™~

North (m) ’ East (m) SOUTH
(@) (b)

Figure 2: (a) Test trajectory for the simulated vehicle; and (b) the skyplot during the simulation

Table 1: Description of the time-varying noise strength in the five time intervals for Scenario 1

Segment Time interval (s) Noise variance (m?)
1 [0-254] N, 1)

2 [255-508] N (0, 16)

3 [509-635] N, 1)

4 [636-863] N (0, 10)

5 [864-1016] N(©O,1)
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Figure 3: (a) Comparison of positioning accuracy and (b) the corresponding error probability
density functions (pdf’s) for EKF, MEE-EKF and MCC-EKF—Scenario 1. (a) Position errors,
(b) probability density functions
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Figure 4: (a) Comparison of positioning accuracy and (b) the corresponding error pdf’s for EKF,
AEKF MCC-EKF and MCC-AEKF—Scenario 1. (a) Position errors, (b) probability density

functions
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5.1 Scenario 1: Environment Involving Time-Varying Variance in Measurement Noise

Scenario 1 is designed for investigating the performance comparison when dealing with the
time-varying measurement noise statistics. Description of time varying measurement variances in
the five time intervals is shown in Tab. 1. The time-varying measurement noise variances r,, in the
five time intervals for this scenario are assumed to follows the variation: r,, =1— 16 > 1— 10 —

1 (in unit of m?), where the ‘arrows (—)’ is employed for indicating the time-varying trajectory of
variances. The set of unknown time-varying statistical parameters of noise needs to be estimated
with the system state and the error covariance.

5.1.1 Performance Comparison for EKF, MEE-EKF and MCC-EKF

Comparison of GPS navigation accuracy for the EKF, MEE-EKF and MCC-EKF is shown
in Fig. 3 where the positioning accuracy comparison and the corresponding error pdf’s, respec-
tively, are shown. The results show that both MEE and MCC based EKF can effectively improve
the positioning performance. As can be seen, both the MEE and MCC can be adopted to
assist the EKF to improve GPS navigation accuracy in time-varying Gaussian noise environment
where the filtering performance based on the two optimization criterion lead to equivalent results
with no noticeable distinction.

5.1.2 Performance Enhancement Using Covariance Scaling

Comparison of positioning accuracy for the four algorithms: EKF, AEKF, MCC-EKF and
MCC-AEKF is shown in Fig. 4, where both the positioning accuracy and the corresponding
error pdf’s are presented. Fig. 5 shows the variation and adaptation capability of the standard
deviation for the time-varying statistics in the measurement model. The MCC-EKF did not catch
the variation of noise strength very well. With the assistance of AEKF, the MCC-AEKF can
further improve the performance. From the other view point, the adaptation capability of noise
variance for the AEKF has been improved with the assistance of the MCC mechanism. Tab. 2
provides the performance comparison for various algorithms. As compared MEE, the MCC
based approach provides similar positioning accuracy with better computation efficiency. Of the
various approaches, the MCC-AEKF provides the best positioning accuracy with only a little
more execution time as compared to MCC-EKF.

—True
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l ——MCC-EKF(o = 30)
l “l“ ||1 ‘ “) —— MCC-AEKF (o = 25)
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Figure 5: Variation and adaptation results of the variance for the time-varying measurement noise
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Table 2: Performance comparison for various algorithms—Scenario 1

Filter used RMSE (m) Execution time (s)
East North  Altitude

EKF 3.0629 2.8335 4.8644 1.3278

AEKF 2.3560 2.2041  4.9047 1.3478

MEE-EKF (0=0.001) 1.4832 1.3099 1.8564 2.7931
MCC-EKF (0 =30) 1.4829 1.3025 1.8000 1.7364
MCC-AEKF (0 =25) 1.1137  1.0318 1.5763 1.7525

5.2 Scenario 2: Pseudorange Observable Involving Outlier Type of Multipath Errors

In Scenario 2, mitigation of the pseudorange observable involving outlier type of multipath
interferences is discussed. There are totally five time durations where additional randomly gen-
erated errors are intentionally injected into the GPS psecudorange observation data during the
vehicle moving. Tab. 3 shows the information of the outliers, including the numbers of outliers
and their strengths.

Table 3: Information for the outliers

Time interval ~ Number of outliers  Standard deviation of the outliers (m)

[0-254] 5 15, 100, 70, 80, 100

[255-508] 6 55, 70, 10, 22, 15, 15

[509-635] 6 55, 20, 13, 65, 34, 100

[636-863] 10 66, 90, 105, 65, 21, 90, 105, 65, 50, 80
[864-1016] 6 16, 20, 45, 15, 20, 30

5.2.1 Performance Comparison for EKF, MEE-EKF and MCC-EKF

Comparison of GPS navigation accuracy for the three schemes: EKF, MEE-EKF and MCC-
EKF is shown in Fig. 6 where both the comparison of positioning accuracy and the error corre-
sponding pdf’s are presented. The results show that the both the MEE and MCC can assist EKF
to effectively deal with the outliers in the pesudorange observables such as multipath interferences.

5.2.2 Performance Enhancement Using Covariance Scaling

Utilization of the AEKF, referred to as the MCC-AEKEF, is employed for further performance
enhancement. Fig. 7 illustrates the positioning accuracy and the corresponding pdf’s for various
algorithms: EKF, AEKF, MCC-EKF and MCC-AEKF. The AEKF does not possess sufficient
capability to resolve the outlier type of interference, while the MCC-AEKF demonstrates substan-
tial performance improvement in navigation accuracy with acceptable extra computational expense.
Tab. 4 summarizes the estimation performance and execution time for various algorithms.
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Figure 6: (a) Comparison of positioning accuracy and (b) the corresponding error pdf’s for EKF,
MEE-EKF and MCC-EKF—Scenario 2. (a) Position errors, (b) probability density functions



874

50

East (m)

n w B
o o o

Altitude (m)
o

CMC, 2021, vol.68, no.1

—_
o

25
——EKF
— AEKF —— EKF
—— MCC-EKF(c = 15) of —— AEKF .
— MCC-AEKF(c = 15) —— MCC-EKF(o = 15)
k\ h """ MCC-AEKF (o = 15)
1571 J
N ,.Mk A J\ kk A ﬁ ol LL
I id
1t .
05 f ]
L L L L L 0 A
200 400 600 800 1000 -50 0 50
Time (sec) East error (m)
25
——EKF
— AEKF — EKF
— MCC-EKF(c = 15) ot —— AEKF g
— MCC-AEKF(o = 15) —— MCC-EKF(c = 15)
- MCC-AEKF (o = 15)
h L 15 1
- trw‘r b\ VIF T‘LA\ v
Y V | -
05 J
R RV S Y | N
200 400 600 800 1000 -60 -40 -20 0 20 40 60
Time (sec) North error (m)
——EKF
— AEKF 16 —— EKF 1
—— MCC-EKF(c = 15) AEKE
—— MCC-AEKF(c = 15) 147 .
—— MCC-EKF(c = 15)
] 127 - MCC-AEKF(6 = 15) | T
J 1t 4
0.8 [ J
| 0.6 [ 1
047 1
| _J M -
1 1 1 1 n- 0 1 1 ——
200 400 600 800 1000 -40 -20 0 20 40
Time (sec) Altitude error (m)
(a) (b)

Figure 7: (a) Positioning accuracy comparison and (b) the corresponding error pdf’s for EKF,
AEKF, MCC-EKF and MCC-AEKF—Scenario 2. (a) Position errors, (b) probability density

functions



CMC, 2021, vol.68, no.1 875

Table 4: Performance comparison for various algorithms—Scenario 2

Filter used RMSE (m) Execution time (s)
East North  Altitude

EKF 3.9280 4.4652 5.0101 1.3412

AEKF 5.2129  5.7250 7.2116 1.4034

MEE-EKF (0=0.001) 0.6475 0.4500 0.4685 2.4639
MCC-EKF (o=15) 0.5773  0.4408  0.3996 1.7931
MCC-AEKF (oc=15) 0.3040 0.2408 0.2954 1.8723

6 Conclusions

This paper investigates the kernel entropy principle based adaptive filtering for Global
Positioning System (GPS) navigation processing. The algorithm is effective for dealing with
non-Gaussian or heavy-tailed errors, such as the multipath interferences.

The standard EKF method is derived based on MSE criterion and is limited to the assump-
tion of linearity and Gaussianity to be optimal. The robustness of nonlinear filter is improved
using the optimization criterion based on entropy or correntropy. The GPS navigation algo-
rithm based on kernel entropy related principles, including the MEE criterion and the MCC
has been performed, which is especially useful for the heavy-tailed/impulsive types of interfer-
ence errors. In addition, behavior of the innovation related parameters have been introduced,
which are useful in designing the adaptive Kalman filter to form the MCC-AEKF for further
performance improvement.

Simulation experiments for GPS navigation have been provided to illustrate the performance.
Results show that the kernel entropy principle based adaptive filtering algorithm possesses notice-
able improvement on navigation accuracy as compared to that of conventional methods and thus
demonstrates good potential as the alternative as the GPS navigation processor, especially in the
case of observables with non-Gaussian errors. Two scenarios, including (1) the environment involv-
ing time-varying measurement noise variance; and (2) the pseudorange observable involving outlier
type of multipath errors, respectively, are presented for demonstration. Performance comparison
for various approaches, including EKF, AEKF, MCC-EKF, MEE-EKF and MCC-AEKF have
been carried out and the kernel entropy based EKF algorithm has demonstrated promising results
in navigational accuracy improvement.
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