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Abstract. In this paper we introduce GAFT (Generalized Anomaly and Fault
Threshold), featuring a novel system architecture that is capable of setting,
monitoring and detecting generalized thresholds and soft faults proactively and
adaptively. GAFT monitors many network parameters simultaneously, analyzes
statistically their performance, combines intelligently the individual decisions
and derives an integrated result of compliance for each service class. We have
carried out simulation experiments of network resource and service
deterioration, when increasingly congested in the presence of class-alien traffic,
where GAFT combines intelligently, using a neural network classifier, 12
monitored network performance parameter decisions into a unified result.  To
this end, we tested five different types of neural network classifiers: Perceptron,
BP, PBH, Fuzzy ARTMAP, and RBF. Our results indicate that BP and PBH
provide more effective classification than the other neural networks. We also
stress tested the entire system, which showed that GAFT can reliably detect
class-alien traffic with intensity as low as five to ten percent of typical service
class traffic.

1   Introduction

Network faults can be classified into two types: hard failures, in which the network, or
some of its elements, are not able to deliver any traffic at all; soft failures,
network/service anomaly or performance degradation in various performance
parameters, i.e., decrease in bandwidth, increase in delay, etc. A hard fault can be
easily noticed by all, the system administrators as well as the users. However, defining
and otherwise characterizing and detecting soft faults is difficult. Wireless networks
are particularly vulnerable to soft faults in that they have much lower bandwidth than
their wired counterparts, while they are more prone to overloads, noise, congestion,
etc.
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In the past few years, some research progress has been made in soft fault detection.
A proactive fault management system is presented in [3]. In [2] a study was carried
out of path failure detection. In [4], neural networks are applied in billing fraud
detection in telecommunication voice networks. Performance anomaly detection in
Ethernet is discussed in [5]. In [1]. Cabreta et. al. described their practice of using
Kolmogorov-Smirnov (K-S) statistics to detect Denial-of-Service and Probing attacks.

0 0.5 1 1.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

network param eter

pr
ob

ab
ili

ty hard lim it 

Fig. 1. PDF of a Network Parameter

In this paper, we propose a hierarchical, multi-tier, multi-window, soft fault
detection system for both wireless and wired networks, which operates automatically,
adaptively and proactively. The system uses statistical models and neural network
classifiers to detect anomalous network conditions. The statistical analysis bases its
calculations on PDF algebra, in departure from the commonly used isolated sample
values or perhaps their averages. The use of PDFs is much more informative, allowing
greater flexibility than just using averages. The sample PDF of some network
performance parameter, shown in Fig. 1, helps illustrate that point.  The figure depicts
a hard service limit at some parameter value, drawn as a vertical line. Such a limit
might apply for a real-time service, for example, the total packet delay parameter for
packetized voice. From the point of view of the hard limit, the network condition
described by the PDF in this figure would represent a service failure, in that some
packets exceed the limit.

However, the PDF shows that the totality of such failing packets, those in the tail of
the PDF to the right of the limit, may be small. Thus, if in fact, this total is smaller
than the maximum packet loss rate specification, the service may remain in
compliance to the delay limit simply by discarding the laggard packets. Our system
generalizes further by combining information of the PDFs of the monitored
performance parameters, either all of them or subgroups of them, in one integrated and
unified decision result. This combining is powerful in that it achieves much higher
discrimination capability that enables the monitoring of individual service classes in
the midst of general traffic consisting of all other classes. It is also capable of
discriminating against intrusion attacks, known or novel. In fact, network intrusion
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detection is one of the promising applications of this technology. Others, include
transaction oriented e-commerce networks, that typically support large numbers of
service classes concurrently, and, as mentioned, various wireless networks, where
monitoring the service classes may be challenging due to adverse network conditions.

GAFT gathers data from network traffic, the system log and hardware reports; it
statistically processes and analyzes the information, detects network anomaly and
failures, for each parameter individually, or in combined groups using neural network
classification; it generates the system alarms and event reports; finally, GAFT updates
the system profiles based on the newly observed network patterns and the system
outputs (see Fig. 2).

Network Data

é Network Traffic
Information (IP,
UDP, TCP, ...)

é Higher Layer Log
Information

é Hardware reports
and information
from some other
sources

Event Probe and
Analysis

Fault Detection

System Update

w Anomaly Alarm
w Network Reports
w Event Log

Inputs GAFT Outputs

Fig. 2. The Inputs and Outputs of GAFT

The rest of the paper is organized as follows. The system architecture is outlined in
Section 2. Section 3 introduces the statistical algorithms that we are using. Section 4
describes the five neural networks we tested. The simulation environment is given in
Section 5. The experimental results using neural network classifiers are presented in
section 6. Section 7 reports the results of stress testing on GAFT. Section 8 draws
some conclusions and outlines future work.

2   System Architecture

Our system is a distributed application, deployed hierarchically, which consists of
several tiers, with each tier containing several Fault Management Agents (FMAs).
FMAs are management components that monitor the activities of a host or the network
it is attached to. Different tiers correspond to different network scopes that are
monitored by the agents affiliated to them.

Generally speaking, each FMA collects network status reports from FMAs one tier
below and combines them with data that it collects from its own system logs, as well
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Fig. 3. Sample Wireless Network

as its monitoring of the network; it then generates a network status report, that it sends
to the FMA of the next higher tier.
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Fig. 4. System Hierarchy

For the sample IP wireless network shown in Fig. 3, the fault detection system can
be divided into 3 tiers. Tier 1 agents monitor system activities of the base stations, as
well as the nodes in the subnet that the base station supports; they also periodically
generate reports for the next higher tier, i.e. Tier 2, agents. Tier 2 agents combine
network data that they gather within their cell, based on the network traffic that they
observe, as well as the reports they receive from the Tier 1 agents, to formulate their
network status decision; they report this to Tier 3 agents. Tier 3 agents collect reports
from Tier 2 agents and combine them with their own network observation data, to
generate status reports to send to the next higher tier, and so on, tier by tier. The
system hierarchy is shown in Fig. 4.

The FMAs of all tiers have the same structure, thus simplifying the system. A
diagram of an FMA is illustrated in Fig. 5, which consists of the following
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components: the probe, the event preprocessor, the statistical processor, the neural
network classifier and the post processor. The functionalities of these components are
described below:
•  Probe: Collects data of host activity or associated network behavior, abstracts the

data into a set of statistical variables to reflect the network status, and periodically
generates reports to the event preprocessor.

•  Event Preprocessor: Receives reports from both the probe and FMAs of the next
lower tiers, and converts the information into the format required by the statistical
model.

•  Statistical Processor: Maintains a reference model of the typical network and host
activities, compares the reports from the event preprocessor to the reference
models, and (1) generates a decision for one or each of the monitored parameters
individually, or (2) forms a stimulus vector that combines all or groups of
parameters to feed into the neural network classifiers.

•  Neural Network Fault Classifier: Processes the stimulus vector from the statistical
model to decide whether the network status and traffic adhere to the service
requirements for each class. Section 4 introduces the neural network classifiers
used in the system in more detail.

•  Post Processor: Generates reports for the agents at higher tiers. At the same time, it
may display the results through a user interface.

Probe Event Preprocessor

Reports from FMAs
One Tier Below

Network
Traffic

Statistical Processor

Neural Network Fault
Classifier

Post Processor
To User
Interface

Reports To
Higher Tier

Fig. 5. Fault Management Agent

Because network traffic is not stationary and network soft faults may have different
time durations, varying from a few seconds to several hours or longer, we need a
statistical model, which is capable of efficiently monitoring network traffic with
different simulation observation time windows. Based on the above, we designed and
deployed a layer-window statistical model, shown in Fig. 6, with each layer-window
corresponding to a monitoring time slice of increasing size.
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Fig. 6. Statistical Model

The newly arrived events will first be stored in the event buffer of layer 1. The
stored events are compared with the reference model of that layer and the results are
then fed into the neural network classifier to decide the network status during that time
window. The event buffer will be emptied once it becomes full, and the stored events
will be averaged and forwarded to the event buffer of layer 2. This process will be
repeated recursively until the top level is reached where the events will simply be
dropped after processing.

3   Statistical Algorithm

Statistical methods have been used in fault management systems to detect anomaly
network activities; however, most of these systems simply measure the means and the
variances of some variables and detect whether certain thresholds are exceeded. SRI’s
NIDES [7][8] developed a more sophisticated statistical algorithm by using a χ2-like
test to measure the similarity between short-term and long-term profiles. Kolmogrov-
Smirnov (K-S) statistics is used in [1] to model and detect anomaly traffic patterns.

Our current statistical model uses a similar algorithm as the above two algorithms
but with major modifications. Therefore, we will first briefly introduce some basic
information about the χ2-like test and the KS test.

3.1   χ2-Like Test

In NIDES, user profiles are represented by a number of probability density functions
(PDFs). Let S be the sample space of a random variable and events E1, E2,…, Ek a
mutually exclusive partition of S. Assume Pi is the expected probability of the
occurrence of the event Ei, and let Pi

’ be the frequency of the occurrence of Ei during a
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given time interval. Let N denote the total number of occurrences. The NIDES
statistical algorithm used a χ2-like test to determine the similarity between the
expected and actual distributions through the statistic:

∑
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When N is large and the events E1, E2,…,Ek are independent, Q approximately
follows a χ2 distribution with )1( −k degrees of freedom. However in a real-time

application the above two assumptions generally cannot be guaranteed, thus,
empirically, Q may not follow a χ2 distribution. NIDES solved this problem by
building an empirical probability distribution for Q, which is updated daily in a real-
time operation.

3.2   Kolmogrov-Smirnov Statistic

In using the Kolmogrov-Smirnov test, the reference models and the observed system
activities are represented by a number of cumulative density functions (CDF). The
equation to compare a theoretical, completely specified target cumulative distribution
function (CDF), FT(x), and a sample CDF, Fs(x), is
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What makes the K-S statistic powerful is the fact that, in the case of the null
hypothesis (data sets drawn from the same distribution), the distribution of D is
independent of F(x) and can be calculated with useful accuracy. This is very important
property for network monitoring, when little may be known about the underlying
distribution for either the typical or the anomalous traffic.

There are several variants on the K-S tests. Among them, the Anderson-Darling
statistic calculates a weighted K-S measure:
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As another example, Kuiper’s statistic is the sum of the maximum distance of FT(x)
above and below Fs(x).
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3.3   The Algorithms Used in GAFT

Similarly to the approach taken by NIDES, in our system, the network activities are
sampled and abstracted into PDFs. However, since we are using a neural network fault
classifier, that is capable of learning from examples by training, to discern network
degradations, we are not so concerned with the actual distribution of Q. Nevertheless,
because network traffic is not stationary and network faults may have different time
durations, the algorithm must be reliable in detecting the differences between the
observed and the reference PDFs, so as to adapt effectively to the observed traffic
patterns.

The similarity-measuring algorithm that we are using is shown below:

)]().[( ’

11

’ max ii

k

i

k

i
ii ppppNfQ −+−=

==
∑ (5)

where f(N) is a function that takes into account the total number of occurrences
during a time window.  This similarity algorithm may be interpreted as incorporating
the KS statistic in equation (2) along with the area of the difference between the target
and sample PDF curves.

Besides similarity measurements, we also designed an algorithm for the real-time
updating of the reference model. Let 

oldp  be the reference model before updating, 
newp

be the reference model after updating, and 
obsp  be the observed user activity within a

time window. The formula to update the reference model is

oldobsnew pspsp ××−+××= )1( αα (6)

where
α is the predefined learning rate
s is the dynamic adaptation step based on the output of

the neural network classifier.
Assume that the output of the neural network classifier is a continuous variable u

between –1 and 1, where –1 means fault with absolute certainty and 1 means normalcy
again with complete confidence. In between, the values of u indicate proportionate
levels of certainty. The function for calculating s is



 ≥

=
otherwise,0

0 if, uu
s

Through the above equations, we ensured that the reference model would be
updated actively for typical traffic while kept unchanged when failures occurred. The
fault events will be diverted and stored for future neural network learning.

4   Neural Network Fault Classifiers

Neural networks are widely considered as an effective approach to classify patterns. In
[10], BP neural networks were used to detect anomalous user activities. Jiang et al [6]
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Fig. 7. Neural Network Architectures

built a network fault management system using artificial intelligence technologies. In
order to comprehensively investigate the performances of neural network classifiers,
we examined five different types of neural networks: Perceptron, BP, PBH, Fuzzy
ART MAP and RBF.

The perceptron [11], Fig. 7(a), is the simplest form of a neural network used for the
classification of linearly separable patterns. Although our data sets will not, in
general, be linearly separable, we are using the perceptron as a baseline to measure the
performances of other neural networks.

The Backpropagation network [11], or BP, Fig. 7(b), is a multi-layer feedforward
network. BPs have strong generalization capabilities and have been applied
successfully to solve a variety of difficult and diverse problems. Here we tested BP
networks with the number of hidden neurons ranging from 2 to 8.

The Perceptron-backpropagation hybrid network [9], or PBH, Fig. 7(c), is a
superposition of a perceptron and a small backpropagation network. PBH networks are
capable of exploring both linear and nonlinear correlations between the input stimulus
vectors and the output values. We tested PBH networks where the number of hidden
neurons ranged from 1 to 8.

The Fuzzy ARTMAP [12] in its most general form is a system of two Fuzzy ART
networks ARTa and ARTb whose F2 layers are connected by a subsystem referred to as
a “match tracking system”. We are using a simplified version of Fuzzy ARTMAP
[13], Fig. 7(d), which is implemented for classification problems. We tested ARTMAP
networks with the number of category neurons ranging from 2 to 8.

The Radial-basis function network [11], or RBF, Fig. 7(e), involves three entirely
different layers. We tested RBF networks with hidden neurons ranging from 2 to 8.



250 Z. Zhang, C. Manikopoulos, and J. Jorgenson

5 The Simulation Environment

To validate our statistical models and to test the system architecture, we built a virtual
network using simulation tools. The experimental testbed that we built using OPNET,
a powerful network simulation facility, is shown in Fig. 8. The testbed is a 10-BaseX
LAN that consists of 11 workstations and 1 server. This might correspond to the lower
tier (Tier 1) only of the system hierarchy diagram shown in Fig. 4. It adequately
illustrates the performance of a typical GAFT agent at Tier 1, as well as provides
insight for the GAFT agent to be basically the same at all tiers.

UDP flooding attacker wkstn_1 wkstn_3 wkstn_5 wkstn_7 wkstn_9

wkstn_0 wkstn_2 wkstn_4 wkstn_6 wkstn_8 Svr_0

Fig. 8. Simulation Testbed

In the real network environment, a network/service degradation or failure may be
caused by equipment malfunctions, transmission media breakdowns, malicious
external or internal attacks, etc. In this work, we simulated network condition
degradation by injecting high volumes of class-alien UDP traffic into the simulation
testbed. This causes increased delays and may lead to decreased throughput and
increased packet loss rates.  The simulation generates class-normal traffic using
standard driving distributions, such as Poisson, uniform, constant, etc. The class-alien
traffic is also simulated using the standard distributions but different parameters. Other
methods of simulating network degradation can be employed as well. Because in
Ethernet all classes of traffic are transmitted over the same media, an anomaly
behavior of one class will interfere with other network services. In other words, the
behavior of different classes of traffic becomes correlated, as is often the case in many
real-life networks.

To extensively test the performances of the system, we ran several independent
scenarios with different typical and anomaly traffic loads. For each simulation
scenario, we collected 10,000 records of network traffic. We divided these data into
two separate sets, one set of 6000 records for training and the other of 4000 records for
testing. The training records included typical as well as traffic tainted by the injected
alien packets and thus labeled. In each scenario, the system was trained for 100
epochs.
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6   Results on Neural Network Classifiers

We evaluated the performance of each of the neural networks based on the
misclassification rates of the outputs. The misclassification rate is defined as the
percentage of the network traffic that is misclassified by neural network fault
classifiers during one epoch, which includes both false positive and false negative
misclassifications.

TABLE 1 lists the traffic loads of the four simulation scenarios that we ran for neural
network testing.

Table 1. Traffic Loads of the Four Simulation Scenarios

Typical Class Traffic Class-Alien Traffic
Scenario 1 600kbps 50kbps
Scenario 2 600kbps 100kbps
Scenario 3 2Mbps 50kbps
Scenario 4 2Mbps 100kbps

In the rest of this section, we will present and analyze the simulation results of the
neural network classifiers one by one.

6.1   Perceptron

The mean squared root errors and the misclassification rates of the perceptrons within
the four simulation scenarios are tabulated in TABLE 2.

Table 2. The simulation results for perceptrons

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Misclassification rate 0.167 0.202 0.234 0.119

We can see that the perceptron performed poorly in all the four scenarios: Mean
squared root errors are between 0.6 and 0.7; and misclassification rates are between
0.1 and 0.2. Both the MSR errors and the misclassification rates are unacceptably high
for a fault detection system.

6.2 Fuzzy ARTMAP and RBF

The results of Fuzzy ARTMAP and RBF nets are shown in Fig. 9. The x-axis values of
the figures represent the number of category neurons in Fuzzy ARTMAP and the
hidden neurons in RBF. The y-axis values represent the lowest Misclassification Rates
that these neural classifiers achieved within the 100 epochs.
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Fig. 9. Results of Fuzzy ARTMAP and RBF

From the above figures, we can see that, as the number of hidden neurons increases,
the performance of both, ARTMAP and RBF networks, improves. In most of the
cases, both of them outperformed the perceptron.
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Fig. 10. Results of BP and PBH

6.3   BP and PBH

The results of BP nets are illustrated in Fig. 10. The figures indicate that BP and PBH
networks have similar performance, and that both neural networks consistently
perform better than the other three types of neural networks. The curves in these
figures are flat: the MSR errors and misclassification rates do not decrease as the
number of hidden neurons increases. We believe the reason is that, the stimulus
vectors provided to the neural network classifier are very powerful and telling,
especially in the sense that multiple performance parameter K-S similarity measures
are combined together in one integrated pattern. Thus, there is ample room for the
classifier to undertake more challenging network conditions.
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7 Stress Testing the GAFT System

In this section, we will stress test the sensitivity, and thus effectiveness, of our system.
We simulated various network fault scenarios using the test bed we introduced in
section 5. The traffic loads of the simulations we ran for stress testing are specified in
TABLE 3. From section 6, we can see that BP and PBH performed the best among the
five neural networks tested, and that, for these two neural networks, increment in the
number of hidden neurons did little to help with their performances. Therefore, the
neural network that we chose for stress testing was a BP network with 2 hidden
neurons.

Table 3. The traffic loads for stress testing

Typical-Class Traffic Class-Alien Traffic
600 Kbps 10Kbps, 20Kbps, 30Kbps, 40Kbps, 50Kbps, 70Kbps,

100Kbps, 200Kbps
2Mbps 10Kbps, 50Kbps, 100Kbps, 150Kbps, 200Kbps
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Fig. 11. The results of Stress Testing

Through the simulations, we expect to see the changes in the Misclassification
Rates of the system as functions of the typical and anomaly traffic volumes.

The results of stress testing are shown in Fig. 11. From the figure, we can see that
both the MSR errors and the misclassification rates decrease as the class-alien traffic
level increases. This is because traffic patterns of higher-volume foreign traffic yield
greater differences from the reference model than those created by lower-volume. We
can also notice that, for a certain class-alien traffic level, the performance for the
600Kbps typical traffic background is consistently better than that of 2Mbps, as one
may reasonably expect.

Fig. 12 shows the ROC (Receiver Operating Characteristic) curves of some selected
simulation scenarios. The x-axis of the figure is the false alarm rate, which is the rate
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of the typical traffic events being classified as faults or anomalies; the y-axis of the
figure is the detection rate, which is calculated as the ratio between the number of
correctly detected faults/anomalies to their total number. For each curve, the point at
the upper left corner represents the optimal detection with high detection rate and low
false alarm rate. From the figure, we can observe the same tendency as in Fig. 11: The
detection performance improves as the alien traffic intensity increases. In fact, we can
see that, when the alien traffic level is 70Kbps for 600Kbps typical class traffic and
100Kbps for 2Mbps typical traffic, the system performance approaches the optimum.

8   Conclusions

In this paper, we introduced the framework of a hierarchical, multi-tier, multi-window
fault detection system, using statistical preprocessing and neural network
classification. We described our experiments using five different neural network
classifiers. The results showed that BP and PBH nets outperform Perceptron, Fuzzy
ARTMAP and RBF networks. Thus, the classification capabilities of BP and PBH
classifiers are more desirable for statistical anomaly fault detection systems. We also
presented some of the results of stress testing. The results indicate that the system is
very efficient. It can reliably detect soft faults with traffic anomaly intensity as low as
five to ten percent of the typical service class traffic intensity.
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