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Abstract 
In this paper, a manifold subspace learning algorithm based on locality pre-
serving discriminant projection (LPDP) is used for speaker verification. 
LPDP can overcome the deficiency of the total variability factor analysis and 
locality preserving projection (LPP). LPDP can effectively use the speaker la-
bel information of speech data. Through optimization, LPDP can maintain 
the inherent manifold local structure of the speech data samples of the same 
speaker by reducing the distance between them. At the same time, LPDP can 
enhance the discriminability of the embedding space by expanding the dis-
tance between the speech data samples of different speakers. The proposed 
method is compared with LPP and total variability factor analysis on the 
NIST SRE 2010 telephone-telephone core condition. The experimental results 
indicate that the proposed LPDP can overcome the deficiency of LPP and total 
variability factor analysis and can further improve the system performance. 
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1. Introduction 

Speaker verification is a subtask of speaker recognition, whose purpose is to ve-
rify whether a segment of speech is spoken by a designated speaker [1] [2]. Total 
variability factor analysis has been widely used in speaker verification [3] [4] [5] 
[6]. In total variability factor analysis, the speaker and the channel variabilities 
are contained simultaneously in a low-dimensional space which is referred to as 
the total variability space. By the space mapping, the useful information can be 
obtained by reducing the dimensionality of the mean supervector of the Gaus-
sian mixture model (GMM) and the latent variables can be estimated using li-
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mited data. The low-dimensional variable characteristic of the speaker’s identity 
is called the total variability factor vector, or i-vector. Support vector machine 
(SVM) can be used as a classifier for i-vector [7] [8]. 

As an application of probabilistic principal component analysis (PPCA), total 
variability factor analysis only analyzes the speech data from a global perspective 
[9] [10]. To compensate for the deficiency, we introduced locality preserving 
projection (LPP) [11], neighborhood preserving embedding (NPE) [12], and 
discriminant neighborhood embedding (DNE) [13] to speaker verification. By 
constructing a graph containing the neighborhood information of the speech 
data, the inherent local neighborhood relationship of the speech data is optimal-
ly preserved. Combined with total variability factor analysis, the performance of 
speaker verification is improved [14] [15]. Here, LPP is an unsupervised learning 
algorithm [11] [16] that is not concerned with the speaker label information in 
the dimensionality-reduction process and does not make use of the discrimina-
tive information between the speech data of different speakers. However, the 
speaker label information of the training data and the discriminative informa-
tion of the speech data are of great importance in speaker verification. 

In view of the above shortcomings of LPP, we apply the locality preserving 
discriminant projection (LPDP) algorithm in speaker verification. LPDP can 
bring in the speaker label information from the speech data and, through opti-
mization, preserve the inherent local manifold structure of the speech data sam-
ples from the same speaker to reduce the distance between them. At the same 
time, the distance between the speech data samples from different speakers is 
enlarged to enhance the discriminative ability of the embedding space. 

The remainder of this paper is organized as follows. The LPP algorithm based 
on i-vector is introduced in Section 2. The LPDP algorithm is proposed in Sec-
tion 3. The experiment and results are presented in Section 4. The conclusion is 
given in Section 5. 

2. LPP Algorithm Based on I-Vector 
2.1. Total Variability Factor Analysis 

Based on the total variability space, the GMM mean supervector containing 
speaker and channel information in the speech data can be expressed as 

= +M m Tw                          (1) 

where m is the mean supervector of the universal background model (UBM) in-
dependent of the speaker and channel; T is the total variability space which is 
defined by the total variability matrix; and w is a low-dimensional latent variable 
that obeys the normal distribution, known as the total variability factor vector, 
or identity vector (i-vector). Total variability factor analysis can be regarded as a 
feature-extraction module. It projects the speech data into the low-rank total va-
riability space T to obtain the i-vector w. The training method of T and the ex-
traction process of the i-vector have been described previously [4] [8]. 

The intersession compensation can be carried out in a low-dimensional space 
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where the i-vector lies. The linear discriminant analysis (LDA) approach [17] 
and within class covariance normalization (WCCN) approach [18] are often 
used for intersession compensation. After the intersession compensation, mod-
eling and scoring are made using SVM. 

2.2. LPP Algorithm 

The speaker verification system framework, in which the LPP algorithm based 
on i-vector is used, is presented in Figure 1. The dashed boxes from left to right 
refer to Enrollment, Training and Testing, respectively. 

On the basis of i-vector, the LPP algorithm is used to achieve an effective 
combination of the total variability factor analysis technique and the LPP algo-
rithm that retains both the global and local neighborhood structures of the 
speech data, thereby significantly improving system performance [11]. However, 
the known speaker label information of the speech data is not used in the di-
mensionality-reduction process of the LPP algorithm. As a result, although the 
locality-preserving projection space matrix P has a strong descriptive ability, its 
discriminative ability is not strong, which to a certain degree affects the recognition 

 

 
Figure 1. The framework of speaker verification system by using LPP algorithm based on 
i-vector. 

https://doi.org/10.4236/jcc.2020.811002


C. Y. Liang et al. 
 

 

DOI: 10.4236/jcc.2020.811002 17 Journal of Computer and Communications 
 

performance of the system. 

3. LPDP Algorithm 

LPDP is an effective manifold learning method that has been successfully ap-
plied in face recognition [19]. The basic idea of LPDP is to divide the nearest 
neighbor graph in the LPP algorithm into intra-class and out-of-class graphs. 
LPDP can maintain the local neighborhood relationship of the same speaker's 
speech data samples and reduce the distance between them. At the same time, 
LPDP emphasizes the discrimination information between speakers and expands 
the distance between their speech data. Combined with total variability factor 
analysis, the algorithm can globally and locally analyze the feature structure of 
speech data more comprehensively, and at the same time reflects the be-
tween-speaker difference and enhances the discriminatory ability of the embed-
ding space. 

The idea of applying LPDP to speaker verification is similar to that of LPP as 
shown in Figure 1. The corresponding i-vectors of given N items of training 
speech data with speaker labels constitute a vector set { }1 2, , , N=W w w w , 
where R D

i ∈w , 1,2, ,i N=  . The purpose of LPDP is to find an optimal lo-
cality preserving discriminant projection space matrix [ ]1 2, , , K=A a a a  and 
embed the i-vector of the speech in space RD in the feature-space RK (K < D). In 
the RK space, the speech data point xi is transformed to T

i i=y A w . The steps to 
train the locality preserving discriminant projection space matrix A are as fol-
lows. 

Step 1: Determine the neighborhood of the i-vector wi, which consists of all 
the i-vectors whose similarity with wi is less than its average similarity, i.e., 

( )
T

1 2 2

1 N
i j

i
j i j

w w
MS w

N w w=

= ∑                    (2) 

( ) ( )
T

2 2

i j
i j i

i j

w w
NB w w MS w

w w

  = > 
  

               (3) 

where MS (wi) is the average similarity of all the N i-vectors for the training 
speech data with i-vector wi, and NB (wi) represents the neighborhood i-vectors 
of wi. 

Step 2: Construct two subgraphs of the neighborhood graph: the in-class 
graph Gin and out-of-class graph Gout. In both the in-class graph Gin and the 
out-of-class graph Gout, the i-th node corresponds to the i-vector wi. For the 
in-class graph Gin, we put a directed edge from node i to j if i-vector wj is in the 
neighborhood of i-vector wi and is from the same class as i-vector wi. For the 
out-class graph Gout, we put a directed edge from node i to j if i-vector wj is in 
the neighborhood of i-vector wi but is from the different class of wi. 

Step 3: Calculate the weights of the edges in Gin and Gout, and obtain their re-
spective weight matrices, Win and Wout. 

1) Denote the weight of the edge between i-vector wi and i-vector wj in Gin as 
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in
ijW  and choose its value as 

( ) ( ) ( ) ( )
2

in exp      , or

0                                                           other

i j
i j j i i j

ij

w w
spk w spk w w N w w N w

W t

  −  − = ∈ ∈  = 
 



 (4) 

2) Denote the weight of the edge between i-vector wi and i-vector wj in Gout as 
out

ijW  and choose its value as 

( ) ( ) ( ) ( )out 1       , or

0                                   other
i j j i i j

ij

spk w spk w w N w w N w
W

 ≠ ∈ ∈= 


      (5) 

Here, spk (wi) represents the speaker label information of i-vector wi, and t is 
the mean distance of all the i-vectors for the training speech data. 

Step 4: Calculate the locality preserving discriminant projection matrix A. The 
idea of LPDP is that, in the embedding space, the i-vectors from the same 
speaker have the smallest in-class divergence after projection, i.e., the distance 
between the same speaker’s i-vectors is as small as possible. Conversely, the 
i-vectors from different speakers have the largest between-class divergence after 
projection, i.e., they are as far from each other as possible. To achieve these 
goals, they are integrated into the following two optimization problems [20]: 

( )2 in T in T

,
min mini j ij

i j
y y W tr− =∑ A XL X A              (6) 

( )2 out T out T

,
max maxi j ij

i j
y y W tr− =∑ A XL X A             (7) 

where in in inL D W= −  is a Laplace operator for the in-class graph, Din is a di-
agonal matrix, in in

ii ijjD W= ∑ , out out outL D W= −  is a Laplace operator for the 
out-of-class graph, Dout is a diagonal matrix, and out out

ii ijjD W= ∑ . 
Using the constraint condition T out TD =A X X A I , (6) and (7) can be inte-

grated into one optimization problem, 

( ) ( )

( )

T in T T out T

in out

T T

min

     min

tr tr

tr

α β

α β

 −  
= − 

A XL X A A XL X A

H L L

A XHX A

                           (8) 

which can be further transformed to a generalized eigenvalue problem, 
T out TDλ=XHX A X X A                      (9) 

By solving Equation (9), the locality-preserving discriminant projection space 
matrix [ ]1 2, , , K=A a a a  can be obtained, where 1 2, , , Ka a a  are the eigen-
vectors corresponding to the largest K eigenvalues of the above problem. 

4. Experiments 
4.1. Experimental Setup 

Experiments were carried out on the core test set of the NIST SRE 2010 tele-
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phone training and telephone testing dataset. Equal error rate (EER) and mini-
mum detect cost function (minDCF) were used as metrics for system evaluation 
[21] [22]. 

In the experiments, 36-dimensional Mel Frequency Cepstral Coefficient 
(MFCC) including 18 MFCC coefficients and their first order derivatives were 
utilized. Each frame of a speech utterance was processed by a 20 ms Hamming 
window with 10 ms shift. To mitigate channel effects, feature warping, cepstral 
mean subtraction (CMN) and cepstral variance normalization (CVN) were ap-
plied to the features. 

Two gender dependent universal background models (UBM) with a Gauss 
number of 1024 were trained using the NIST SRE 2004 1-side dataset. The 
gender related total variability matrix T, LPP matrix, LPDP matrix, WCCN, and 
LDA matrix were trained by the NIST SRE 2004, 2005, and 2006 corpus. The 
background data for SVM were also selected from the data of NIST SRE 2004, 
2005 and 2006 datasets. The SVM Light toolkit was used for SVM modeling [23]. 

4.2. Experimental Results 

To verify the performance of the proposed LPDP algorithm, we experimentally 
compared it with the traditional total variability factor analysis and LPP algo-
rithms. 

Table 1 shows the performance comparison of the three algorithms without 
channel compensation. It is observed that applying the LPDP algorithm to 
i-vector is equivalent to effectively combining total variability factor analysis 
technology with the LPP algorithm. This combination can maintain the global 
and local neighborhood structures of the speech data. Compared to total varia-
bility factor analysis, which can only preserve the global structure of speech data, 
LPP and LPDP can significantly improve system performance. LPDP can also 
make effective use of the speaker label information of the speech data and, 
through optimization, maintain the intrinsic local manifold structure of the 
same speaker's speech data. As well, the distance between the speech data of dif-
ferent speakers is expanded in LPDP and the discrimination performance of the 
embedding space is enhanced to further improve system performance. Com-
pared with LPP, LPDP leads to a relative improvement of 16.36% in EER and 
13.04% in minDCF for male testing dataset, and 29.33% in EER and 8.67% in 
minDCF for female testing dataset. 

 
Table 1. Comparison of EER and minDCF of LPDP, LPP, and total variability factor 
analysis (without channel compensation). 

System 
Male Female 

EER (%) minDCF EER (%) minDCF 

Total variability factor analysis 8.42 0.0672 9.84 0.0832 

LPP 5.99 0.0606 8.66 0.0738 

LPDP 5.01 0.0527 6.12 0.0674 
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Table 2 shows the experimental results of the three algorithms with LDA in-
tersession compensation. The table shows that, with LDA channel compensa-
tion, LPDP performs better than LPP. For male and female testing dataset, EER 
of the LPDP system was relatively improved by 23.78% and 26.67%, respectively, 
and minDCF was relatively improved by 11.18% and 5.95%, respectively. 

Table 3 shows the experimental results of the three algorithms with WCCN 
intersession compensation. When compared to the performance of LPP with 
WCCN channel compensation, Table 3 shows that LPDP system outperforms 
the LPP system, yielding 11.81% relative improvement in EER and 6.85% in 
minDCF for male testing dataset, as well as 8.2% relative improvement in EER 
and 5.19% in minDCF for female testing dataset. 

Table 4 shows the experimental results of the three algorithms after perform-
ing both LDA and WCCN. The table shows that LPDP still outperformed LPP 
when channel compensation was provided by both LDA and WCCN. Compared 
to the performance of LPP, the LPDP system gives additional gains of 9.16% and 
11.47% respectively in EER and minDCF for male testing dataset, as well as 
10.94% and 10.40% respectively in EER and minDCF for female testing dataset. 

 
Table 2. Comparison of EER and minDCF of LPDP, LPP, and total variability factor 
analysis (LDA channel compensation). 

System 
Male Female 

EER (%) minDCF EER (%) minDCF 

Total variability factor analysis + LDA 5.07 0.0516 7.40 0.0723 

LPP + LDA 5.55 0.0492 7.65 0.0622 

LPDP + LDA 4.23 0.0437 5.61 0.0585 

 
Table 3. Comparison of EER and minDCF of LPDP, LPP, and total variability factor 
analysis (WCCN channel compensation). 

System 
Male Female 

EER (%) minDCF EER (%) minDCF 

Total variability factor analysis + WCCN 6.77 0.0532 9.32 0.0752 

LPP + WCCN 5.08 0.0456 6.22 0.0540 

LPDP + WCCN 4.48 0.0426 5.71 0.0512 

 
Table 4. Comparison of EER and minDCF of LPDP, LPP, and total variability factor 
analysis (LDA + WCCN channel compensation).  

System 
Male Female 

EER (%) minDCF EER (%) minDCF 

Total variability factor analysis 
+ LDA + WCCN 

4.61 0.0502 6.14 0.0607 

LPP + LDA + WCCN 4.43 0.0462 5.85 0.0577 

LPDP + LDA + WCCN 4.02 0.0409 5.21 0.0517 
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5. Conclusion 

On the basis of LPP, this paper introduced LPDP to speaker verification. LPDP 
makes full use of the speaker label information of the speech data to categorize 
and differentiate the neighborhood. It can overcome the shortcomings of the to-
tal variability factor analysis method and maintain the intrinsic local neighbor-
hood relationship of in-class (same speaker) speech data and more comprehen-
sively reflect the global and local structure of the speech data. It can also address 
the inadequacy of LPP and maximize the distance between out-of-class (differ-
ent speakers) speech data to obtain the most discriminative feature vector and 
enhance the discriminative ability of the projection space, thereby improving the 
recognition performance of the system. Our future work will be devoted to en-
hance the discrimination of the embedding space and further improve the rec-
ognition performance of the system. 
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