
Application of Prior Information to
Discriminative Feature Learning

Yang Liu

Computer Laboratory
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Lucy Cavendish College November 2018

Application of Prior Information to
Discriminative Feature Learning

Yang Liu

Learning discriminative feature representations has attracted a great deal of attention since it
is a critical step to facilitate the subsequent classification, retrieval and recommendation tasks.
In this dissertation, besides incorporating prior knowledge about image labels into the image
classification as most prevalent feature learning methods currently do, we also explore some
other general-purpose priors and verify their effectiveness in the discriminant feature learning.
As a more powerful representation can be learned by implementing such general priors, our
approaches achieve state-of-the-art results on challenging benchmarks. We elaborate on
these general-purpose priors and highlight where we have made novel contributions.

We apply sparsity and hierarchical priors to the explanatory factors that describe the data,
in order to better discover the data structure. More specifically, in the first approach we pro-
pose that we only incorporate sparse priors into the feature learning. To this end, we present
a support discrimination dictionary learning method, which finds a dictionary under which
the feature representation of images from the same class have a common sparse structure
while the size of the overlapped signal support of different classes is minimised. Then we
incorporate sparse priors and hierarchical priors into a unified framework, that is capable
of controlling the sparsity of the neuron activation in deep neural networks. Our proposed
approach automatically selects the most useful low-level features and effectively combines
them into more powerful and discriminative features for our specific image classification
problem.

We also explore priors on the relationships between multiple factors. When multiple
independent factors exist in the image generation process and only some of them are of
interest to us, we propose a novel multi-task adversarial network to learn a disentangled
feature which is optimized with respect to the factor of interest to us, while being distraction
factors agnostic. When common factors exist in multiple tasks, leveraging common factors
cannot only make the learned feature representation more robust, but also enable the model
to generalise from very few labelled samples. More specifically, we address the domain
adaptation problem and propose the re-weighted adversarial adaptation network to reduce
the feature distribution divergence and adapt the classifier from source to target domains.

Declaration

This dissertation is submitted for the degree of Doctor of Philosophy. As required by the
University Statues, I hereby declare that this dissertation is not substantially the same as
any that I have submitted, or, is being concurrently submitted for a degree or diploma or
other qualification at any other University. This dissertation is the result of my own work
and includes nothing which is the outcome of work done in collaboration except where
specifically indicated in the text and Acknowledgements.

This dissertation contains less than the limits of 150 figures and 60,000 words.

Yang Liu
November 2018

Acknowledgements

First of all, I would like to express my deepest thanks to my supervisor, Dr Ian Wassell,
for his kind support and patience all the way during my PhD study. He has offered me
the freedom to pursue my own research interest and he has always been helpful to give me
valuable advice when difficulties occurred. His professional spirits, patience, and expertise
have played important roles in my life.

My heartfelt thanks are also to my coauthor Qingchao Chen at University College London
for all the insightful discussions and detailed suggestions. He has always been kind and
supportive whenever I asked for help. Thanks for his time and efforts helping me with my
coding and mathematical difficulties.

I would also thank Zhaowen Wang and Hailin Jin at Adobe Research, for many insightful
discussion and professional collaborations that helped me improve the value of my research
from both academic and industrial perspectives. I am very grateful to Adobe Research for
giving me the freedom to carry on my research during my visit.

I appreciate the kindness from the members of the Digital Technology Group and the
support from the staff of the Computer Laboratory. My particular thanks to Mrs Lise Gough
for offering the kindest and warmest advises whenever needed.

I would also like to thank the Cambridge Trust scholarship, Lucy Cavendish College,
the Computer Laboratory and Cambridge Philosophical Society for their generous financial
support.

The last paragraph is reserved for my parents, for their cares, understanding, great support
and so much more besides.

Yang Liu
November 2018

Table of contents

List of figures xiii

List of tables xvii

List of Acronyms xix

List of Symbols xxi

1 Introduction 1
1.1 Feature Learning . 1
1.2 Contribution . 2
1.3 Organization . 3
1.4 Publication List . 5

2 Preliminaries 7
2.1 Sparse Representation and Dictionary Learning 7

2.1.1 Overview . 7
2.1.2 Sparse Coding . 8
2.1.3 Sparse Representation based Classification 11
2.1.4 Dictionary Learning . 12

2.2 Neural Networks . 15
2.2.1 Convolutional Neural Network . 15
2.2.2 Loss functions . 18
2.2.3 Backpropagation . 18
2.2.4 Strategies in Training Neural Networks 20
2.2.5 Deep Neural Network Architectures 22

2.3 Application of Prior Information . 25
2.4 Chapter Summary . 27

x Table of contents

3 Support Discrimination Dictionary Learning 29
3.1 Introduction . 30
3.2 Support Discrimination Dictionary Learning 33

3.2.1 Problem Formulation . 33
3.2.2 Optimisation . 36
3.2.3 The Classification Scheme . 38

3.3 Experiments and Results . 39
3.3.1 Parameter Selection . 39
3.3.2 Factors Analysis . 40
3.3.3 Evaluation on Object Recognition Dataset 43
3.3.4 Evaluation on Face Recognition Dataset 44
3.3.5 Evaluation on Scene Recognition Dataset 46

3.4 Chapter Summary . 47

4 Dictionary Learning Inspired Deep Network for Scene Recognition 49
4.1 Introduction . 51
4.2 Integration of Dictionary Learning and CNN 54

4.2.1 Network Architecture . 54
4.2.2 Loss Function Design with Integration of the Label Discriminative

Regressor . 56
4.2.3 Nonlinear Dictionary Learning Layer 57

4.3 Experiments and Results . 59
4.3.1 Datasets and Experimental Settings 59
4.3.2 Factor Analysis . 61
4.3.3 Results and Comparisons . 65

4.4 Chapter Summary . 67

5 Multi-Task Adversarial Network for Disentangled Feature Learning 69
5.1 Introduction . 71
5.2 Related Work . 74

5.2.1 Disentangled Representation . 74
5.2.2 Adversarial Learning . 74

5.3 Multi-Task Adversarial Network . 75
5.3.1 Multi-Class Adversarial Training 76
5.3.2 Comparison with Prior Adversarial Models 78

5.4 Experiments and Results . 79
5.4.1 Evaluation on Font Recognition Dataset 80

Table of contents xi

5.4.2 Evaluation on Face Reognition Dataset 84
5.5 Chapter Summary . 88

6 Re-weighted Adversarial Adaptation Network for Domain Adaptation 89
6.1 Introduction . 91
6.2 Related Work . 93

6.2.1 Matching Feature Distribution using Adversarial Training 93
6.2.2 Matching Feature Distribution using Optimal Transport 93
6.2.3 Instance Re-weighting Scheme . 94

6.3 Re-weighted Adversarial Adaptation Network 94
6.3.1 Optimal Transport in Adversarial Training 96
6.3.2 Adapting the Classifier by Label Distribution Matching 98
6.3.3 Optimization in RAAN . 100

6.4 Experiment and Results . 100
6.4.1 Datasets and Experimental Settings 101
6.4.2 Evaluation on Hand-Written Digit Dataset 103
6.4.3 Evaluation on the Cross-modality Dataset 104
6.4.4 Evaluation on the Office-Caltech Dataset 106
6.4.5 Analysis . 106

6.5 Chapter Summary . 109

7 Conclusion and Future Work 111
7.1 Contribution Summary . 111
7.2 Future Work . 113

7.2.1 Other Potential Priors in Supervised Learning Problems 113
7.2.2 Priors for Large-scale Unsupervised Learning Problems 113
7.2.3 Priors for Model Compression and Training Acceleration 114

References 115

List of figures

2.1 ℓp norm unit ball. 10
2.2 Overview of sparse representation based classification (SRC) approach [175].

The method represents a test image (left), which is potentially occluded, as
a sparse linear combination of all the training images (middle) plus sparse
errors (right) due to occlusion. The red (darker) coefficients correspond to the
training images of the correct individual. The SRC algorithm determines the
true identity (indicated with a red box on the second row and third column)
from 700 training images of 100 individuals (seven each) in the standard AR
face database. 12

2.3 c2 Convolution filters with shape h1×w1× c1. 16
2.4 Comparison of common activation functions. 18
2.5 Dropout . 22
2.6 AlexNet and VGGNet architectures. The description ‘m×m conv n’ denotes

there are n filters in this convolutional layer, each with spatial size m×m.
The description ‘FC n’ indicates there are n neurons in the fully connected
layer. 24

2.7 Inception Modules . 24
2.8 Comparison of plain layer concatenation and residual block 25

3.1 The design principle of our proposed approach. 32
3.2 Effect of dictionary size on the classification performance of various DL

methods. For the Caltech 101 dataset, the size of training samples per class
is fixed to 30. The dictionary atoms per class is varied from 10 to 30. As can
be seen, our proposed method outperforms the other DL-based methods. . . 40

3.3 The convergence curve of objective function on the AR database. 41

xiv List of figures

3.4 An example for 4 test images and their corresponding coefficients. (a) shows
4 training samples of the 2nd subject in Extended Yale B database; (b) and
(c) show the four coefficients corresponding with two dictionaries, where
one is learned with ℓ1 regularisation while the other with ℓ2/ℓ1 regularisation
respectively. 42

3.5 Comparison between the scatter matrices calculated based on the sparse
coding of the same test samples from two different dictionaries. In (a),
the dictionary is learned without the discrimination term, and in (b), the
dictionary is learned using the discrimination term. 43

3.6 The comparison between the similarity index calculated based on the sparse
coding of the same test samples from two different dictionaries.The red line
represents the similarity index calculated by the dictionary learned using
the discrimination term, while the blue line represents the similarity index
without. 44

3.7 Some sample objects from the Caltech-101 dataset. 44
3.8 Some sample images in Extended Yale B and AR face dataset 45
3.9 Some sample images from the 15 Scene Categories dataset. 46

4.1 Incorporate sparse and hierarchical priors into feature learning. 51
4.2 Comparison between the conventional CNN architecture and our CNN-DL

architecture. 52
4.3 The design of a non-linear dictionary learning layer. Each blue box in the

Fig.4.3(a) represents a recurrent unit, which corresponds to one iteration
in the AMP sparse coding procedure. The red box in Fig.4.3(a) shows a
recurrent unit at the kth iteration, the details of which are given in Fig.4.3(b). 57

4.4 Some sample images from the MIT 67 dataset. 60
4.5 Some sample images from the SUN 397 dataset. 61
4.6 Effect of dictionary size on the recognition accuracy. 62
4.7 LSM of DLL activations using different layers 63

5.1 Images of human faces are determined by two independent factors, i.e.,
identity and pose.. 70

5.2 Overall network architecture of our proposed adversarial disentangling model.
The model is composed of four components: an encoder, a generator, a
content discriminator, and a style discriminator. The encoder is used to
extract the content feature representation of the image, which is good for
content recognition but not for differentiating the styles. 73

List of figures xv

5.3 Comparison of previous GAN and auto-encoders architectures with our
proposed MTAN. 79

5.4 Examples of the images with different fonts or glyphs. (a) Example of three
different Fonts ; (b) Example of three different Glyphs. 80

5.5 Comparison of font and glyph recognition accuracy on test set between
models trained with different adversarial losses. (a) the mean and standard
deviation (error bar) of font recognition; (b) the glyph recognition accuracy
in multiple training trails. 84

5.6 Synthetic images that matches the font of the input image and the style of
given style indicators. We compare synthetic images (top) and their ground
truth images (bottom). 85

5.7 Face synthesis with varying poses and illuminations conditioned on single
input image (indicated by red boxes). 87

6.1 Multiple Tasks share common factors. 90
6.2 RAAN’s architecture: first, in the source domain, the source feature encoder

Es and the classifier C are trained to extract discriminative features from
images xxxs labeled by ys by minimizing the cross entropy loss LCE . Second,
to adapt the classifier by matching the label distribution between domains,
the re-weighted source domain label distribution PRe(YYY s) is computed by
transforming a learnable variable ααα using the soft-max function. We use the
soft-max function in order to guarantee that the sum of all entries in PRe(YYY s)

is equal to 1. Then it is straightforward to obtain the ratio vector as follows:
βββ = PRe(YYY s)

Ps(YYY s) . To extract transferable features for the target domain images
xxxt , the target feature encoder Et , domain discriminator D and the estimated
density ratio vector βββ play the following adversarial game: βββ and D try to
discriminate whether features are from the target or source domain, while Et

tries to confuse D and βββ . 95
6.3 DA datasets: (a) four hand-written digit datasets; (b) cross-modality dataset

including RGB and RGB-depth images. 102
6.4 Example images from the MONITOR category in Caltech256, Amazon,

DSLR, and Webcam. Caltech and Amazon images are mostly from online
merchants, while DSLR and Webcam images are from offices. 102

6.5 Ratio of label distribution βββ between SVHN and MNIST; red line indicates
the ground truth ratio, while blue one indicates the estimated ratio. 107

xvi List of figures

6.6 T-SNE plot of features when adapting from SVHN to MNIST; (a) No adap-
tation (b) Adaptation after ADDA (c) Adaptation after RAAN. We randomly
select 1000 features samples from 10 classes, with 100 samples per class. . 108

List of tables

3.1 Recognition Rates (%) for Object Classification 44
3.2 Recognition Rates (%) for Face Classification 46
3.3 Recognition Rates (%) for Scene Classification 47

4.1 Dataset and Experimental Details . 61
4.2 Effect of number of Recurrent Units in DLLs 63
4.3 Effect of number of Recurrent Units in DLLs 64
4.4 Analysis for Factor A3: cascaded DLLs 64
4.5 Recognition Rates (%) for different factors setting 64
4.6 Recognition Rates (%) for different architectures and multi-scale variations 65

5.1 Network Structure for Font Recognition 81
5.2 Recognition rate (%) comparison on Font database 82
5.3 Network Structure for Face Recognition 86
5.4 Recognition rate (%) comparison on Multi-PIE database 87

6.1 Recognition rates of adapting hand-written digit datasets; RAAN(+) and
RAAN(-) indicate results with and without the re-weighting scheme respec-
tively. 104

6.2 Recognition rates of adapting from MNIST to MNIST-M; RAAN(+) and
RAAN(-) indicate results with and without the re-weighting scheme respec-
tively. 104

6.3 Adaptation results in cross-modality dataset; RAAN(+) and RAAN(-) indi-
cate results with and without the re-weighting scheme respectively. 105

6.4 Adaptation Result on the Office-Caltech Dataset 106
6.5 A-Distance of Adversarial Training Method 108

List of Acronyms

AAE Adversarial Auto-encoder
ADMM Alternating direction method of multipliers
AMP Approximately message passing
AWGN Additive white Gaussian noise
BP Basis pursuit
BPDN Basis pursuit de-noise
CNN Convolutional neural network
DA Domain Adaptation
DFT Discrete Fourier Transform
DL Dictionary learning
DLL Dictionary learning layer
DNN Deep Neural Networks
ELU Exponential linear unit
EMD Earth Mover’s Distance
FCL Fully connected layer
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
FOCUSS Focal underdetermined system solver
GAN Generative adversarial networks
GPU Graphics processing unit
IRLS Iteratively reweighted least squares minimization
JS Jenson-Shannon
LASSO Least absolute shrinkage and selection operator
MMD Maximum Mean Discrepancy
MMV Multiple measurement vector
MOD Method of optimal direction
MSE Mean-Squared Error
OT Optimal transport
ReLu Rectified Linear Unit

xx List of tables

ResNet Residual net
RIP Restricted isometry property
SGD Stochastic gradient descent
SRC Sparse representation based classification
UDA Unsupervised domain adaptation
WGAN Wasserstein GAN

List of Symbols

x Scalar
xxx Vector
XXX Matrix
f (·),F(·) Function
δ (·) The Dirac delta function
E(·) Expectation
P(·) Probability
∥xxx∥p ℓp norm
∥XXX∥p,q ℓp,q norm
∥XXX∥F Frobenius norm
(XXX)T Matrix transpose
(XXX)−1 Matrix inverse
111 Array with all ones
III Identity matrix
xi The ith element of the vector xxx
x(i, j) The element at the ith row , the jth column of XXX
xxxi The ith column of the matrix XXX
XXX i The sub-matrix of the matrix XXX for the ith class
x(k), xxx(k), XXX (k) Scalar, vector and matrix at the kth iteration
diag(xxx) Diagonal matrix with diagonal elements given by vector xxx
xxx⊙2 Element by element square of vector xxx
max(·) Operator of taking the maximum value
min(·) Operator of taking the minimum value
◦ Operator of Hadamard element-wise product
∗ Operator of Convolution
∂L
∂θ

Gradient of the loss L with respect to parameters θ

N (µµµ,ΣΣΣ) Multivariate normal distribution with mean vector

Chapter 1

Introduction

1.1 Feature Learning

Computer vision has been successfully used in real-world recognition problems, where
state-of-the-art recognition algorithms focus on training the classifier or the regressor from
large training sets. Learning discriminative feature representations has attracted a great deal
of attention since it is a critical step to facilitate the subsequent classification, retrieval and
recommendation tasks. A discriminative feature representation of the data can make it easier
to extract useful information when building classifiers or other predictors [9].

However, classical computer vision approaches depended on hand-crafted features that
often rely on expert knowledge and are time consuming to design, thus limiting the scalability
and effectiveness of the approach. This motivates the design of efficient feature learning
techniques to automatically learn the intrinsic structure of data and to discover valuable
information from raw data. As real-world data such as images, video, and sensor measure-
ment are usually complex, redundant and highly variable, how to discover useful feature
representation in a scalable and efficient manner from raw data is still a challenging open
question.

In the world of big data, where priors are not usually available, the progress of feature
learning is limited by the growth of computational power and the growth of data. Incorporat-
ing prior knowledge about the representation has long been known to influence profoundly
the effectiveness of feature learning [9]. In the image classification task, the primary prior
information comes from the labels, which inform the model that a set of images contains
similar patterns. Most of the current prevalent feature learning methods rely upon a sig-
nificant amount of labelled data (label priors), which is expensive and laborious to collect,
and may be infeasible to produce in some cases. Hence techniques to automatically learn
feature representation from limited labelled data are desirable. In this dissertation, besides

2 Introduction

label priors, we explore different types of general-purpose prior knowledge and employ
data-driven models for learning a discriminative and compact image representation, that is
ideal for robust image classification. It is worth noting that these general-purpose priors
require some knowledge of the domain to permit design but, unlike hand-designed features,
are higher level and have relatively broad applicability.

1.2 Contribution

The fundamental aim of this dissertation is to explore feature representations that have a
better discriminative and generalisation capability for robust image classification, and can
be applied to a broad range of scenarios. Besides incorporating label priors into the image
classification as most prevalent feature learning methods currently do, we also explore some
other general-purpose priors and verify their effectiveness in the image classification task.
More specifically, we apply different general priors, particularly to explanatory factors
that describe the data, in order to better discover the data structure. As a more powerful
representation can be learned by implementing such general priors, our approaches achieve
state-of-the-art results on challenging benchmarks. We elaborate on these general-purpose
priors and highlight where we have made novel contributions.

1. Sparsity: For any given image, only a small fraction of the possible factors are
relevant to describe it. In terms of feature representation, this could be achieved by
incorporating certain forms of sparse priors on the representation. In Chapter 3, we
first derive a new discriminative metric (which defines the similarity between objects)
that uses the sparse structure of the feature representation rather than the magnitude
of the feature representation directly in order to enhance the discrimination capability
and consequently providing robust image classification.

2. A hierarchical organisation of explanatory factors: These factors (or concepts) are
useful to describe the data in a hierarchical fashion, where the more abstract concepts
that are higher in the hierarchy are defined in terms of less abstract ones. In Chapter
4, we provide a unified framework that can potentially take advantage of sparse and
hierarchical priors. More specifically, by incorporating dictionary learning (sparse
prior) and deep learning (hierarchical prior), we propose an approach to control the
sparsity of neuron activation in the deep neural networks, that automatically select the
most reuseful low level features and effectively combine them into more powerful and
discriminative features for our specific image classification problem.

1.3 Organization 3

3. Multiple independent explanatory factors: Multiple independent factors exist in
the image generation process, however, in most applications only some factors are of
interest to us. A good feature representation should disentangle the underlying factors
so that what one learns about one factor could generalise to many configurations of
the other factors. In chapter 5, instead of learning a shared representation to predict
all the factors as is performed in conventional multi-task learning, we propose a novel
multi-task adversarial network to learn a disentangled feature which is optimised with
respect to the factor of interest to us, while being distraction factors agnostic.

4. Common factors across tasks: When common factors exist in multiple tasks, leverag-
ing common factors cannot only make the learned feature representation more robust,
but also enable the model to generalise from very few labelled samples. By incorpo-
rating the prior knowledge about common factors across classification tasks in two
domains, in chapter 6 we propose a new unsupervised domain adaptation model, i.e.,
the re-weighted adversarial adaptation network, that reduces the feature distribution
divergence and adapts the classifier from source (labelled) to target (unlabelled) do-
mains. Consequently, the image classification performance can be enhanced when the
feature learned from training data can perform well on test data that have never been
seen in training or have even been sampled from a different domain, i.e., has a better
generalisation capability.

1.3 Organization

This dissertation is organised as follows:
Chapter 2 gives the necessary background on dictionary learning and neural networks,

particularly concerning sparse coding and deep convolutional neural networks. We also
provide a discussion on contemporary deep learning architectures with a particular emphasis
on image classification, in order to better understand our work and motivation.

Chapter 3 is the first chapter where we begin to present our research contributions. By
incorporating the sparse prior on feature representation, we propose a new discriminative
metric that uses the sparse structure, i.e., support, to measure the similarity between the
pairs of feature representations, rather than using the Euclidean distance directly, which is
an approach that is widely adopted in the prior art. Here the support of the representation
denotes the indices of the non-zero elements of the sparse image representation under some
dictionary. More specifically, we incorporate a structured sparse prior in feature learning
and propose a support discrimination dictionary learning method, which finds a dictionary
under which the feature representation of images from the same class have a common sparse

4 Introduction

structure while the size of the overlapped signal support of different classes is minimised.
The superior performance of the proposed approach in comparison to the state-of-art is
demonstrated using face, object and scene datasets.

Chapter 4 presents the work conducted concerning the use of both sparse and hierarchi-
cal priors on feature representation to achieve more powerful and discriminative features. In
our approach, we propose a unified framework, that combines the strength of both a con-
ventional convolutional neural network (hierarchical prior) and dictionary learning (sparse
prior), to automatically select the most useful low level features and effectively combine
them into a more abstract, discriminant and robust feature representation to better describe
categorical concepts in image understanding. Moreover, we take advantage of the structure
of the dictionary and design a new label discriminative regressor to further improve the
discriminative capability and avoid overfitting. Our proposed approach is evaluated using
various challenging scene datasets and shows superior performance to many state-of-the-art
approaches.

Chapter 5 address the problem of image feature learning where multiple independent
factors exist in the image generation process and only some of the factors are of interest to
us. We present a novel multi-task adversarial network based on an encoder-discriminator-
generator architecture. The encoder extracts a disentangled feature representation for the
factors of interest. The discriminators classify each of the factors as individual tasks. The
encoder and the discriminators are trained cooperatively on the factors of interest, but in an
adversarial way on the factors of distraction. The generator provides further regularisation
on the learned feature by reconstructing images with shared factors as the input image. We
design a new optimisation scheme to stabilise the adversarial optimisation process when
multiple distributions need to be aligned. The experiments conducted on face recognition
and font recognition tasks show that our method outperforms the state-of-the-art methods in
terms of both recognising the factors of interest and generalisation to images with unseen
variations.

Chapter 6 address the domain adaptation problem by using the prior knowledge about
the common explanatory factors that exist between classification tasks in two tasks/domains.
We propose a new re-weighted adversarial adaptation network that can jointly learn adaptive
classifiers and transferable features from labelled data in the source domain and unlabeled
data in the target domain. More specifically, to alleviate the requirement for many common
supports in matching the feature distribution between the source and target domains, we
choose to minimise the optimal transport based Earth-Mover distance and reformulate it
to a minimax objective function. The overall network can be trained in an end-to-end and
adversarial manner. To further adapt the classifier, we propose to match the label distribution

1.4 Publication List 5

and embed it into the adversarial training. Empirical evidence shows that the new approach
outperforms state of the art methods on standard domain adaptation benchmarks, particularly
when the domain shifts are disparate.

Chapter 7 summarises the contributions made in this dissertation, reviews the results, and
looks at the research questions that arise from work presented in this dissertation. Proposals
are made for future possible research directions.

1.4 Publication List

These contributions have led to the following publications:

1. Yang Liu, Ian J. Wassell. A New Face Recognition Algorithm based on Dictionary
Learning for a Single Training Sample per Person. British Machine Vision Conference
(BMVC 2015), Sep 2015.

2. Yang Liu, Wei Chen, Qingchao Chen, Ian J. Wassell, Support Discrimination Dictio-
nary Learning for Image Classification. European Conference on Computer Vision
(ECCV 2016), Oct 2016. [Chapter 3]

3. Wei Chen, David Wipf, Yu Wang, Yang Liu, Ian J. Wassell, Simultaneous Bayesian
Sparse Approximation With Structured Sparse Models, IEEE Transactions on Signal
Processing 2016 (TSP 2016).

4. Qingchao Chen, Mat Ritchie, Yang Liu, Kevin Chetty, Karl Woodbridge, Joint fall
and aspect angle recognition using fine-grained micro-Doppler classification, IEEE
Radar Conference, May 2017.

5. Yang Liu, Qingchao Chen, Wei Chen, Ian J. Wassell, Discriminant Dictionary Learn-
ing meets CNN in Scene Recognition. Conference on Artificial Intelligence (AAAI
2018), Feb 2018. [Chapter 4]

6. Yang Liu, Zhaowen Wang, Hailin Jin, Ian J. Wassell, Multi-Task Adversarial Network
for Disentangled Feature Learning. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2018), June 2018. [Chapter 5]

7. Yang Liu*1, Qingchao Chen*, Zhaowen Wang, Ian J. Wassell, Kevin Chetty, Re-
weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), June
2018. [Chapter 6]

1* indicates equal contributions

Chapter 2

Preliminaries

In this chapter, we give the necessary background regarding sparse representation, dictionary
learning and neural networks with particular emphasis on image classification, in order to
better understand our work and its motivation.

2.1 Sparse Representation and Dictionary Learning

Theoretical developments of sparse representation [31][176][183] have received much atten-
tion in the past decade and it has made a significant impact in the disciplines of computer
vision and other machine learning applications. Based on sparse representation theory, a
signal can be decomposed into a linear combination of a few basic signals which is capable
of representing most of the information conveyed by the target signal. In this section, we
review the theories and algorithms that form the basis of sparse representation and dictionary
learning. We also discuss their potential for use in discriminative feature learning tasks.

2.1.1 Overview

Given the fact that most natural signals have a concise representation when expressed in some
certain basis, we can use only a few nonzero entries in ααα to reflect the features of seemingly
dense data yyy. Mathematically, finding the maximally sparse representation ααα ∈ RN from its
dense representation yyy ∈ RM is an ill-posed inverse problem, which can be represented as:

min∥ααα∥0 s.t. yyy = DDDααα, (2.1)

8 Preliminaries

where DDD ∈RM×N is a known dictionary, ∥ααα∥0 denotes the ℓ0 norm that counts the number of
nonzero values in the vector ααα . If the objective allows for some tolerance on the fitting error:

yyy = DDDααα +nnn, (2.2)

where nnn is the noise term, we instead consider a denoised version of optimization:

min∥ααα∥0 s.t. ∥yyy−DDDααα∥2
2 ≤ ε, (2.3)

where ε upper bounds the energy of the fitting error nnn. In the context of dictionary learning,
the dictionary DDD is not fixed, and the task involves learning the dictionary from the data in a
supervised learning step.

However, the problem expressed in Eq. (2.1) is computation intractable, which is known
to be NP-hard as the search for the exact solution of ααα is nontrivial when the data dimension
becomes large. Therefore, Eq. (2.1) is often relaxed into an equivalent tractable optimisation
problem. We now introduce some existing algorithms in the literature that play essential
roles in calculating the maximally sparse representation, i.e., sparse coding.

2.1.2 Sparse Coding

Many approaches have been proposed in the literature to calculate the sparse representation,
most of which can be classified into two categories, i.e., convex optimisation, and concave
optimisation. We will briefly review these algorithms in this section. For other types of
algorithms, e.g., greedy methods, Bayesian approaches, we refer the readers to the following
literature [26] [51] [91] [128] [161] [173] [192].

Convex Optimization

The ℓ1 penalty has been traditionally considered as the tightest convex approximation of the
ℓ0 problem in Eq. (2.1). Basis Pursuit (BP) [31] refers to the problem of relaxing the ℓ0 to
the ℓ1 penalty. The convexity guarantees that the optimal solution of the problem is always
the unique global solution without falling into any local minimum traps. In its noiseless form,
the objective in Eq. (2.1) changes to:

min∥ααα∥1 s.t. yyy = DDDααα. (2.4)

2.1 Sparse Representation and Dictionary Learning 9

Its denoised version, which is called Basis Pursuit De-Noising (BPDN), is correspondingly
expressed as:

min∥ααα∥1 s.t. ∥yyy−DDDααα∥2
2 ≤ ε. (2.5)

It is worth noting that the equivalence between Eq. (2.1) and (2.4) does not always hold
unless both the signal and the dictionary meet some certain conditions, specifically the
restricted isometry property (RIP) [24][25][26]. Generally, if the columns of dictionary DDD
are highly incoherent and the concise representation ααα is sufficiently sparse, we are confident
that we can obtain the exact sparsest solution from the dense observation yyy.

In addition to the problem represented in (2.4), some equivalent formulations also exist.
For example, the denoised version of recovery problem can also be modeled as :

min
ααα
∥yyy−DDDααα∥2

2 s.t. ∥ααα∥1 ≤ η , (2.6)

where η ≥ 0. This formulation is called the least absolute shrinkage and selection operator
(LASSO) [101]. For some choice of parameter λ ≥ 0, the LASSO can be written as an
unconstrained problem:

min
ααα
∥yyy−DDDααα∥2

2 +λ∥ααα∥1. (2.7)

In principle, there is a one-to-one correspondence between λ and the sparsity bound η . Some
discussion about the choice of λ is given in [55].

Convex optimisation aims to search for the globally optimal solution, and many ap-
proaches have been proposed for this purpose. Interior-point-methods are first developed for
sparse coding in [31] [147], which are then improved for the compressive sensing problem
in [23][95]. However, the computational complexity of Interior-point-methods are often too
high for large-scale high-dimensional image data. In the light of a large number of real-world
vision applications, many new efficient gradient-related algorithms have been proposed over
the past decade. These efficient ℓ1 minimization solvers include, but are not limited to,
IST [42], SpaRSA[176], TwIST [16], GPSR[60], Approximately Message Passing (AMP)
algorithms[50] and the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)[5].

Concave Optimization

Although the convexity of ℓ1 minimisation avoids difficulties related to the local minimum
issue, the associated global minimum of Eq. (2.4) may be biased away from the global
minimum of Eq. (2.1), if dictionary coherence or the sparsity level breaks the RIP [25]
requirement. An alternate solution is hence to consider replacing the convex penalty by
some other non-convex penalty that not only has the same global optimum of Eq. (2.1), but

10 Preliminaries

Fig. 2.1 ℓp norm unit ball.

also smooths away most of its local minima and also has tractable updates for the feasible
solution.

It is well-known that concave, non-decreasing functions of the representation magnitudes
promote sparse solutions [141][142][173]. Without giving much detail of the proof of this
statement, we could instead get some basic understanding from its geometric interpretation
with the help of ℓp norm unit ball. In Fig. 2.1, we use the ℓp norm penalty in a 2D case as
an example. We can see that the concave penalty (0 < p < 1) is highly peaked at the sparse
solution compared with its convex counterpart (1≤ p). More specifically, we are seeking the
solution that has the minimum objective function value ∥ααα∥p that is also a feasible solution
of constraint set, i.e., yyy = DDDααα . From the view of Fig. 2.1, the unit ball with different norms
grow from the origin point (0,0) until the first tangent point in the constraint set is reached.
Clearly, the concave penalty (0 < p < 1) is highly peaked at the sparse solution (located
along the axes). In contrast, the convex penalty, e.g., ℓ2 norm ends up with a locus that is
a ball, in which the tangent point is not necessary located along the axes; thus no sparse
solution is encouraged.

In this section, we consider approaches that relax the zero-norm constraint to a ℓp mini-
mization problem. The ℓp norm used in the Focal Undetermined System Solver (FOCUSS)
algorithm [75] which are defined according to ∥ααα∥p = ∑i |αi|p are known to promote sparsity
when (0 < p≤ 1). We hence replace the constraints in the loss function representation in Eq.
(2.3) with an appropriate regularization term, yielding the FOCUSS loss function:

min
ααα
∥yyy−DDDααα∥2

2 +λ∥ααα∥p . (2.8)

FOCUSS is also known by another name, specifically Iterative Reweighted Least Square
(IRLS) [75]. The underlying principle used in this approach is as shown:

2.1 Sparse Representation and Dictionary Learning 11

∥ααα∥p = ∑
i
|αi|p = ∑

i
|αi|2|αi|p−2 = ∑

i
wi|αi|2 = ααα

TWWW (ααα)ααα, (2.9)

where WWW (ααα) = diag(|αi|p−2). Replacing ααα in WWW (ααα) with a current estimate α̂αα essentially
approximates the ℓp norm by a weighted ℓ2 norm. IRLS optimizes a non-convex objective
and therefore is only locally convergent to some sub-optimal result. Chartrand and Yin [30]
introduced a regularizer ε for augmenting the IRLS, that varies from large to small as the
number of iterations increases, in doing so smoothing the objective function and consequently
avoiding most of local minima. Candes et al. [27] introduced an iteratively reweighted ℓ1

minimization method, which repeatedly solves the ℓ1 minimization problem to further boost
sparsity. Wipf provided an extensive analysis on ℓ2 and ℓ1 reweighting schemes and made a
distinction between separable and non-separable concave penalty designs [172]. However,
owing to the concavity inherent in these approaches, one cannot expect the algorithm to
always end up at a global minimum.

2.1.3 Sparse Representation based Classification

Sparse representation has proven to be a potent tool for classification tasks. This success is
mainly because sparse representation has natural discrimination. It always chooses the most
compact representation while rejecting all other possible but less compact representations.
Wright et al. [175] proposed the sparse representation based classification (SRC) method
for robust face recognition as illustrated in Fig. 2.2. In the SRC, the training samples
themselves are used as the dictionary. Denoting the dictionary with n images from C classes
as DDD = [ddd1,ddd2, ...,dddn] = [DDD1,DDD2, ...,DDDC] ∈ Rm×n, where DDDc includes nc training images of
class c. The test sample yyy can be represented as the linear combination of training data from
the class to which it belongs. Since we do not know which class it belongs to in advance,
we can only represent each test image as the linear combination of all the training samples.
More specifically, we represent the test samples in an over-complete dictionary in which
base elements or atoms are the training images themselves. Since there are limited numbers
of images of each class, which accounts for only a small portion of the whole training set,
most of the weights for different training images should be zero. Thus, the resulting weight
satisfies the sparsity requirement, which means the sparsest coding vector can be found by
using the efficient ℓ1 minimisation technique or by some other sparse coding methods. The
basic steps of SRC are summarised as follows:

12 Preliminaries

Fig. 2.2 Overview of sparse representation based classification (SRC) approach [175]. The
method represents a test image (left), which is potentially occluded, as a sparse linear
combination of all the training images (middle) plus sparse errors (right) due to occlusion.
The red (darker) coefficients correspond to the training images of the correct individual. The
SRC algorithm determines the true identity (indicated with a red box on the second row and
third column) from 700 training images of 100 individuals (seven each) in the standard AR
face database.

1. Coding: The sparse coding of the test sample yyy can be obtained by solving the ℓ1

minimisation problem :

α̂αα = argmin
ααα
∥yyy−DDDααα∥2

2 +λ∥ααα∥1 (2.10)

2. Classification: The test sample yyy is assigned to the class with the smallest residual
error:

identity(y) = argmin
c
∥yyy−DDDδc(α̂αα)∥2, (2.11)

where δc(α̂αα) is a function that selects the coefficients associated with the cth class.

Although the SRC approach has shown promising results in face recognition, the com-
plexity of SRC can be very high owing to the use of all the training samples as the dictionary.
However, the discriminative information in the training samples is not sufficiently exploited
by constructing the dictionary in such a naive way. These problems can be addressed by
learning an appropriate discriminative dictionary from the massive quanitity of training
samples.

2.1.4 Dictionary Learning

The dictionary plays a critical role in the success of sparse representation and its application
in image classification. There are two ways to build the dictionary: 1) using an off the
shelf basis, e.g., wavelets, Curvelets and Fourier transform, or 2) learning a faithful and
discriminative dictionary from the training data. Although an off the shelf basis [183] is
universal and requires no training, the learned dictionary outperforms an off-the-shelf basis

2.1 Sparse Representation and Dictionary Learning 13

in various computer vision applications, such as image classification [184], image denoising
[2] [54].

Current prevailing dictionary learning approaches can be divided into two categories:
unsupervised and supervised. The unsupervised dictionary learning methods do not take
advantage of the class label information of the training samples, and their goal is to minimise
the reconstruction error. The basic model of the unsupervised dictionary learning model is
given as:

< D̂DD, ÂAA >= argmin
DDD,AAA
∥YYY −DDDAAA∥2

F s.t. ∥ααα i∥1 ≤ η ∀i (2.12)

where YYY is the training set, DDD is the dictionary to be learned, ααα i represents a column of
the coding coefficient matrix AAA and ∥.∥F is the Frobenius norm. Usually, the norm of
each column dddn is required to satisfy ∥dddn∥2

2 ≤ 1. A common approach to minimise the
objective function (2.12) is to update the two variables alternately, i.e., minimising w.r.t
either dictionary or coefficient matrix while keeping the other fixed until a stopping criterion
is met. Representative unsupervised dictionary learning methods include the Method of
Optimal direction (MOD) [58] and KSVD [2]. Although these methods provide promising
results in image restoration, they are not advantageous for image classification, since no label
information concerning the training samples is exploited in the objective function (2.12).

If the class labels of the training samples are available, supervised dictionary learning
methods can achieve a better classification performance by taking advantages of discrim-
ination information in the dictionary learning process. In supervised dictionary learning
methods, usually additional priors on the dictionary structure or the representation coefficient
are leveraged in the learning procedure. The general model of supervised dictionary learning
is shown as:

< D̂DD, ÂAA >= argmin
DDD,AAA
∥YYY −DDDAAA∥2

F s.t.


Prior(DDD)

Prior(AAA)
∥ααα i∥1 ≤ η ∀i

(2.13)

where the constraint Prior(DDD) makes the class-specific representation residual discriminative,
the constraint Prior(AAA) makes the representation themselves discriminative. In other words,
discrimination can be exploited from the sparse representation or dictionary or both.

In the methods considering Prior(AAA), a shared dictionary and a classifier over the repre-
sentation are always learned simultaneously. All the training samples are encoded with the
same shared dictionary, however, the shared dictionary loses the correspondence between
the dictionary atom and the class labels. Representative approaches exploying Prior(AAA)
include for example, discriminative KSVD (D-KSVD)[194], label consistency KSVD (LC-
KSVD)[92], support vector guided dictionary learning (SVGDL)[22]. The general objective

14 Preliminaries

function for learning the dictionary and classifier is defined as:

< D̂DD,ŴWW , ÂAA >= arg min
DDD,WWW ,AAA

∥YYY −DDDAAA∥2
F +λ1L(HHH,WWW ,AAA)+λ2 f (AAA)+λ3 f (WWW) (2.14)

where HHH represents the labels of the training samples, WWW is the parameter of the classifier, L is
the classification loss function, f (AAA) and f (WWW) are the regularisers on the coefficients matrix
and the classifier respectively. λ1,λ2 and λ3 are scalars controlling the relative contributions
of the corresponding terms.

In the methods considering Prior(DDD), each dictionary atom is predefined to a single
class label so that multiple sub-dictionaries are learned. Usually, the atoms of such class-
specific dictionary should be able to well give reconstruction of images from the same
class, while having poor representation of the samples from other classes. In this case,
the representation residual associated with each class could be used in the classification,
however, the representation coefficients are not enforced to be discriminative so that cannot
be used in the classification efficiently. Mairal et al. [120] first introduced a discriminative
reconstruction penalty term in the KSVD model for texture segmentation and scene analysis.
To encourage the dictionaries representing different classes to be as independent as possible,
Ramirez et al. [140] proposed the use of an incoherence promoting term to the dictionary
learning model . Wang et al. [167] extended the class-specific dictionary learning algorithm
for action recognition. Although the promising performance of class-specific dictionary
representation has been reported in various of classification tasks, these dictionary learning
methods might not be scalable to problems having a large number of classes.

By considering discrimination from both reconstruction residual and coding coefficients,
Yang et al. [184] proposed a Fisher discrimination dictionary learning (FDDL) method,
where class-specific sub dictionaries are adopted; meanwhile, the Fisher discrimination
criterion is imposed on the coding vectors to boost the discrimination capability. Recently,
the hybrid dictionary structure is proposed, in which the dictionary includes a shared common
dictionary and a set of class-specific sub-dictionaries. Representative approaches using the
hybrid dictionary structure include [98][139][198]. Although the shared dictionary could
make the learned hybrid dictionary more compact, balancing the shared and the class-specific
parts is not a trivial task.

2.2 Neural Networks 15

2.2 Neural Networks

Neural networks encompass a broad range of statistical models, that essentially comprise a
stack of linear and non-linear operations with learnable parameters. Deep neural networks
have now come to dominate a diverse set of fields including computer vision, natural language
understanding and speech recognition. In this section, instead of covering the long history of
neural networks, we only provide an overview of the basic deep neural network architectures
and some common strategies employed in the training process. For a comprehensive, in-depth
overview of deep neural networks, we refer readers to the excellent references [17] [72].

2.2.1 Convolutional Neural Network

A typical convolutional neural network (CNN) is a sequenced stack of layers. The output
of the previous layer is served as the input of the next layer. In this section, we will briefly
introduce three main types of layers commonly used in CNN architectures: Fully-Connected
Layer, Convolutional Layer and Pooling Layer. After that, we also discuss some widely
used activation functions, that can be inserted between any two layers to boost representation
capability.

Fully connected layers

One of the basic linear operators in a CNN is a matrix-vector multiplication, namely the fully
connected (FC) layer. Mathematically, the output of the FC layer is:

yyy =WWWxxx+bbb (2.15)

where xxx is the input vector, WWW is the weight matrix and bbb is the bias vector. WWW and bbb are
the parameters to be learned within the FC layer. FC layers are often used to combine the
low-level features and act as linear classifiers at the end of a CNN. Each output dimension yi

is also called a unit, which is computed from all of the input dimensions in vector xxx.

Convolution layers

When dealing with high-dimensional inputs such as images, it is always impractical to connect
neurons in the current layer to all neurons in the previous layer (or volume). Denoting the
input layer as the image that has the following dimensions: [width H× height H× depth c1],
the design of convolutional layers is motivated by only connecting each neuron to a local
region of the input volume. As shown in Fig. 2.3, each convolution layer consist of c2 filters,

16 Preliminaries

Fig. 2.3 c2 Convolution filters with shape h1×w1× c1.

which can be learned during training. Each filter has a small receptive field spatially (along
width w1 and height h1), but always full along the entire depth of the input volume c1 (e.g.,
all colour channels (RGB) in the first layer). In the forward pass, we slide and convolve each
filter across the input volume and compute the dot product between the filter and the input
at any location. In this way, given any filter, we can produce a 2-dimension activation map
that gives the response of that filter at every spatial location. Intuitively, after training, each
filter serves as a pattern detector that finds a certain pattern on the input image. It is worth
noting that in Fig. 2.3, we assume padding appropriate to preserve the spatial dimensions
H×W . In one convolution layer, we stack the activation maps for different filters along
the depth dimension and produce the output volume for this layer. The number of output
channels is the same as the number of convolutional filters in the layer, which is c2 in Fig.
2.3. Mathematically, the general form of 2D convolution operation [41] can be represented
as:

(f ∗g)(m,n) =
∞

∑
i=−∞

∞

∑
j=−∞

f (i, j)g(m− i,n− j), (2.16)

where ∗ is the convolution operator, f (m,n) is an image and g(m,n) is some filter function.

Pooling layers

The pooling layer, a form of non-linear spatial sub-sampling operation, is commonly peri-
odically inserted between consecutive convolution layers. Its function is to add translation
invariance to CNNs by making the network less sensitive to a small local change in the spatial
location. The pooling layer also reduces the spatial size of the feature map thus reducing
the computation and increasing the size of the receptive field of the following convolution
layers. It is worth noting that the pooling layer operates independently on different depth
slices of the input, sub-sampling using Max or Average operation [105]. Some recent CNN
designs discard the pooling layer and use convolution layers with a larger stride instead, in

2.2 Neural Networks 17

order to reduce the size of the feature map. The stride in this context means the step size of
the convolution operation. Discarding pooling layers [85] [151] has also been shown to be
important in training good generative models.

Activation Function

The activation function plays a critical role in a multi-layer neural network. Without a
non-linear activation function, performing linear operations consecutively is useless since
the cascade of multiple linear functions is itself equivalent to a linear function. In order to
boost the representation capability of the CNN, non-linear activation functions are often
inserted between every two layers. The sigmoid and tanh functions were among the first to
be chosen as the activation functions. These two nonlinear functions have a nice property
that, compresses the output value to a fixed range and also they have well-defined gradients.
A problem with these functions is that the gradients are very small over a large portion of
the domain of the function, which is also known as the saturated neuron problem. For this
reason, and owing to improved empirical results, the Rectified Linear Unit (ReLu) activation
function [67][99] is chosen for use in most modern neural networks. The ReLu operator has
a piece-wise non-linear activation function as:

f (a) = max(0,a), (2.17)

where a is the input activation volume. ReLu does not suffer from the saturated neuron
problem. In practice, Relu is very computationally efficient, and it can make the CNN training
converge much faster than does sigmoid/tanh activation. Recently, some other advanced
activation functions has been proposed, for example Leaky ReLu [84], Maxout [74] and the
Exponential linear unit (ELU) [35]. A comparison of commonly used activation functions
used is shown in Fig 2.4.

Another widely used non-linear activation function is softmax, which maps a vector
xxx ∈ RC to a multinomial distribution:

yi = softmax(xxx)i =
exp(xi)

∑
C
j=1 exp(x j)

. (2.18)

A nice property of softmax activation is the output yi > 0 and ∑
C
i=1 yi = 1. It is often adopted

as the end of a CNN for image classification. It can cast the network output to a categorical
distribution over C predefined classes.

18 Preliminaries

Fig. 2.4 Comparison of common activation functions.

2.2.2 Loss functions

There are two common objective functions used in CNNs under the supervised learning
regime: classification and regression. For example, predicting a person’s identity is a
classification task, while predicting a person’s age (a continuous value) is a regression task.

For classification, the target label is encoded as an one-hot vector yyy ∈ RC, where C is
the number of the class. The element yi = 1 if the target label is the class i and all the
other dimensions in yyy are zero. The CNN usually outputs a random variable ŷyy ∈ RC as the
prediction of the input. The cross-entropy [97] loss function is often used for the supervised
classification task, which indicates the discrepancy between the variable yyy and ŷyy:

L(yyy, ŷyy) =−
C

∑
i=1

yi log ŷi. (2.19)

For regression, the target and predicted variables can be denoted as yyy ∈ Rd and ŷyy ∈ Rd

respectively. Different distance metrics could be used as the loss function, but the ℓ2 distance
is the most widely used:

L(yyy, ŷyy) = ∥yyy− ŷyy∥2
2. (2.20)

One important regression problem in the computer vision field is image reconstruction. Zhao
er al. proposed an alternative ℓ1 loss to make the image less blurred [196]. Using the ℓ1 loss
also improves robustness to the outliers [66].

2.2.3 Backpropagation

Due to the non-linear operations in the CNN, the objective function in Eq. (2.19) and
Eq. (2.20) usually do not have a closed-form global optimum solution. Commonly, we

2.2 Neural Networks 19

use stochastic gradient descent (SGD) to minimise the objective loss function instead [18].
During each iteration, we first randomly choose a subset of M training samples, also called
a mini-batch, {(xxx(i),yyy(i))}, where i = 1,2, ...,M. Then we compute the gradient of the loss
function with respect to the parameters θ in the CNN:

∂L
∂θ

=
1
M

M

∑
i=1

∂L
(

fθ (xxx(i)),yyy(i)
)

∂θ
, (2.21)

where fθ (xxx(i)) is the prediction output from the CNN. Then we can update the parameters
taking a step along the direction of steepest descent:

θ ← θ − γ
∂L
∂θ

, (2.22)

where γ is the learning rate.
As a conventional CNN contains a stack of layers, we can represent the function of the

whole network f as a compound of the function of each layer fi:

f (xxx0) = fN(fN−1(· · · f2(f1(xxx0)) · · ·)), (2.23)

where xxx0 is the input of the network, N represents the number of layers in the network, and
fi(.) is the function of the ith layer, i = 1,2, ...,N. The function fi(.), which is parameterized
by θi takes the xxxi−1 as the layer input and outputs xxxi. Backpropagation is proposed by
Rumelhart [146] and Lecun [104], which is an efficient approach to compute the partial
gradient for the compound function based on the chain rule. We can calculate the gradients
w.r.t the parameter in each layer as:

∂L
∂θi

=

(
∂xxxi

∂θθθ i

)T
∂L
∂xxxi

, (2.24)

where ∂xxxi
∂θθθ i

is informally called the Jacobian matrix of xxxi to θθθ i, and ∂L
∂xxxi

can be calculated
recursively,

∂L
∂xxxi

= JJJT
i+1

∂L
∂xxxi+1

, (2.25)

where JJJT
i+1 is the Jacobian matrix of xxxi+1 with respect to xxxi. In practice, we first forward pass

a mini-batch from the first layer to the last layer and save all the intermediate activations in
the temporary buffer. Then we can compute the gradient with respect to the θi for each layer
and update them for one step.

20 Preliminaries

2.2.4 Strategies in Training Neural Networks

In this section, we outline and summarise some strategies for training the neural network,
including network initialisation, batch normalisation and dropout. These techniques are
essential for accelerating the training phase and simplifying the optimisation process.

Network Initialization

Without carefully network initialization, gradients can either explode or vanish entirely. For
instance, consider a network of N layers as described by Eq. (2.23). Denoting xxx as the input,
if each layer fi(.) has identical mapping fi(xxx) = βxxx, the output of the deep network will be:

f (xxx0) = fN(fN−1(· · · f2(f1(xxx0)) · · ·)) = xxx
N

∏
i

β
N . (2.26)

There will be two different outcomes depends on the selection of scaling factor β in the
weight initialization:

lim
N→∞

f (xxx) =

{
∞ i f β > 1
0 i f β < 1

(2.27)

In other words, when β > 1, the loss is divergent thus make the gradient explode, while
when β < 1, the loss is stalled therefore making the gradient vanish. Intuitively, we usually
initialize the weights from a Gaussian distribution with a standard variance σ such that the
expected value E(β) = 1 in order to avoid gradient exploding or vanishing problems.

In practice, denoting nin,nout as the number of units in the previous layer and the next
layer respectively, for tanh activation, Glorot et al. proposed to use Xavier initialization [67]
by setting

σ =

√
1

nin
. (2.28)

When considering both the number of units in the previous layer and the next layer, a
recommended setting is

σ =

√
2

nin +nout
. (2.29)

For the ReLu activation, He et al. [84] reaching the conclusion that the standard variance of
weights in the network should be

σ =

√
2

nin
. (2.30)

2.2 Neural Networks 21

Batch Normalization

A technique developed recently by Ioffe et al., known as Batch Normalization [89], alleviates
a lot of the difficulties in properly initialising the parameters in the network. It provides
a direct and neat approach to maintaining the desired activation distribution, i.e., a zero
mean, unit variance Gaussian distribution. The batch Normalization, which is a simple
differential operation, uses the batch statistic to whiten the layer response. We first calculate
the mean and variance of the mini-batch and prevent gradient explosion/vanishing problem
by normalising the response/gradient based on the batch statistic. Given M samples in a
mini-batch and each denoted by a vector xxxi ∈ R, i = 1,2, ...,M. The batch normalisation
process can be described as:

µµµb =
1
M

M

∑
i=1

xxxi, (2.31)

σσσ
2
b =

1
M

M

∑
i=1

(xxxi−µµµb)
2 (2.32)

x̂xxi =
xxxi−µµµb√

σσσ2
b + ε

, (2.33)

where for mini-batch b, the mean is µµµ , the variance is σσσ2, and ε is a parameter chosen to
address numerical stability issues. For a given layer response xxxi, the normalized output re-
sponse is x̂xxi. Finally batch normalization scales and shifts the normalized response according
to:

yyyi = γ x̂xxi +β , (2.34)

where γ,β ∈ Rd are learnable parameters.
In practice, we always insert the batch normalisation after fully connected or convolution

layers, and before nonlinear activations. Batch normalisation can improve the gradient
flow through the network and allow for higher learning rates. Empirically, it has been
found that using batch normalisation significantly improves robustness to poor initialisation
and sometimes can even speed up the training process. It is worth noting that the batch
normalisation works differently in the test stage. The statistics (mean and variance) are not
computed based on the batch. Instead, the single fixed empirical statistics of the activations
achieved during training is used.

22 Preliminaries

(a) Dropout in the training stage (b) Dropout in the testing stage

Fig. 2.5 Dropout

Dropout

Srivastava et al. [152] proposed dropout, a method of preventing overfitting in deep network
training. In constrast to adding different norm regularisation, i.e., ℓ1, ℓ2 norms on the
parameters, dropout is implemented by only keeping a neuron active with some probability
p in the training stage. As shown in Fig. 2.5(a), in the training stage, dropout acts as the
sampler in the neural network, and only updates the parameters of the sampled network based
on the input data in the current step. The dropout can also be interpreted as a form of the
model ensemble, averaging a large number of random ’smaller’ sampled networks to obtain
better generalisation capability. As shown in the Fig. 2.5(b), in the test stage, no dropout is
applied, and all the neurons are always present, and so we need to adjust output xxx→ pxxx to
ensure the same expected output. Performing this multiplication at test time can be related
to the process of iterating over all the possible sampled sub-networks and computing their
ensemble prediction.

2.2.5 Deep Neural Network Architectures

In this section, we list some of the modern popular deep neural network architectures, that
have formed the basis of many of our experiments.

AlexNet

Krizhevsky et al. propose AlexNet [100], which demonstrated that the deep CNN could
achieve state-of-the-art performances in large-scale image classification tasks. With appro-
priate initialization [156], ReLu activation and [126] drop out [152] techniques, deep CNN
outperforms traditional hand-crafted feature-based approaches by a large margin. Histori-
callly Graphics processing unit (GPU) did not have enough memory to support such a large
network, consequently, AlexNet uses two filter groups in most layers to split the computation
demand and model parameters across two GPUs. However, it is worth noting such a network

2.2 Neural Networks 23

split is usually no longer necessary owing to improved GPU memory capacity. The overall
structure of AlexNet is shown in Fig. 2.6(a).

VGG

Since AlexNet, there have many improvements to the state-of-the-art result on the ILSVRC
challenge [14] achieved by using improved CNN architectures [85] [157] [191]. In the
ILSVRC 2014 challenge, one particular architecture called the VGG network [150] achieved
2nd place in classification, and 1st place in localisation performance by employing a natural
extension of AlexNet. It follows two design principles: small filters and a deeper network.
More specifically, using a stack of three 3×3 convolution layers (with stride 1) has same
effective receptive field as one 7× 7 convolution layer. This observation allows using a
deeper network (having more non-linearities) with far fewer parameters thus increasing
computational efficiency. The VGG network also demonstrated that using small filters and a
deeper network could significantly improve generalisation. The prevailing VGG architecture
has 16 or 19 layers, and the overall network architectures are shown in Fig. 2.6(b).

Inception

As measured by classification accuracy performance, the winner of the ILSVRC 2014 is the
Inception architecture, also known as GoogLeNet [157]. This work proposes an Inception
Module, which is a good local network topology (network within a network). The overall
Inception network architecture stacks these modules on top of each other, which also enables
a deeper network (22 layers) with efficient computation. The naive inception module design
is shown in Fig. 2.7(a). In each inception module, parallel filter operations are performed on
the input from the previous layer, including multiple filter sizes for convolution (1×1, 3×3,
5×5) and pooling (3×3) operations. After performing these different operations, the filter
outputs are concatenated together depth-wise. As the pooling layer preserves feature depth,
this means that the total depth after concatenation can only grow at each layer. To reduce the
computation complexity, GoogLeNet also proposes using a 1×1 convolution layer to act as
so called the ‘bottleneck’ layers, in order to reduce the feature depth. The inception module
with dimension reduction is shown in Fig. 2.7(b).

Residual Net

He et al. proposed residual net (ResNet) [85], that swept to 1th place in all ILSVRC and
COCO 2015 competitions. The underlying hypothesis of this paper is that the deeper model
should be able to perform at least as well as the shallower model. He et al. are among the

24 Preliminaries

(a) Alex Net architecture (b) VGG16 (left) and VGG19 (right) network architecture

Fig. 2.6 AlexNet and VGGNet architectures. The description ‘m×m conv n’ denotes there
are n filters in this convolutional layer, each with spatial size m×m. The description ‘FC n’
indicates there are n neurons in the fully connected layer.

(a) Naive Inception Module (b) Inception module with dimension reduction

Fig. 2.7 Inception Modules

first to observe that directly concatenating lots of layers into a very deep network (152 layers)
will lead to a performance degradation owing to the difficulty in the optimisation. ResNet
propose to use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping. A comparison of plain layer concatenation and the residual
block is shown in Fig. 2.8. Given input xxx, the residual block fits residual F(xxx) = H(xxx)− xxx

2.3 Application of Prior Information 25

(a) Plain layer concatenation (b) Residual block

Fig. 2.8 Comparison of plain layer concatenation and residual block

instead of H(xxx) directly. The full residual net architecture stacks multiple residual blocks,
each of them containing two convolution layers. It is worth noting that for deeper residual
nets, inception modules have also been adopted in the middle in order to reduce computation
complexity.

2.3 Application of Prior Information

Sparse representation and deep learning are presented as the basis for several general-
purpose priors, which are used to explore a better feature representation for robust image
classification. In this section, we summarize some related work regarding the application of
prior information into the feature learning procedure.

Some existing related work applies sparse or hierarchical priors to the explanatory
factors that describe the data in order to better discover the data structure. Discriminative
dictionary learning (DL) methods [92][185] aim to incorporate the sparse prior into the
feature learning procedure by finding the optimal dictionary that simultaneously improves
the sparse representation and also maximizes its discriminative capability. However, current
DL methods cannot achieve state of the art performance in large-scale image classification,
since most DL models have only been evaluated with the use of traditional handcrafted
features. In [154], it is observed that the deep neural network design incorporates hierarchical
priors into the feature learning procedure by learning multiple levels of representation. In
addition the nonlinear property inherent in the ReLu unit leads to sparsity in the neural
activations, consequently improving the performance of deep learning methods. Normally,
for each training image, around half of the neurons in the hidden layer are activated. However,

26 Preliminaries

there is no effective mechanism to automatically adjust the sparsity level of the intermediate
hidden units based on the training set. It is worth noting that [108][178] incorporate both
sparse and hierarchical priors into feature learning by applying DL as a post-processing step
trained separately from the training of the CNN. Arguably, this does not fully harness the
strength of DL since it is not integrated with the deep network. To the best of our knowledge,
there is no end-to-end learning framework to combine CNN and DL in image recognition,
that can automatically adjust the sparsity level and discriminative capability of the feature
representation. More detailed discussion about the difference between the most closely
related prior works and ours that consider incorporating sparse and hierarchical priors into
the feature learning will be discussed in Chapter 3 and 4.

There is some related work try to explore priors on the relationships between multiple
factors. When multiple independent factors exist in the image generation process, there is a
quantity of literature concerning learning disentangled representations. The bi-linear model
is among the first to separate the content and style in the underlying set of observations
[159]. With the recent development of deep learning, auto-encoders [33] [87] [88] and
Boltzmann machines [143] are adopted as regularizers to combine the discrimination and
self-reconstruction criteria, thus discovering the factors of variation besides those relevant
for classification. In particular, Predictability Minimization [148] and the fair variational
auto-encoder [115] encourage independence between different latent factors. In addition to
reconstructing the input, [135] [188] synthesize other images with the same content but with
a different style to implicitly disentangle features. With the help of GANs, the work of [45]
[53] [102] [124] further explores the application of disentangled representations in computer
graphics and video prediction. More detailed discussion about the difference between the
most closely related prior works and ours regarding feature disentangling will be discussed
in Chapter 5.

We observe that when common factors exist in multiple tasks, there is some related
work leveraging common factors to make the learned feature representation more robust.
Unsupervised domain adaptation (UDA) is a specific approach that address this situation,
with the aim of transferring domain knowledge (common factors) from existing well-defined
tasks to new ones where labels are unavailable. A lot of research has been conducted
investigating measurements to estimate the distribution divergence of deep features among
domains and the relevant methods to minimize them. As an unbiased estimate of distribution
divergence, Maximum Mean Discrepancy (MMD) [77] has been employed in various CNN
based methods for UDA [110] [113] [114] [163] [165] [179]. More recently, inspired by the
best-performing adversarial training methods in generative models, state-of-the-art UDA
methods utilize the Jenson-Shannon (JS) divergence or the more generalized f-divergence

2.4 Chapter Summary 27

[130] implemented using CNNs to estimate the distribution divergence [19] [61] [62] [109]
[162]. However, both the MMD and f-divergence based methods require that the feature
distribution of the source and target domain share a common support (i.e., significant overlap
exists between the feature distributions of two domains). These methods fail to adapt between
domains once their distributions do not have significant overlap. More detailed discussion
about the difference between the most closely related prior works and ours for leveraging
common factors in feature learning will be discussed in Chapter 6.

2.4 Chapter Summary

In this chapter, we first introduced the fundamental concepts of sparse representation, includ-
ing sparse coding model, sparse representation based classification and dictionary learning.
Then we focused on the topic of deep learning, including convolutional neural network
and some training techniques. The sparse representation and deep learning are presented
as the basis for several general-purpose priors, which are used to explore a better feature
representation for robust image classification. For the remainder of this dissertation, we will
present our enhancements by incorporating sparse and hierarchical priors in chapter 3 and
4, while improvements wrought by combining the prior knowledge about the relationship
between multiple factors, in particular, independent or common explanatory factors, will be
given in Chapters 5 and 6.

Chapter 3

Support Discrimination Dictionary
Learning

Sparse representation and the associated learning techniques have received much attention in
the past decade as introduced in Chapter 2. There are three aspects concerning the benefits of
using a sparse prior to the feature learning model, as discussed below:

Firstly, the sparse prior encourages information disentangling. One of the claimed
objectives of representation learning algorithms [12] is to disentangle the factors explaining
the variations in the data. A dense representation is highly entangled, as only a small
change in the input will modify most of the entries in its feature representation. Instead, if a
representation is both sparse and robust to small input changes, the set of nonzero features
(support) is almost always nearly conserved in response to a small change of input. Therefore,
correctly using the sparse prior in the feature learning process can make the learned feature
representation more robust to a variety of photometric and geometric deformations, such as a
change of lighting conditions or a shift in the object location within an image.

Secondly, using the sparse prior implicitly allows variable-size feature representation for
different inputs. As different inputs may contain different amount of information, it would
be efficient to represent data using a variable-size data-structure. Varying the size of support
size controls the effective dimension of the representation for a given input and the required
precision.

Thirdly, although there has been a recent rapid increase in research activity on large-scale
datasets, many small data sets still arise and already exist in the wild and could underpin
in a lot of useful applications. Such small datasets are more difficult to handle owing to
the possibility of over-fitting, and outliers become much more significant, thus dramatically
reducing the classification accuracy. A sparse prior can serve as a regularizer to reduce the
overfitting problem, consequently providing better image classification when only limited

30 Support Discrimination Dictionary Learning

labelled data is available. The sparse feature can sometimes even make the representation
easier to explain, as only the most meaningful (explanatory) features remain.

In this chapter, we focus on exploring the role of a sparse prior in feature learning for
the image classification task. By incorporating the structured sparse prior, we propose a
new support discrimination dictionary learning method that uses the sparse structure, i.e.,
support, to learn a discriminant and robust feature representation for image classification.
The rest of this chapter is organized as follows: Section 3.1 provides the most relevant prior
works about combining sparse prior with feature learning approaches and demonstrates the
primary motivation and contribution of this chapter; Section 3.2 presents the details of the
novel support discrimination dictionary learning method for classification, including the
optimisation algorithm and the classification scheme; In section 3.3, extensive experiments
are performed on face, object and scene datasets to compare the proposed method with other
state-of-art dictionary learning methods; Section 3.4 concludes this chapter.

3.1 Introduction

Sparse representation has been successfully applied to a variety of problems in image process-
ing and computer vision, e.g., image denoising, image restoration and image classification. In
the framework of sparse representation, an image can be represented as a linear combination
of a few bases selected sparsely from an over-complete dictionary. The dictionaries can be
predefined by the use of some off-the-shelf basis, such as the Discrete Fourier Transform
(DFT) matrix and the wavelet matrix. However, it has been shown that learning the dictionary
from the training data enables a more sparse representation of the image in comparison to
using a predefined one, which can lead to improved performance in the reconstruction task.
Some typical reconstruction dictionary learning methods include the Method of Optimal
direction (MOD) [58], and K-SVD [2].

Sparse representation has also been considered in pattern recognition applications. For
example, it has been used in the Sparse Representation based Classifier (SRC) [175], which
achieves competitive recognition performance in face recognition. In contrast to image recon-
struction which only concerns the sparse representation of an image, in pattern recognition,
the main goal is to find the correct label for the query sample, consequently the discriminative
capability of the learned dictionary is crucial. A variety of discriminative dictionary learning
methods have recently been proposed, some of which have been briefly introduced in Chapter
2. The most relevant prior works on incorporating sparse prior and dictionary learning to
feature learning are elaborated as follows. In general, we observe that two different strategies
have been employed.

3.1 Introduction 31

One strategy is to learn a class-specific dictionary, which discriminates different classes
of images via a sparse representation residual. Instead of learning a dictionary shared by
all classes, it seeks to learn a sub-dictionary for each class. Yang et al. [181] first sought
to learn a dictionary for each class, and applied it to image classification. In [57], instead
of considering the dictionary atoms individually at the sparse coding stage, the atoms are
selected in groups according to some priors to guarantee the block sparse structure of each
coding coefficient. In [155], a group-structured dirty model is used to achieve a hierarchical
structure of each coding coefficient via estimating a superposition of two coding coefficients
and regularising them differently. It is worth noting that the multi-task setting is adopted in
[155]. However, the sub-dictionaries in all these methods are disjoint to each other, and how
many and which atoms belong to each class is fixed during the entire dictionary learning
process. In addition, although class-specific setting of the dictionary works well when the
number of training samples in each class is sufficient, it is not scalable to the problem with a
large number of classes.

Another strategy is to learn a dictionary that is shared by all classes. Commonly, a
classifier based on the coding vectors is learned together with the shared dictionary by
imposing some class-specific constraints on the coding vector. Rodriguez et al. [144]
proposed that samples of the same class should have similar sparse coding vectors which
are achieved by using linear discriminant analysis. Yang et.al. [184] proposed Fisher
discrimination dictionary learning (FDDL) where the Fisher discrimination criterion is
imposed on the coding vectors to enhance class discrimination. Cai et.al. proposed support
vector guided dictionary learning methods (SVGDL) [22], which is a generalised model of
FDDL, that considers the squared distances between all pairs of coding vectors. In all these
methods, the similarity between two coding vectors is measured by the Euclidean distance,
which allows two images of different classes to be represented by using the same set of
dictionary atoms. To our knowledge so far, no multi-task setting has been used in the shared
dictionary, since it is difficult to discriminate groups of coefficients between different classes
owing to the lack of prior knowledge concerning subdictionary structure.

In recent years, it has been shown that adding structural constraints to the supports of
coding vectors can result in improved representation robustness and better signal interpre-
tation [56][90][190]. In our approach to be presented in this chapter, the multi-task setting
adopts a shared dictionary, however, instead of learning the dictionary with discrimination
based on the Euclidean distance between the coefficients for different classes, we consider
a different principle as shown in Fig. 3.1: The support of the coding vectors from one
class should be similar, while the support of the coding vectors from different classes

32 Support Discrimination Dictionary Learning

(a) Same Class:common sparse structure (b) Different classes: minimise overlapped sup-
port

Fig. 3.1 The design principle of our proposed approach.

should be dissimilar. Here the support of a coding vector denotes the indices of the non-zero
elements of the image sparse representation under some dictionary.

More specifically, by incorporating structural sparse priors into the feature learning pro-
cedure, we propose a support discrimination dictionary learning method (SDDL), that finds a
dictionary under which the coefficients of images from the same class have a common sparse
structure while the size of the overlapped signal support of different classes is minimised.
Informed by the multitask learning framework [116], and the multiple measurement vector
(MMV) model [37] in the signal processing field, an effective way to encourage a group
of signals to share the same support is to simultaneously encode those samples. Based on
this idea, we encode multiple images from the same class, requiring that their coefficient
matrix is largely ‘row sparse’, where only a few rows have non-zero elements, as shown in
Fig. 3.1(a). In addition to the similarity of intra-class coding vectors, the main contribution
of our work is that we also design a new discriminative term to guarantee the dissimilarity of
inter-class coding vectors by reducing the overlapped signal support from different classes,
as shown in Fig. 3.1(b). This can be achieved by minisation of the ℓ0 norm of the Hadamard
product between any pair of coefficients in different classes. An iterative reweighting scheme
that produces more accurate estimates is adopted as the optimization progresses.

Besides the advantage of sparse priors as discussed at the beginning of this chapter, the
specific design of SDDL provides the following advantages. Firstly, the previous multi-task
setting based dictionary learning methods all use disjoint sub-dictionaries, in which how
many and which atoms belong to each class is fixed during the entire dictionary learning
process. In contrast, a multi-task setting using a shared dictionary is adopted in SDDL. Our
approach can automatically identify overlapped sub-dictionaries for different classes, where
the size of each sub-dictionary is adjusted appropriately during the learning process to suit the

3.2 Support Discrimination Dictionary Learning 33

training dataset. Furthermore, our approach is scalable to allow for a large number of classes,
while the previous sub-dictionary based approaches cannot. Secondly, instead of using the
Euclidean distance to measure the similarity and dissimilarity between different coefficients,
we achieve discrimination via the support. The structural sparse constraints ease the difficulty
in solving the ill-posed inverse problem in comparison to the conventional element-sparse
structure [43]. The superior performance of the proposed approach in comparison to the
state-of-art is demonstrated using both face, object and scene datasets.

3.2 Support Discrimination Dictionary Learning

3.2.1 Problem Formulation

Assume that xxx ∈ Rm is a m dimensional image with class label c ∈ {1,2, ...,C}, where C de-
notes the number of classes. The training set with n images is denoted as XXX = [xxx1,xxx2, ...,xxxn] =

[XXX1,XXX2, ...,XXXC] ∈Rm×n, where XXXc includes nc training images of class c. The learned dictio-
nary is denoted by DDD === [[[ddd1,,,ddd2,,,,,,dddK]]] ∈ Rm×K(K < n), where dddk denotes the kth atom of
the dictionary. AAA === [[[AAA1,,,AAA2,,,,,,AAAC]]] === [[[aaa1,,,aaa2,,,,,,aaan]]] ∈ RK×n are the coding coefficients of
XXX over DDD. Our dictionary learning problem can be described as

min
DDD,AAA

R(XXX ,,,DDD,,,AAA)+w1g(AAA)+w2 f (AAA), (3.1)

where R(((XXX ,,,DDD,,,AAA))) denotes the reconstruction residuals for all the images XXX with the sparse
representation matrix AAA under the dictionary DDD, g(AAA) is a regulariser to promote intra-
class similarity, f (AAA) is the inter-class discriminative term based on the coding vectors
AAA, and w1 > 0 and w2 > 0 denote the weights for the final two terms in (3.1). In this
optimisation problem, we learn a single dictionary shared among all classes while exploring
the discrimination of the coding vectors.

In a common multi-task learning setting, a group of tasks share certain aspects of some
underlying distribution. Here we assume the intra-class coding vectors share a similar
sparse structure. In our fomulation, we use the joint sparsity regulatisation ℓp/ℓq norm of
a coefficient matrix corresponding to one class, rather than encoding each training image
separately. More specificaly, we set p = 2,q = 0, which means that the intra-class coefficient
matrix should be ‘row sparse’, i.e., where each row is either all zero or mostly non-zero, and
the number of non-zero rows is low. In this way, we can find the shared nonzero supports
for each class automatically, rather than predefining their number and position. However,

34 Support Discrimination Dictionary Learning

minimizing the ℓ2/ℓ0 norm is NP hard, so in our approach, we use ℓ2/ℓ1 norm instead. In
this way, we can design a regulariser to promote intra-class similarity as:

g(AAA) =
C

∑
i=1
∥AAAi∥2,1 =

C

∑
i=1

K

∑
k=1

∥∥∥aaa(ik)
∥∥∥

2
, (3.2)

where AAAi represents the coefficient matrix for the ith class and aaa(ik) denotes the kth row of
coefficient matrix AAAi.

In general, discrimination for different classes can be assessed by the similarity of the
intra-class coding vectors and the dissimilarity of inter-class ones. As mentioned previously,
the similarity of intra-class coding vectors is promoted by the ℓ2/ℓ1 regulariser. To encourage
dissimilarity of the inter-class coding vectors, we design the following discriminative term:

f (AAA) =
C

∑
i=1

∑
p

∑
q

∥∥aaai,p ◦aaa/i,q
∥∥

0 , (3.3)

where ◦ denotes the Hadamard (elementwise) product between two vectors aaai,p and aaa/i,q,
where aaai,p and aaa/i,q are the pth column of AAAi and the qth column of AAA/i respectively. AAAi ∈
RK×ni represents the coefficient matrix for the ith class, while AAA/i ∈ RK×(n−ni) denotes a
sub-matrix of AAA ∈ RK×n without the columns in AAAi. Alternatively, the value of

∥∥aaai,p ◦aaa/i,q
∥∥

0
is the size of the overlapped support between the pth image of the ith class and the qth image
that is not in class i. Therefore, f (AAA) denotes the summation of overlapped supports between
images in different classes. However, minimising f (AAA) in Eq. (3.3) is an NP hard problem.
Informed by many recent sparse approximation algorithms that rely on iterative reweighting
schemes [27][30][171] to produce more focal estimates as optimization progresses, we use
the iterative reweighted ℓ2 minimization to approximate the ℓ0 norm.

We use the vector aaa⊙2 to represent the element by element square of vector aaa, which is
equal to aaa◦aaa. We define the weight term wwwp,q for a given pair of coefficients (aaai,p,aaa/i,q) at
each iteration as a function of those coefficients from the previous iteration as

wwwi,p,q =
1

(aaa
′
i,p ◦aaa

′
/i,q)

⊙2 + ε
(3.4)

where aaa
′
i,p and aaa

′
/i,q are the coefficients from the previous iteration and ε is a regulariza-

tion factor that is reduced to zero as the number of iterations increases. In this case, the
descrimination term f (AAA) can be rewritten as

3.2 Support Discrimination Dictionary Learning 35

f (AAA) =
C

∑
i=1

∑
p

∑
q

∥∥aaai,p ◦aaa/i,q
∥∥

0 =
C

∑
i=1

∑
p

∑
q

∑
k

w(k)
i,p,q · (a

(k)
i,p ◦a(k)/i,q)

2

=
C

∑
i=1

∑
p

∑
q

∑
k
[w(k)

i,p,q · (a
(k)
/i,q)

2]◦ (a(k)i,p)
2

=
C

∑
i=1

∑
p

∑
q

diag([wwwi,p,q ◦ (aaa/i,q)
⊙2] · (aaai,p)

⊙2 =
C

∑
i=1

∑
p

∥∥ΩΩΩi,paaai,p
∥∥2

F ,

(3.5)

where k represents the index of the corresponding vector and

ΩΩΩi,p = diag(
√

∑
q
(
√

wwwi,p,q ◦aaa/i,q)
⊙2). (3.6)

However, minimising the above f (AAA) is both time and memory consuming since we
need to calculate a weight vector wwwi,p,q and thus a distinct weight matrix ΩΩΩi,p for each aaai,p.
Considering the effect of the ℓ2/ℓ1 regulariser, different coefficients in the same class should
have a similar sparse pattern, hence we use the average (ãaa

′
i)
⊙2 instead of (aaa

′
i,p)
⊙2 in Eq. (3.4),

where

∀p, (aaa
′
i,p)
⊙2 ≈ (ãaa

′
i)
⊙2 = ∑

p
(aaa
′
i,p)
⊙2/ni. (3.7)

That is, all p images of the class i share the same weight vector wwwĩ,q as

wwwĩ,q =
1

(ãaa
′
i)
⊙2 ◦ (aaa′/i,q)

⊙2 + ε

. (3.8)

Finally Eq. (3.5) can be rewritten as:

f (AAA) =
C

∑
i=1

∑
p

∥∥ΩΩΩi,paaai,p
∥∥2

F =
C

∑
i=1

∥∥Ω̃ΩΩiAAAi
∥∥2

F , (3.9)

where
Ω̃ΩΩi = diag(

√
∑
q
(
√

wwwĩ,q ◦aaa/i,q)
2). (3.10)

By substituting the discrimination term given by Eq. (3.9) into (3.1), we can rewrite the
dictionary learning problem as

min
D,A

C

∑
i=1
∥XXX i−DDDAAAi∥2

F +w1 ∥AAAi∥2,1 +w2
∥∥Ω̃ΩΩiAAAi

∥∥2
F . (3.11)

36 Support Discrimination Dictionary Learning

Although the objective function in (3.11) is not jointly convex to (DDD,AAA), it is convex with
respect to DDD and AAA when the other is fixed. In the sequel, we provide an algorithm which
alternately optimises DDD and AAA.

3.2.2 Optimisation

Finding the solution of the optimisation problem in (3.11) involves two sub-problems, i.e., to
update the coding coefficients AAA with fixed DDD, and to update DDD with fixed coefficients AAA.

First suppose that DDD is fixed, and the optimisation problem can be reduced to a sparse
coding problem to calculate AAA = [AAA1,AAA2, ..,AAAC] with two constraints. Here, we compute the
coefficients matrix AAAi class by class. More specifically, all AAA j(((jjj ̸ ̸ ̸=== iii))) are fixed thus Ω̃ΩΩi is
fixed when computing the AAAi. In this way, the objective function can be further reduced to

min
AAAi
∥XXX i−DDDAAAi∥2

F +w1 ∥AAAi∥2,1 +w2
∥∥Ω̃ΩΩiAAAi

∥∥2
F . (3.12)

We choose the alternating direction method of multipliers (ADMM) as the optimisation
approach because of its simplicity, efficiency and robustness [21][43][182]. By introducing
one auxiliary variable ZZZi = AAAi ∈ RK×nc , this problem can be reformulated as

min
AAAi,ZZZi
∥XXX i−DDDAAAi∥2

F +w1 ∥ZZZi∥2,1 +w2
∥∥Ω̃ΩΩiAAAi

∥∥2
F s.t. AAAi−ZZZi = 0. (3.13)

Therefore, the augmented Lagrangian function with respect to AAAi,ZZZi can be formed as

Lu(AAAi,ZZZi) = ∥XXX i−DDDAAAi∥2
F +w1 ∥ZZZi∥2,1 +w2

∥∥Ω̃ΩΩiAAAi
∥∥2

F

−ΛΛΛ
T
1 (ZZZi−AAAi)+

u1

2
∥ZZZi−AAAi∥2

2 ,
(3.14)

where ΛΛΛ1 ∈ RK×m are the Lagrangian multipliers for equality constraints and u1 > 0 is a
penalty parameter. The Augmented Lagrangian function can be minimised over AAAi,ZZZi by
fixing one variable at a time and updating the other one. The entire procedure is summarised
in Algorithm 1. The Shrink function in Eq. (3.17) updates ZZZi by using row-wise shrinkage,
which can be represented as

zzzr = max{∥qqqr∥2−
w1

u1
,0} qqqr

∥qqqr∥2
,r = 1,,K, (3.15)

where qqqr = aaar + λλλ
r
1

u1
and zzzr,aaar,λλλ r

1 represent the rth row of matrix ZZZi,AAAi,ΛΛΛi respectively.
Since the ADMM scheme computes the exact solution for each subproblem, its conver-

gence is guaranteed by the existing ADM theory [68][69]. After we obtain the sparse coding,

3.2 Support Discrimination Dictionary Learning 37

Algorithm 1: Sparse coding using ADMM
Input: Training Data XXX ∈ Rm×n, learned dictionary DDD ∈ Rm×K , Number of classes C,

regularisation parameters w1,w2, penalty parameter u1 and step length γ1.
Initialising AAA0 = 0,ΛΛΛ0

1 = 0, Iteration number k = 0 ;
for i = 1 : C do

while until converge do
Set the matrix Ω̃ΩΩ

k
i :

Ω̃ΩΩ
k
i = diag(

√
∑
q
(
√

wwwk
ĩ,q ◦aaak

/i,q)
2) (3.16)

Fix AAAi and update ZZZi by row-wise shrinkage

ZZZk+1
i = Shrink(AAAk

i +
1
u1

ΛΛΛ
k
1,

1
u1

w1) (3.17)

Fix ZZZi and update AAAi by:

AAAk+1
i =argmin

Ai
Lu(AAAi,ZZZk+1

i)

=(DDDT DDD+w2Ω̃ΩΩi
kTTT

Ω̃ΩΩi
k
+u1III)−1(DDDT XXX +u1ZZZk+1

i − 1
2

ΛΛΛ
k
1)

(3.18)

Update Lagrange multipliers ΛΛΛ1:

ΛΛΛ
k+1
111 = ΛΛΛ

k
111− γ1u1(ZZZk+1

iii −AAAk+1
iii) (3.19)

Increment k.
Output: Estimated sparse code AAA

we secondly update dictionary DDD column by column with fixed AAA. When updating dddi, all the
other columns ddd j, j ̸= i are fixed. Now the objective function in Eq. (3.13) is reduced to

min
DDD
∥XXX−DDDAAA∥2

F ,s.t.∥dddi∥2 = 1. (3.20)

In general, we require that each column of the dictionary dddi is a unit vector. Eq. (3.20) is a
quadratic programming problem and it can be solved by using the K-SVD algorithm, which
updates dddi atom by atom. In practice, the exact solution by K-SVD can be computationally
demanding, especially when the number of training images is large. As an alternative, in the
following experiments, we use the approximate KSVD to reduce the complexity of this task
[1]. The detailed derivation can be found in Algorithm 5 in [145].

38 Support Discrimination Dictionary Learning

Algorithm 2: Overall Framework
Input: Training Data XXX , learned dictionary DDD, Number of classes C, test sample yyy and

regularisation parameters w1,w2,w3.
Initialising k = 0 ;
while until converge do

Fix DDDk and update AAAk+1 by Algorithm 1;
Fix AAAk+1 and update DDDk+1 by approximate K-SVD in [145];
Increment k.

Use AAAk+1 of XXX to train a linear classifier WWW
Calculate the sparse coefficient aaatestfor yyy by Eq. (3.22)
Classify the test sample yyy by c = argmaxcWWWaaatest .
Output: Classification result

3.2.3 The Classification Scheme

After obtaining the learned dictionary DDD, a test sample yyy can be classified based on its sparse
coefficients over DDD. We choose a linear classifier both for its simplicity and for the purpose
of fair comparison with other dictionary learning methods, although we note that a better
classifier design (e.g., SRC) can potentially improve the performance further. We design the
linear classifier WWW ∈ RC×K as [92][155]:

WWW T = (AAAAAAT +ηIII)−1AAAHHHT , (3.21)

where AAA ∈ RK×n is the final rounded coefficients of the training set. The matrix HHH ∈ RC×n

contains the label information of the training set. If the training data xxxi belongs to the class c,
the element Hc,i in vector hhhi is one and all the other elements in the same columns are zero.
The parameter η controls the tradeoff between the classification accuracy and the smoothness
of the classifier.

Next, we can compute the sparse coefficients of the each test sample yyy using the following
objective function:

min
aaa
∥yyy−DDDaaa∥2

F +w3 ∥aaa∥1, (3.22)

where w3 is a constant. Finally we apply the linear classifier WWW to the sparse coding of a test
sample to get the label vector hhhy and assigned it to the class c = argmaxc hhhy. The overall
procedure is summarised in Algorithm 2.

3.3 Experiments and Results 39

3.3 Experiments and Results

In this section, we compare our proposed Support discrimination dictionary learning (SDDL)
method with some other existing Dictionary learning (DL) based classification approaches,
that also leverage sparse priors in feature learning. We implemented our approach using
Matlab, and the relevant Code is available at https://github.com/BeCarefulPlease/Ch3. We
verify the classification performance on various datasets, such as face, object and scene
recognition. The classification performance is measured by the percentage of correctly
classified test data. The public datasets used are the Extended-Yale B Face Dataset [64],
the AR Face Dataset [123], the Caltech 101 object dataset [59] and the 15 Scene Cate-
gories dataset [103]. We selected these datasets because they are the benchmarks used in
the literature for evaluating the performance of dictionary learning approaches for image
classification. The benchmark algorithms used for comparison are the Sparse Representation
based Classification (SRC) [175], K-SVD [2], Label-Consistent K-SVD (LC-KSVD) [92],
Fisher Discrimination Dictionary Learning (FDDL) [184], Support Vector Guided Dictionary
Learning (SVGDL) [22] and Group-structured Dirty Dictionary Learning method (GDDL)
[155]. For all the competing methods, we tune their parameters for the best performance.

3.3.1 Parameter Selection

Dictionary size: In all experiments, the initial dictionary is randomly selected from the
training data. As shown in [92][184], the larger the size of the dictionary, the better is
the performance it can achieve. The disadvantage of a large dictionary is that the problem
size becomes large, which is computationally demanding. Therefore, the ideal dictionary
learning method should achieve an acceptable level of performance using a relatively small
size of dictionary. Here we use the Caltech 101 object dataset as an example. For each
class, we randomly choose 30 images for training and the rest for testing. The number of
dictionary atoms per class varies from 10 to 30. As shown in Fig. 3.2, all the DL methods
tested improve performance when the dictionary size becomes larger. Also, our proposed
SDDL method achieves high classification accuracy and consistently outperforms all the
other DL-based methods. The basic reason for good recognition performance, even with
only a small size dictionary, is that SDDL learns a shared dictionary for all classes, while
it can automatically identify sub-dictionaries for different classes, where the size of each
sub-dictionary is adjusted appropriately during the learning process.

Regularisation parameters: For SDDL, there are 3 regularisation parameters w1,w2,

w3 that need to be tuned, two in the dictionary learning stage and one in the classifier. In

40 Support Discrimination Dictionary Learning

10 15 20 25 30
60

65

70

75

80

Dictionary Size per Category

R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y

SRC

KSVD

LC−KSVD

FDDL

SVGDL

GDDL

SDDL

Fig. 3.2 Effect of dictionary size on the classification performance of various DL methods.
For the Caltech 101 dataset, the size of training samples per class is fixed to 30. The dictionary
atoms per class is varied from 10 to 30. As can be seen, our proposed method outperforms
the other DL-based methods.

this paper, we employ cross validation to find the regularisation parameters that give the best
result.

Stopping criterion: The proposed algorithm will stop either if the values of the objective
function in Eq. (3.11) in adjacent iterations are sufficiently close in value, or if the maximum
number of iterations is reached. In Fig. 3.3 we show empirically the value of the objective
function as the number of iterations increases using the AR dataset, where we can see that
the SDDL method converges rapidly.

3.3.2 Factors Analysis

We will now investigate how the performance is affected by different factors in the proposed
method using the face datasets, i.e., the Extended Yale B dataset and the AR dataset. We will
discuss two factors as follows:

Factor 1: Function of the ℓ2/ℓ1 regularisation term
As mentioned in section 3.2.1, the ℓ2/ℓ1 regularisation term is adopted to make the coeffi-

cients from the same class share a similar sparse structure. In this section, we provide a visual
illustration to see if the ℓ2/ℓ1 regularisation term can be truly helpful in the representation of
the images from the same class. We compare the sparse codings of the same test samples
from two dictionaries, where one is learned with ℓ1 regularisation while the other with ℓ2/ℓ1

regularisation. Fig. 3.4(a) shows 4 test samples of the 2nd subject in the Extended Yale B
database; Fig. 3.4(b) and Fig. 3.4(c) show the four coefficients corresponding with the two
dictionaries respectively. Looking at the coefficients in Fig. 3.4(b), in which the dictionary is

3.3 Experiments and Results 41

0 5 10 15 20 25 30

46

48

50

52

54

56

58

Iteration Number

T
o

ta
l
o

b
je

c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

Fig. 3.3 The convergence curve of objective function on the AR database.

learned with ℓ1 regularisation, it can be seen that the coding vectors corresponding to the
fourth image are significantly different to the other three coding vectors of the same class,
which is not discriminative, owing to the poor quality of the image. However, in the Fig.
3.4(c), the coding vector of the fourth image now look more similar to the other coding
vectors in the class, which has a high probability of being classified correctly. A benefit of
such a multi-task learning framework is that ‘good quality’ images help constrain the coding
vector of ‘poor quality’ ones in the training stage. In this way, even the ‘poor quality’ images
contribute appropriately to the dictionary update.

Factor 2: Function of the discriminative term f (AAA)
As described in section 3.2.1, the term f (AAA) is utilised in the objective function to

guarantee the discrimination of coding vectors from different classes. In this section, we
illustrate both visually and numerically the influence of the discriminative term f (AAA) with an
example from the AR database, as shown in Fig. 3.5 and Fig. 3.6.

To clearly show the discrimination of coding vectors between subjects in the AR database
(100 subjects in total), we calculate a symmetric scatter matrix SSS ∈ R100×100, in which each
element Si j represents the similarity between sparse codings AAAi, AAA j of ith and jth subject
(i, j ∈ [1,100]):

Si j = ∑
p

∑
q

∥∥aaai,p ◦aaa j,q
∥∥

1 , (3.23)

where aaai,p and aaa j,q are the pth column of AAAi and the qth column of AAA j respectively. Following
this, two scatter matrices are calculated based on the sparse codings of the same test samples
from two dictionaries, where one is learned using the discriminative term while the other
is not. Then for both scatter matrices, we normalise the largest element of each column or

42 Support Discrimination Dictionary Learning

0 200 400 600
−1

0

1

Dictionary Index

A
m

p
lit

u
d

e

0 200 400 600
−1

0

1

Dictionary Index

A
m

p
lit

u
d

e

0 200 400 600
−1

0

1

Dictionary Index

A
m

p
lit

u
d

e

0 200 400 600
−1

0

1

Dictionary Index

A
m

p
lit

u
d

e

0 200 400 600
−1

−0.5

0

0.5

1

Dictionary Index

A
m

p
lit

u
d

e

0 200 400 600
−1

−0.5

0

0.5

1

Dictionary Index

A
m

p
lit

u
d

e

0 200 400 600
−1

−0.5

0

0.5

1

Dictionary Index

A
m

p
lit

u
d

e

0 200 400 600
−1

−0.5

0

0.5

1

Dictionary Index

A
m

p
lit

u
d

e

(a)

(c)

(b)

Fig. 3.4 An example for 4 test images and their corresponding coefficients. (a) shows 4
training samples of the 2nd subject in Extended Yale B database; (b) and (c) show the four
coefficients corresponding with two dictionaries, where one is learned with ℓ1 regularisation
while the other with ℓ2/ℓ1 regularisation respectively.

row to unity to permit comparison and plot them in Fig. 3.5. Accordingly, the diagonal
elements represent the similarity of intra-class sparse codings while the off-diagonal elements
shows the similarity of the between-subject ones. We see that, the diagonal elements of both
figures are the largest, and that there is obviously more between-subject similarity in Fig.
3.5(a) than in Fig. 3.5(b). By summing the elements in the columns of the scatter matrix
to quantify the similarity index for each subject, we then plot them in Fig. 3.6. The lower
the similarity index, the less overlap there is between the pairs of coefficients between this
subject and the others, i.e., the better is the discrimination of the coding coefficient. As shown
in Fig. 3.6, the red curve learned using the discrimination term is lower than the blue one
learned without the discrimination term for all the 100 subjects, which shows that learning
the dictionary with the help with f (AAA) can decrease the coefficient overlap between different
subjects. These visual and numerical results both show that the dictionary learned with the
f (AAA) term can significantly enhance the discrimination performance of the coefficients. We
use the Extended Yale and AR face databases to illustrate how this term can help to improve
classification performance. With the help with the discrimination term f (AAA), the recognition
rate for the Extended Yale B is enhanced from 96.20% to 98.50%, and the recognition rate
for the AR database is increased from 95.90% to 98.00%. The experimental setting used to
obtain these result will be presented fully in section 3.3.4.

3.3 Experiments and Results 43

(a)
Category Index

C
a
te

g
o
ry

 I
n
d
e
x

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(b)
Category Index

C
a
te

g
o
ry

 I
n
d
e
x

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 3.5 Comparison between the scatter matrices calculated based on the sparse coding of
the same test samples from two different dictionaries. In (a), the dictionary is learned without
the discrimination term, and in (b), the dictionary is learned using the discrimination term.

3.3.3 Evaluation on Object Recognition Dataset

The Caltech 101 dataset is one of the benchmark datasets used in object classification research.
Some examples of the dataset are shown in Fig. 3.7. It consists of 9144 images, split between
101 distinct object classes including animals, vehicles, as well as a background class. The
sample from each class has significant shape variability. In the following experiments, the
spatial pyramid features are used as the input for the classifier, which is the same as used in
[22][92][184]. Following [92], We vary the number of training samples per class from 10 to
30. The size of the dictionary in SDDL is K=510, that is the same as the experimental setting
in [22]. The experiments are carried out 10 times with differently chosen partitions. The
average classification accuracy of the proposed method (SDDL) compared with other existing
dictionary learning based methods is shown in Table 3.1. The regularisation parameters
for the Caltech 101 dataset are w1 = 0.2,w2 = 10,w3 = 0.05. The DL-based methods
perform better than SRC, which shows that better performance can be achieved by learning a
discriminative dictionary. Our proposed method consistently outperforms the other existing
DL based methods, by at least 2.8 percentage points.

44 Support Discrimination Dictionary Learning

0 10 20 30 40 50 60 70 80 90 100
48

50

52

54

56

58

60

62

64

66

Category Index

S
im

ila
ri
ty

 I
n
d
e
x

Without Discriminative term

With Discriminative term

Fig. 3.6 The comparison between the similarity index calculated based on the sparse coding
of the same test samples from two different dictionaries.The red line represents the similarity
index calculated by the dictionary learned using the discrimination term, while the blue line
represents the similarity index without.

Fig. 3.7 Some sample objects from the Caltech-101 dataset.

Table 3.1 Recognition Rates (%) for Object Classification

No.Training SRC KSVD LC-KSVD FDDL SVGDL GDDL SDDL
10 58.89 59.80 62.40 63.10 63.10 62.30 66.80
15 63.80 64.20 66.90 66.60 68.80 66.20 71.60
20 67.20 68.70 69.50 69.80 70.00 69.80 73.60
25 68.60 70.20 71.80 72.30 73.50 72.30 76.50
30 70.30 73.40 73.30 73.10 74.10 73.40 76.90

3.3.4 Evaluation on Face Recognition Dataset

The two benchmark face datasets employed are the Extended Yale B dataset and the AR
dataset. Some sample images of Extended Yale B and AR dataset are shown in Fig. 3.8.

3.3 Experiments and Results 45

(a) Extended Yale B (b) AR face

Fig. 3.8 Some sample images in Extended Yale B and AR face dataset

With different illumination conditions and facial expressions, the Extended Yale B dataset
consists of 2414 frontal images of 38 subjects (about 64 images per subject). We randomly
select half as the training set and the rest as the test set for each class. As in the experimental
setting in [92] [155], we crop each image to 192×168 pixels, and then normalise and project
it to a 504 dimension vector using a random Gaussian matrix. The dictionary size of the
Extended Yale B dataset is 570, which corresponds to an average of 15 atoms per subject. As
discussed previously, there is no explicit correspondence between the dictionary atoms and
the labels of the individual at the training stage.

Similarly, the AR face dataset consists of over 4000 images of 126 subjects, which
is more challenging owing to the greater degree of variation, i.e., different illumination,
expressions and facial occlusion (e.g., sunglasses, scarf). As in the experimental setting in
[92] [155], we use the subset of the dataset which contains 2600 images for 50 male and
50 female subjects. For each subject, we randomly select 20 and 6 images for training and
testing respectively. We crop each image to 165×120 pixels, and then normalise and project
it to a 540 dimension vector using a Gaussian matrix. The dictionary size of the AR dataset
is 500, that corresponds to an average of 5 atoms per subject. The dictionary is shared by all
subjects.

The experiments are carried out 10 times with different chosen partitions. The average
classification accuracy of the proposed method compared with other existing dictionary
learning based methods are shown in the Table 3.2. The regularisation parameters for the
Extended Yale B dataset are w1 = 0.04,w2 = 2,w3 = 0.005, and for the AR face database
are w1 = 0.05,w2 = 3,w3 = 0.005. We can see that the proposed SDDL method achieves an
improvement of at least 1.7 and 2 percentage points over the next best scheme in terms of
classification accuracy for the Extended Yale B and the AR datasets respectively.

46 Support Discrimination Dictionary Learning

Table 3.2 Recognition Rates (%) for Face Classification

Method SRC KSVD LC-KSVD FDDL SVGDL GDDL SDDL
Extended Yale 80.54 93.40 94.50 94.92 95.70 96.80 98.50

AR 66.57 86.30 93.70 94.10 96.00 96.00 98.00

Fig. 3.9 Some sample images from the 15 Scene Categories dataset.

3.3.5 Evaluation on Scene Recognition Dataset

The 15 Scene Categories dataset is one of the benchmark datasets used in scene classification.
As shown in Fig. 3.9, this dataset contains a wide range of outdoor and indoor scenes, split
between 15 distinct classes, e.g., bedroom, kitchen, street and coast. The images within
a given class have significant visual variability. Each category contains about 200 to 400
images, in which the size of each image is around 250× 300 pixels. Following [92], the
spatial pyramid features are used as the input for the classifier. We randomly select 100
samples per category as the training set and the rest as the test set. The dictionary size of
the 15 Scene dataset is K = 450, that corresponds to an average of 30 atoms per class. The
dictionary is shared by all classes. The regularisation parameters for the 15 Scene dataset are
w1 = 0.01,w2 = 1,w3 = 0.02. The experiments are carried out 10 times with different chosen
partitions. The average classification accuracy of the proposed method (SDDL) compared
with other existing sparse based methods is shown in Table 3.3. Again, it is observed that
our proposed approach achieves the best classification performance in comparison to other
state-of-the-art approaches.

3.4 Chapter Summary 47

Table 3.3 Recognition Rates (%) for Scene Classification

Method SRC KSVD LC-KSVD FDDL SVGDL GDDL SDDL
15 Scene 91.80 86.70 91.90 91.60 92.90 93.10 93.70

3.4 Chapter Summary

In this Chapter, we incorporate a structured sparse prior into the dictionary learning process
and propose a support discrimination dictionary learning (SDDL) method for discriminative
feature learning. In contrast to other methods, we use the sparse structure, i.e., support, to
measure the similarity between the pairs of coefficients, rather than the Euclidean distance
which is widely adopted in many dictionary learning approaches for classification. The dis-
crimination capability of the proposed method is enhanced in two ways. First, a row sparse
regulariser is adopted so that a shared support structure for each class can be learned automat-
ically. Second, we adopt a discriminative term to make the coefficients from different classes
have minimum support overlap between each other. It can be achieved by minimisation of
the ℓ0 norm of the Hadamard product between any pair of coefficients in different classes. It
worth noting that our approach can automatically identify overlapped sub-dictionaries for
different classes, where the size of each sub-dictionary is adjusted appropriately during the
learning process to suit the training dataset. In this way, this proposed approach is scalable
to classification tasks having a large number of classes. Extensive experimental results on
object, face and scene recognition demonstrate the proposed method can generate more
discriminative sparse coefficients and that it has superior classification performance to a
number of state-of-the-art dictionary learning based methods.

Chapter 4

Dictionary Learning Inspired Deep
Network for Scene Recognition

Taking inspiration from biology, deep neural networks have in recent years come to dominate
the previously separate fields of research in machine learning, computer vision, natural
language understanding and speech recognition as discussed previously in Chapter 2. A deep
neural network incorporates hierarchical priors on feature representation learning, i.e., it
constructs multiple levels of representations that correspond to different levels of abstraction
or equivalently learning a hierarchy of features. More specifically, a deep neural network
will first learn low level features for lines, dots, curves etc, and then compose them into high
level features, which describes the common objects and their shapes. There are two aspects
of the benefits of using hierarchical priors to the feature learning model, as discussed below:

Firstly, using a hierarchical prior promotes the reuse of features. The notion of reuse,
which explains the power of distributed representations The depth, which is the length of
the longest path from the input to output node of a deep neural network, is a key aspect that
determines the representation power. The number of paths in the network, i.e., ways to reuse
different parts, can grow exponentially with its depth. Some theoretical results demonstrate
families of functions where a deep representation can be exponentially more efficient than
one that is insufficiently deep [10] [11] [13] [82] [83].

Secondly, using a hierarchical prior can lead to abstract representation at higher layers
of representation, which are generally more invariant to most local changes of the input.
As composition is useful for humans to describe the world around us efficiently, a deep
neural network can first learn simple concepts (low level) and then compose them into more
complex ones (high level). For example, in the basic Convolutional neural network (CNN),
abstraction can be obtained by pooling or by a strided convolution mechanism. Generally,
more abstract concepts are generally highly non-linear functions of the raw input, which is

50 Dictionary Learning Inspired Deep Network for Scene Recognition

invariant to most local changes of the input. In basic CNN, we can use the fully connected
layer to combine low level features achieved by the early convolutional and pooling layers
and obtain a semantic categorical concept, which potentially has greater predictive power.

In this chapter, we not only incorporate hierarchical priors on the feature representation
learning via the use of deep neural networks, but also integrates sparse priors into a unified
framework. We propose an approach to automatically adjust the sparsity level of the interme-
diate hidden units based on the training set, as shown in Fig. 4.1. Besides the advantages of
hierarchical and sparse prior as discussed before, this specific design brings three significant
advantages: (1) It makes each neuron in the deep network have its maximum discrimination
ability; (2) It makes images belonging to different classes maximally distinguishable; (3) It
provides potential to automatically select the most reusable low level features (especially
in the feature transfer task). More specifically, in this chapter, under the framework of
deep neural networks, we replace the conventional FCL and ReLu with a new dictionary
learning layer (DLL). We note that the DLL is composed of a finite number of recurrent
units to simultaneously enhance the both sparse representation and discriminative abilities
of the features via the determination of optimal dictionaries. In this chapter, we use the
challenging scene recognition task to examine the performance of our proposed method,
as unlike the situation in generic object categorisation, there are many discriminative part
regions in scene images which is prone to produce complex distributions of the intermediate
feature representation. To address this complex distribution, our DLL contributes specifically
to the scene recognition task in that the appropriate sparsity level can be learned in spite of
the unknown and complex sparse prior of the intermediate feature representations.

The rest of this chapter is organized as follows: Section 4.1 provides the most relevant
prior works about combining sparse priors with a deep neural network (hierarchical prior) and
demonstrate the primary motivation and contributions of this chapter. Section 4.2 presents
the details of the novel DLL, that is composed of a finite number of recurrent units to
simultaneously incorporate the sparse prior into the feature learning procedure. With the
help of the structure of the dictionary, we also proposed a new label discriminative regressor
and the use of overfitting prevention modules to boost the discrimination and generalization
ability of the learned feature representation. In section 4.3, we present an ablation study of our
proposed approach and it shows superior performance to many state-of-the-art approaches in
various challenging scene datasets; Section 4.4 presents the conclusions.

4.1 Introduction 51

Fig. 4.1 Incorporate sparse and hierarchical priors into feature learning.

4.1 Introduction

Scene recognition remains one of the most challenging problems in image understanding due
to illumination changes, high intra-class variance, and background occlusion. To tackle these
issues, convolutional neural networks (CNNs) [99] [150] trained on the large scale Places
dataset (Places-CNNs) [197] have yielded improved performance for the scene recognition
task. The power of CNNs is achieved by learning a strong feature representation in an
end-to-end manner for the classification task, instead of hand-crafting features with heuristic
parameter tuning. The CNN can be considered as a universal feature extractor, which learns
a new representation of the data that permits computationally easier and more effective
classifier design. Many deep CNN architectures have been proposed, but fully connected
layers (FCL) followed by rectified linear units (ReLu) are now prevalently used to combine
the local features extracted from the early convolution and pooling layer. [154] observed that
the nonlinear property inherent in the ReLu unit leads to sparsity in the neural activations,
consequently improving the performance of deep learning methods. Normally, for each
training image, around half of the neurons in the hidden layer are activated. They argued
that moderate sparse on neuron activation not only makes each neuron have its maximum
discrimination ability, but also makes images of different classes maximally distinguishable.
However, there is no effective mechanism to automatically adjust the sparsity level of the
intermediate hidden units based on the training set.

It would be beneficial to take advantage of the sparse model to adjust the sparsity level
and enforce different categories to have different subsets of neurons activated, consequently

52 Dictionary Learning Inspired Deep Network for Scene Recognition

Fig. 4.2 Comparison between the conventional CNN architecture and our CNN-DL architec-
ture.

maximizing discriminative power. As an extension of the standard reconstructive dictionary
[2], known as discriminative dictionary learning (DL) methods [92][185] aim to find the
optimal dictionary that simultaneously improves the sparse representation and also maximize
its discriminative capability. However, the current DL methods cannot achieve state of the
art performance in large-scale image classification, especially in scene recognition, in part
since most DL models have only been evaluated with traditional handcrafted features, e.g.,
BOF [180] and SIFT [117].

One way to utilize DL to improve scene recognition performance produced by CNN
features is to apply DL as a post-processing step trained separately from the training of
the CNN, an approach that is adopted in [108][178]. Arguably, this does not fully harness
the strength of DL since it is not integrated with the deep network. It is also worth noting
that although the work in [168] addresses object detection, it does combine the DL and
conventional CNN layers into the end-to-end training framework by simply replacing the
softmax classifier by a DL classifier. However, the DL classifier has not been used to replace
any fully connected layers before the classifier. In addition, without an explicit parameter for
sparsity control of the sparse coding step in the DL classifier, it is difficult to know whether
the sparsity of the total network is best optimized and further, to say that the sparseness will

4.1 Introduction 53

be a good regularization for training the low-level layers in the entire network. Considering
the optimization loss function, it is well known that the cross entropy is more robust to
outliers than is Mean-Squared Error (MSE) estimation. However, due to the design of
their DL classifier, they have to use the MSE of the reconstruction error, rather than the
more robust cross-entropy loss in the conventional classification task. In addition, [169]
also combined CNN and sparse coding for image super-resolution recovery. Although they
cascaded the Learned Iterative Shrinkage-Threshold Algorithm (LISTA) [76] network to
control the sparsity via an explicit shrinkage function, their loss function is still the MSE loss
of the reconstruction error, without any effort to improve feature discriminative capability. To
the best of our knowledge, there is no end-to-end learning framework to combine CNN and
DL in scene recognition, that can automatically adjust the sparsity level and discriminative
capability of the feature representation.

In this proposed approach, our formulation combines the strength of both conventional
CNNs and DL procedures in a unified framework, namely CNN-DL. The overall framework
for CNN-DL is illustrated in the lower diagram in Fig. 4.2, where arrows indicate the forward
propagation direction. In Fig. 4.2, the upper image is the conventional CNN architecture;
the lower image is the CNN-DL architecture. We replace the FCL and ReLu units by the
DLL, in order to achieve enhanced sparse and discriminative feature representation. The
CNN-DL network has two sibling output layers. The first outputs a discrete probability
distribution over different categories, computed by a softmax classifier, while the second
sibling layer outputs the corresponding discriminant sparse representation that depends upon
the dictionary structure.

Our contributions are summarized as following. Firstly, inspired by the Approximate
Message Passing (AMP) [50] algorithm and the LISTA network, we design a non-linear
DLL composed of a finite number of recurrent units to integrate the sparse coding and
dictionary learning into the deep network architecture. Such a layer can solve the sparse
coding with a better convergence rate than LISTA, while also contributing the gradient flow
to update the dictionary in each recurrent iteration. In addition, we decoupled the shrinkage
function threshold into two factors, so that the threshold is optimally learned to the unknown
sparse prior of the neural activation maps. Secondly, we build a new network architecture
named as CNN-DL, which replaces the conventional FCLs and ReLu units with a DLL, that
exhibits an enhanced sparse and discriminative feature representation. In addition, we take
advantage of the structure of the dictionary and design a new label discriminative regressor
to further improve the discriminative capability. We argue that such a layer can be used to
replace any fully connected layer (FCL) and can be cascaded as in the conventional deep
learning framework. Thirdly, we propose new constraints to prevent overfitting, i.e., by taking

54 Dictionary Learning Inspired Deep Network for Scene Recognition

advantage of both the Mahalanobis and Euclidean distances measures, thereby achieving a
balance between recognition accuracy for the training set and the generalization performance.
Fourthly, we suggest an optimization algorithm for the end-to-end training to jointly learn
the parameters in the CNN and DL, that is also compatible with the conventional back
propagation scheme. Fifthly, we analyze various factors in CNN-DL that affect the scene
recognition performance, including different loss functions and DLL settings. Finally, the
CNN-DL model is extensively evaluated using various scene datasets, and it shows superior
performance to many state-of-the-art scene recognition algorithms.

4.2 Integration of Dictionary Learning and CNN

4.2.1 Network Architecture

Similarly to most scene recognition methods based on deep learning networks, our network
architecture is designed to learn the transformation from the original image IIIi to its corre-
sponding label vector hhhi in an end-to-end manner, where i indicates the index of the training
samples. The overall network structure is illustrated in the lower image in Fig.4.2, where
arrows indicate the forward propagation direction. The details of each layer are discussed as
follows.

To extract the local features of the input image IIIi, it first goes through the ConvNet,
which contains a stack of conventional convolution and pooling layers. To measure the
improvements brought by our proposed DLL and the novel loss function in a fair setting,
the configurations of all our ConvNet layers are designed based on the same principles and
parameter settings used in [99] and [150]. We denote the features obtained from the ConvNet
as yyyi = f (IIIi) ∈ RM, where f represents the transformation in the convolution and pooling
layers.

Further to obtain the combination of local features, instead of forwarding the features
yyyi into FCLs (followed by ReLu) as shown in the upper figure of Fig.4.2, we design the
non-linear DLLs so as to obtain a sparse feature representation. Each DLL is parameterized
with a dictionary DDD ∈ RM×N , composed of a finite number of recurrent units to mimic the
sparse coding procedure. Specifically, the dictionary will be ideally learned if the following
equation is satisfied for any given extracted feature representation yyyi:

ααα i = argmin
ααα i
∥yyyi−DDDααα i∥2

F +λ ∥ααα i∥1 , (4.1)

where ααα i is the corresponding sparse feature representation.

4.2 Integration of Dictionary Learning and CNN 55

In the proposed network, we replace the conventional FCL by the DLL, which is a
sub-network aimed at enforcing the sparsity prior on the representation. Conventionally, as
in [99], a generic ReLu is used for nonlinear mapping. Since the DLL is designed based on
our domain knowledge from sparse coding, we are able to adjust the sparsity level of the
neuron activation based on the training set, consequently, obtaining a better interpretation
of the layer response. The implementation of this layer should be such that it is capable of
passing the error differentials from its outputs to inputs during back-propagation to update
the dictionary. The detailed description of the DLL and its relevant optimization rules are
discussed in the section 4.2.3, i.e., the non-linear DLL section.

The design of DLL is not only aimed at a good representation of the given features, its
structural flexibility also has the potential to enhance the discriminative capability of the
network. This can be achieved by exploiting the dictionary structure and the label information
of the input images as part of the final loss function. Inspired by the label consistent K-
SVD method [92], we integrate a label discriminative regressor L2 = ∑i λ1 ∥qqqi−BBBααα i∥2

F +

λ2
∥∥BBBT BBB− III

∥∥2
F into the final loss objective to measure the discriminative capability of the

sparse codes, which forces the training samples from the same class to have similar sparse
codes, while forcing samples from different classes to have different sparse codes. The matrix
BBB ∈ RN×N is the optimal linear mapping matrix to transform the original sparse code ααα i

to the most discriminate sparse feature domain. The ideal discriminative sparse coefficient
corresponding to a training sample yyyi is denoted qqqi. The nonzero values in qqqi only occur at
the places where the input training sample yyyi and the dictionary atom dddn share the same label.
Thus we define the discriminant sparse code qqqi as

qqqi = [q1
i ,q

2
i , ...,q

N
i] = [0...0,1...1,0...0]T ∈ RN . (4.2)

To prevent over-fitting during training, we also add a constraint term on matrix BBB to bal-
ance the Euclidean and Mahalanobis distances as ∥BBBT BBB− III∥2

F . The details of the label
discriminative regressor and its implementation is introduced in the section 4.2.2.

Besides utilizing the loss function L2 to maintain the discriminative sparse code, ααα i can
also be considered directly as a discriminant feature of original image IIIi for classification.
Here, a conventional softmax classifier is used to compute the predicted label, and the cross-
entropy loss function L1 is used to compare between the predicted label hhh∗i and ground truth
label hhhi. Finally, the overall loss function of our network can be expressed as

min
Θ
L1 +λ1 ∑

i
∥qqqi−−−BBBααα i∥2

F +λ2
∥∥BBBT BBB−−− III

∥∥2
F , (4.3)

56 Dictionary Learning Inspired Deep Network for Scene Recognition

where Θ represents the parameters within the network, and λ1 and λ2 balance the contribution
of different terms. We will see in the experiments that the design of the proposed DLL and
the novel objective function both contribute to better scene recognition results and a smaller
model size than a conventional CNN.

4.2.2 Loss Function Design with Integration of the Label Discrimina-
tive Regressor

As part of the final loss function in (4.3), the objective function to improve discrimination
can be expressed as

min
Θ

λ1 ∑
i
∥qqqi−BBBααα i∥2

F +λ2
∥∥BBBT BBB− III

∥∥2
F . (4.4)

It is worth noting that in the (4.4), we adopted a new constraint regularized by λ2

to prevent overfitting. It is designed to incorporate the strength of the Mahalanobis and
Euclidean distances, and to achieve a balance between the recognition accuracy and the
generalization ability. To understand this constraint, we argue that the term ∥qqqi−BBBααα i∥2

F can
be regarded as measuring the Mahalanobis distance 1 between the optimal and calculated
sparse codes ααα∗i and ααα i under the transformation matrix BBB, as:

∥qqqi−BBBααα i∥2
F = ∥BBBααα

∗
i −BBBααα i∥2

F

= (ααα∗i −ααα i)
T BBBT BBB(ααα∗i −ααα i) .

(4.5)

Although the Mahalanobis distance is well known for its discriminative capability, it is
prone to be overfitting. Compared with the Mahalanobis distance, the Euclidean distance
has a worse ability to discriminate but a better ability to generalize, because it does not take
into consideration data correlation across dimensions [121]. Here, we impose a constraint
to ensure that the matrix BBBT BBB has large values on the diagonal and small values elsewhere,
so that we can obtain a compromise between the Mahalanobis distance and the Euclidean
distance. The constraint is formulated as the Frobenius norm of the difference between BBBT BBB
and the identity matrix III. More specifically, when λ2 is small, the Mahalanobis distance
should be dominant to measure the distance between ααα∗i and ααα i. In contrast, with the choice
of a larger value of λ2, the matrix BBBT BBB is forced to be close to the identity matrix so that the
Euclidean distance is more dominant. In this situation, the Euclidean distance may generalize
better to unseen test sets. To sum up, we incorporate the advantage of Mahalanobis and
Euclidean distances to maintain the discriminative capability while reducing the overfitting
problem.

1The Mahalanobis distance is formulated as d(ααα1,ααα2) =
√
(ααα1−ααα2)T MMM(ααα1−ααα2)

4.2 Integration of Dictionary Learning and CNN 57

Fig. 4.3 The design of a non-linear dictionary learning layer. Each blue box in the Fig.4.3(a)
represents a recurrent unit, which corresponds to one iteration in the AMP sparse coding
procedure. The red box in Fig.4.3(a) shows a recurrent unit at the kth iteration, the details of
which are given in Fig.4.3(b).

4.2.3 Nonlinear Dictionary Learning Layer

In this section, we introduce details of the fast yet accurate non-linear DLL which is inspired
by the Approximate Message Passing (AMP) algorithm [50] and the on-line dictionary
learning method in [119]. As shown in Fig.4.3(a), given the input data from previous layers
yyy, the DLL is able to compute the final output sparse codes ααα(K) efficiently using K stacked
recurrent units (blue boxes), each of which exhibits a similar function to that of an iteration
in the AMP algorithm. As shown in Fig.4.3(b), we represent such adjacent recurrent units
in a data flow graph, where the blue box represents the recurrent unit, a node represents a
variable and the directed edge represents the flow between two variables. The operations
between the adjacent kth and (k+1)th units in the data flow graph can be represented as:

zzz(k+1) = ααα
(k)+β

(k)DDDT vvv(k) (4.6)

ttt(k+1) =
γ(k)√

M

∥∥∥vvv(k)
∥∥∥

2
(4.7)

58 Dictionary Learning Inspired Deep Network for Scene Recognition

ααα
(k+1) = max(

∣∣∣zzz(k+1)
∣∣∣− ttt(k+1),0)

zzz(k+1)∣∣zzz(k+1)
∣∣ (4.8)

vvv(k+1) = yyy−β
(k)DDDααα

(k+1)+
β (k)

M

∥∥∥ααα
(k+1)

∥∥∥
0

vvv(k), (4.9)

where γ and β represent the learnable scaling factors and ttt represents the threshold vectors, M
represents the dimension of the input feature yyy, the first layer inputs are ααα(0) = 0 and vvv(0) = yyy.
Note that sparse coding steps can be achieved in a relatively small number of iterations to fit
existing data sets. We used K = 2 recurrent units within each DLL throughout this chapter
unless otherwise specified. Since the dictionary is shared among recurrent units within one
DLL, the parameters in each DLL can then be represented as Θ = {DDD,{γ(k),β (k)}k=K

k=1 }.
There are three major differences between our DLL and the LISTA algorithm: firstly

inspired by the AMP, the conventional residual vvv(k+1) is corrected by use of the Onsager
correction [50] term: β

M

∥∥∥ααα(k+1)
∥∥∥

0
vvv(k) in our DLL layer. This correction has been proved to

enable the input of the shrinkage function, zzz(k+1) to be treated as an approximately Additive
white Gaussian noise (AWGN) corrupted optimal sparse code. Therefore, many shrinkage
functions can be applied easily. Secondly, the threshold selection ttt(k+1) in our shrinkage
function design is decoupled into the scaled factor γ(k) and the realization vvv(k). This enables
the threshold of the shrinkage function to be optimized when the prior of sparse codes is not
easily modeled. We argue that this will be useful for a deep learning framework, as estimating
the prior of the neural activation will be a difficult task. More specifically, learning from
training samples, γγγ(k) is adaptive to the unknown and complex prior of the neural activation.
Thirdly, except for the dictionary matrix, we do not have to learn an additional transformation
matrix (matrix BBB in the LISTA framework [76]), but decouple it into dictionary DDD and the
scaling parameter β . This lowers the model complexity and ensures that the input to the
shrinkage function is still essentially AWGN corrupted.

As the overall objective function in (4.3) does not depend on DDD explicitly, it is difficult to
compute the gradient with respect to DDD in each recurrent unit. Therefore, we consider the
dictionary DDD as a shared parameter implicitly in each recurrent unit and propose to compute
the gradient of the loss function L with respect to DDD using the chain rule:

∂L
∂DDD

=
K

∑
k=1

∂L
∂ααα(k)

∂ααα(k)

∂ zzz(k)
∂ zzz(k)

∂DDD
, (4.10)

where
∂L

∂ααα(k)
=

{
∏

K
k+1

∂L
∂ααα(k)

∂ααα(k)

∂ zzz(k)
∂ zzz(k)

∂ααα(k−1) i f k < K
∂L

∂ααα(k) i f k = K
(4.11)

4.3 Experiments and Results 59

It is also worth noting three points: first, ∂L
∂ααα(K) can be calculated based on the overall

objective function (4.3); Second, the qth element of ∂ααα(k)

∂ zzz(k)
is set to 0 if the qth element

ααα
(k)
q = 0, otherwise, it is set to 1. Thirdly, ∂ zzz(k)

∂ααα(k−1) can be calculated based on equation Eq
(4.6) and (4.9) and we use the L1 norm as an approximation of L0 norm in Eq (4.9) to enable
standard back propagation in our implementation.

Once ∂L
∂DDD is calculated, the dictionary DDD in the DLL layer can be updated by stochastic

gradient descent. To make this new layer compatible with the other layers in the current
CNN framework, we need to consider how the loss function can be back-propagated through
this DLL layer to the previous layers. We need to calculate ∂L

∂yyy , and once it is obtained, we
can perform standard back propagation [99] to update the CNN parameters in the previous
layers. In fact, yyy is similar to the case of dictionary DDD, and can also be obtained by use of the
chain rule.

From the perspective of the overall network architecture, different DLLs (cascaded in
series) are parametrized by separate dictionaries and all the parameters within the overall
network can be trained by standard back-propagation. It will be shown in the experiments
that with the integration of the newly proposed DLL, the overall CNN-DL structure is able to
generate better scene recognition performance than can the conventional CNN structure.

4.3 Experiments and Results

In this section, we evaluate our approach using various scene recognition datasets and
compare with other state-of-the-art approaches. We first introduce the datasets and the
parameter settings, and second give an analysis of the factors that effect in the CNN-DL
method. Then, we report the recognition performance of the proposed method and compare it
with other scene recognition algorithms in the following section. The evaluation is performed
for various network architectures and scene datasets.

4.3.1 Datasets and Experimental Settings

Since all the selected comparison methods only present their results for the 15 Scene [103],
MIT Indoor-67 [138], or Sun 397 [177], we choose to employ them in our scene recognition
experiments. More detailed information about the 15 Scene dataset can be found in section
3.3.5 and Fig.3.9. The MIT 67 indoor set is provided to address the challenging indoor scene
recognition problem. This database contains 67 Indoor categories, and contains a total of
15620 images. The number of images varies across categories, but there are at least 100
images per category, and the images are in jpg format. Some sample images from MIT

60 Dictionary Learning Inspired Deep Network for Scene Recognition

Fig. 4.4 Some sample images from the MIT 67 dataset.

Indoor-67 dataset can be seen in Fig. 4.4. The SUN 397 dataset contains 397 well-sampled
categories categories in total. The number of images varies across categories, but there are at
least 100 images per category, and there are 108,754 images in total. The images are in jpg,
png, or gif format. Some sample images from Sun 397 dataset can be found in Fig. 4.5.

We use the average accuracy to evaluate the recognition performance. The parameters in
the objective function (4.3) are determined by 5-fold cross-validation for different datasets as
listed in Table 4.1. We follow the same training-test partition used in [108] [178]. 15 Scene
includes 100 images per class for training and the rest for testing. MIT Indoor 67 includes 80
images of each category for training and 20 images for testing. SUN 397 includes multiple
train/test splits, with 50 images per class in the testing set. We present results for the average
accuracy over the splits.

To completely understand and evaluate effects of different factors in CNN-DL, a detailed
factor analysis regarding parameter selection and layer settings are performed in the next
section. We implement our approach based on Tensorflow and the relevant code is available
at https://github.com/BeCarefulPlease/Ch4. For comparisons between other methods, the
CNN network architectures we adopt are AlexNet [99] and VGG net [150]. The model is
first trained on the large auxiliary dataset with image level supervision, including ImageNet
data [99] or Place205 data [197]. To adapt the pre-trained CNN to the new scene dataset, we
perform domain-specific fine-tuning on the three scene datasets. In the following experiments,
we replace the FCLs by an equivalent number of the proposed non-linear DLLs and fine-tune
the pretrained CNN. It worth noting that the number of dictionary atoms per class should
be one in the final DLL. Detailed information about the dictionary size of the previous to
last DLL layer are shown in Table 4.1. To balance the trade-off between speed and accuracy,

4.3 Experiments and Results 61

Fig. 4.5 Some sample images from the SUN 397 dataset.

Table 4.1 Dataset and Experimental Details

Dataset Dictionary Size λ1 λ2

15 Scene 450 atoms (30 atoms/class) 0.2 0.001
MIT Indoor 67 2680 atoms (40 atoms/class) 0.5 0.005

SUN 397 3970 atoms (10 atoms/class) 0.3 0.02

we used K = 2 recurrent units within each DLL throughout the evaluation unless otherwise
specified.

4.3.2 Factor Analysis

In this section, we investigate how the performance of CNN-DL is affected by different
factors using the MIT Indoor 67 dataset. All the analysis in this section is based on results
achieved by CNN-DL on AlexNet (pre-trained on ImageNet data). We will discuss two main
factors, including the configuration of the DLL and the use of different loss functions.

Factor A: Proposed Dictionary Learning Layer
In this section, we verify the effectiveness of DLL components in different configuration

settings, including dictionary size (factor A1), the number of recurrent units (factor A2) and
the use of cascaded DLLs (factor A3). In some of the tests, we also compare the performance
of DLL with its conventional alternative FCL+ ReLu. Note that in order to remove the

62 Dictionary Learning Inspired Deep Network for Scene Recognition

5 10 20 30 40 50 60 70

Dictionary Size per Category

62

62.5

63

63.5

64

64.5

65

R
e
c
o
g
n
it
io

n
 A

c
c
u
ra

c
y
 (

%
)

Fig. 4.6 Effect of dictionary size on the recognition accuracy.

improvement brought by the novel objective function design, we use the simple cross entropy
loss L1 directly to enable a fair comparison.

Factor A1: Different Dictionary Size in the DLL
It is worth noting that an important factor within the DLL is the dictionary size, as it

controls the model capacity. As shown in [92][185], the larger the size of the dictionary, the
better is the performance of the traditional DL model. However, as the input of the DLL are
the features learned by the deep network, it is still unclear what dictionary size fits best to
these high level features. In general, the ideal DL method should achieve an acceptable level
of performance using a relatively small dictionary size.

In this section, we use the MIT Indoor 67 dataset as an example for the evaluation and
analysis. Specifically, we only replace the conventional FCL7 by our DLL followed by FCL8
as the classifier. For each class, we randomly choose 80 images for training and the rest
for testing, similarly to the experimental setting in [108]. The parameters of the dictionary
are initialized using a truncated normal distribution, with the number of dictionary atoms
per class varying from 5 to 70. Fig.4.6 shows that the performance of the CNN-DL method
improves when the dictionary size increases and reaches a maximum at around 40 atoms per
category. This may relate to the diversity of training data under the particular category, while
too many dictionary atoms per class may introduce information redundancy or noise into the
feature representation.

Factor A2: Number of recurrent unit in the DLL
In this section, we evaluate the effect of the number of recurrent units in the DLL.

Specifically, we only replace the last FCL with a DLL in the experiments. As shown in
Fig.4.7, we plot the L1 sparseness measure (LSM) [106] of the conventional FCL output

4.3 Experiments and Results 63

0 1 2 3 4 5

Iteration Number ×10 4

500

1000

1500

2000

2500

L
1

 S
p

a
rs

e
n

e
s
s
 M

e
a

s
u

re
 (

L
S

M
)

FC+ReLu

DLL 1 Unit

DLL 2 Units

DLL 4 Units

DLL 8 Units

Fig. 4.7 LSM of DLL activations using different layers

Table 4.2 Effect of number of Recurrent Units in DLLs

Loss Layer Setting No.Units Recognition Rate
L1 FCL7+FCL8 - 61.80
L1 FCL7+DLL8 1 63.21
L1 FCL7+DLL8 2 64.63
L1 FCL7+DLL8 4 64.32
L1 FCL7+DLL8 8 63.08

and the DLL output based on using 1,2,4 and 8 recurrent units. These LSM losses are
based on inputting the same test datasets and calculating the L1 norm of their final outputs.
It can be clearly shown that output of the FCL is less sparse than the others and with an
increasing number of recurrent units, the DLL outputs are more sparse. Further, for the
different sparseness levels, we can present the corresponding recognition rates in Table 4.3.
The recognition rate increases and achieves the best rate of 64.63% when the number of
recurrent units is two. As more units are utilized, the recognition rate falls to 63.08%, but is
still better than using the FCL only. This experiment shows that only appropriate levels of
sparseness can lead to good recognition rates.

Factor A3: Usage of Cascaded DLLs
Here, we analyze the effect of cascaded DLLs in the deep CNN framework by using

different layerwise configurations, as shown in Table 4.4. For a fair comparison, we used 2
recurrent units and fixed the dictionary size to 2680. It is worth noting that, as the LISTA
network also involves sparse coding, we compare our DLL with LISTA in this section. As

64 Dictionary Learning Inspired Deep Network for Scene Recognition

Table 4.3 Effect of number of Recurrent Units in DLLs

Layer Setting No.Units Recognition Rate
FCL - 61.80
DLL 1 63.21
DLL 2 64.63
DLL 4 64.32
DLL 8 63.08

Table 4.4 Analysis for Factor A3: cascaded DLLs

Loss function Layer Setting Recognition Rate
L1 FC7+FC8 61.80
L1 DLL7+FC8 64.46
L1 FC7+DLL8 64.63
L1 DLL7+DLL8 65.19
L1 LISTA7+LISTA8 63.90

Table 4.5 Recognition Rates (%) for different factors setting

Loss function Layer setting Recognition Rate
L1 FC7+FC8 61.80
L1 DLL7 +DLL8 65.19

L1 +L2 (-) DLL7 +DLL8 66.11
L1 +L2 DLL7 +DLL8 66.60

shown in Table 4.4, replacing FCL7 and FCL8 by two LISTA layers improves performance
from 61.80% to 63.90% and replacing a single FCL with our proposed DLL increases
performance to around 64.46% and 64.63%, that is already a 0.5% improvement to that
yielded by the LISTA layers. Finally, the recognition rate rises to 65.19% when we replace
both FCL layers with DLLs, yielding an improvement of 3.5% improvement compared to
using FCLs only. This experiment shows the superiority of our approach compared with
LISTA and FCL layers, and also shows that using two DLLs outperforms the use of one DLL.
The reason that our DLL outperforms LISTA may be owing to the decoupling of the learned
threshold into two factors, that is able to adapt the threshold in the shrinkage function of the
DLL under the unknown sparse prior of the activation outputs. In addition, due to the fact
that LISTA needs to learn an extra matrix in the sparse coding procedure while our DLL does
not, our model can be trained more efficiently with fewer parameters. To sum up, the new
proposed DLL contributes in yielding better scene recognition performance.

Factor B: Effect of different terms in the Objective Function

4.3 Experiments and Results 65

Table 4.6 Recognition Rates (%) for different architectures and multi-scale variations

Architecture Pretrain Set No. scales
15 Scenes MIT Indoor 67 SUN 397

Alex VGG Alex VGG Alex VGG
Baseline IN 1 86.50 89.89 61.80 71.11 46.33 54.09
CNN-DL IN 1 88.33 92.90 66.60 78.33 51.67 60.23
Baseline PL 1 89.96 91.20 72.88 79.45 57.07 65.10
CNN-DL PL 1 91.30 93.30 76.10 82.86 60.82 67.90

Hybrid-CNN IN+PL 1 53.86 – 70.80 – 53.86 –
DAG-CNN IN 1 – 91.90 – 77.50 – 56.20
DSP-CNN IN 1 – 91.78 – 78.28 – 59.78

Dual IN 2 92.16 93.84 71.87 79.04 56.62 61.07
Dual CNN-DL IN 2 92.31 94.54 76.56 83.37 59.03 65.20

Dual PL 2 93.80 95.18 76.87 83.43 62.60 67.59
Dual CNN-DL PL 2 94.20 96.03 80.30 86.43 66.10 70.13

MOP-CNN IN 3 – – 68.88 – 51.98 –
CNN-DBL IN 3 – – 74.09 82.24 57.31 64.53

MFAFV-NET IN/PL 3 – – 75.01 82.66 57.15 64.59
URDL IN 4 91.15 – 71.90 – – –
SFV IN 4 – – 72.86 – 54.40 –

SFV+PLACES IN/PL 4+1 – – 79.00 – 61.72 –

We will now investigate how the performance of CNN-DL is affected by the design of the
objective function. We evaluate the loss function with and without the label discriminative
regressor L2 of the sparse code and the corresponding constraint. A comparison of the
recognition performances are shown in the Table 4.52. We can see that with the help of
the label discriminative regressor, the performance is consistently better than using only
the simple softmax function. It verifies that the adoption of the novel discrimination term
takes advantage of the structure of the dictionary in the DLL, consequently enhancing the
discriminative capability of the overall network. In addition, the loss function with the
constraints always shows superior performance to those without it. This shows that the
constraint we developed for preventing over-fitting in training is effective.

4.3.3 Results and Comparisons

In this section, we compare our CNN-DL method with other existing scene classification
approaches. The classification performance metric is the percentage of correctly classified
test data. The benchmark algorithms for comparison are Hybrid-CNN [197], Multiscale
orderless pooling CNN (MOP-CNN) [71], Semantic Fisher vector CNN (SFV) [46], hybrid

2L1 +L2 (-) represents using L1 +L2 as the objective function without the term to prevent overfitting

66 Dictionary Learning Inspired Deep Network for Scene Recognition

CNN and dictionary-based model (CNN-DBL) [178], Unified representative and discrim-
inative learning model (URDL) [108], Directed acyclic graph CNN (DAG-CNNs) [186],
Deep spatial pyramid CNN (DSP-CNN) [63] and Mixture of factor analyzers Fisher vector
network (MFAFV-NET) [107]. Detailed information about each model is shown in Table 4.6,
including the pre-train auxiliary dataset and the number of scales. As mentioned in section
4.3.1, we employ three widely used scene recognition datasets in our evaluation experiments,
specifically, 15 Scene [103], MIT Indoor-67 [138], and Sun 397 [177].

More specifically, we first train the CNN based network on the auxiliary data, including
ImageNet data (IN) or Place205 data (PL), then fine tune the network as described previously
for different scene datasets. By replacing the FCLs with the proposed DLLs, we can evaluate
the performance achieved by the CNN-DL method. It can be seen that the network pre-trained
by PL always performs better than the counterpart pre-trained by IN, which corresponds with
the findings in [197]. In addition, the VGG network architecture always demonstrates superior
performance to the Alex network architecture owing to the exploitation of deeper models.
When evaluating various methods on a single global scale, our CNN-DL method consistently
outperforms the other CNN based scene recognition methods, which justifies the effectiveness
of integrating the DLL into the network architecture. This may be because the DLL considers
sparsity control of the neuron activation and the discrimination capability simultaneously.
Furthermore, usage of the new constraint in (4.4) is able to prevent overfitting, balancing
between the recognition accuracy of the training set and the generalization performance.

It worth noting that among the comparison approaches, the CNN-DBL and URDL
methods are based on dictionary learning models, however, these techniques apply the
dictionary learning model as a post-processing step disconnected from the training of CNN,
and so do not fully harness the strength of DL since it is not integrated with the deep network.
As these methods show improved performance when evaluated on multiple scales [178]
[108], we also consider the multiple scale case for our CNN-DL method. Consequently, we
evaluate pairwise combinations of CNNs used at two different scales, that we identify as Dual
CNN-DL. As in [86], the dual architecture consists of two CNNs processing images at two
scales. We regard this as the baseline for the two scales evaluation. Instead of concatenating
the two resulting final FCL activations into a feature and training the SVM as in [86], we
concatenate the sparse feature representation into a feature and train the SVM in this new
discriminant latent space. The results in Table 4.6 show the improvement in the performance
achieved by Dual CNN-DL (Pre-trained on IN), yielding an accuracy of 76.56% on MIT
Indoor 67 and 59.03% on SUN 397 for only two scales. Compared with the other dictionary
learning based models, our method obtains better performance on MIT Indoor 67 and SUN
397, while using only two scales compared with 3 or 4 scales in CNN-DBL and URDL.

4.4 Chapter Summary 67

In this work, we only combine two scales in a dual architecture for CNN-DL, though it
is also possible to consider the combination of more scales at the cost of a more complex
architecture.

4.4 Chapter Summary

In this chapter, we replace the conventional FCL and ReLu by our proposed nonlinear DLL.
The proposed approach combines the strength of both a hierarchical prior (CNN) and a sparse
prior (DL) on the feature learning procedure, i.e., is capable of controlling the sparsity of the
neuron activation in the forward pass, while passing the error differentials from its outputs to
inputs during back-propagation to update the dictionary. Our CNN-DL architecture takes
advantage of the potential structure of the dictionary, in order to harness the discriminant
capability of the features via a new label discriminative regressor. In addition, we propose
new constraints to prevent overfitting, by incorporating the advantage of the Mahalanobis and
Euclidean distances and balancing the recognition accuracy and generalization performance.
We suggest an algorithm to train the whole network end-to-end by performing conventional
back propagation and avoiding offline post-processing. The superior performance of the
proposed method in comparison to the state-of-the-art is demonstrated using experiments
employing various scene datasets.

Chapter 5

Multi-Task Adversarial Network for
Disentangled Feature Learning

Multiple independent factors exist in the image generation process, however, in most appli-
cations, only some of the explanatory factors are of interests to us. Different explanatory
factors of the data tend to change independently of each other in the input distribution, and
only a few at a time tend to change when one considers a sequence of consecutive real-world
inputs. These factors always influence the observation in a complex and correlated way that
makes the representation learning for an AI-related task (i.e., image classification) quite
challenging. In this chapter, our goal is to build a model that disentangles the underlying
factors of image variants associated with particular attributes of interest, which effectively
leads to an informative disentangled feature representation, consequently benefiting image
understanding. There are three aspects concerning the benefits of disentangling feature
representation, as will now be discussed:

Firstly, learning a disentangled feature representation that separates the various explana-
tory sources, should give rise to a representation significantly more robust to the complex
and richly structured variations extant in natural data sources. A good feature representation
should disentangle the underlying factors so that what one learns about one factor could
generalise to many configurations of the other factors.

Secondly, a disentangled representation enables controllable generation of new data
through a generative model. In other words, the use of a disentangled representation enables
different realistic versions of an input image to be generated by varying the attribute values.
By using continuous attribute values, we can even choose how much a specific attribute is
perceivable in the generated image.

70 Multi-Task Adversarial Network for Disentangled Feature Learning

Fig. 5.1 Images of human faces are determined by two independent factors, i.e., identity and
pose..

Thirdly, learning a disentangled feature representation leads to decisions that are po-
tentially comprehensible to humans, i.e., it can improve the interpretability of the learned
feature.

In this chapter, we address the problem of image feature learning for applications where
multiple independent factors exist in the image generation process, and only some factors
are of our interest. For example in Fig. 5.1, images of human faces are determined by two
independent factors, i.e., identity and pose. If the application is face recognition, the identity
is the factor of our interest. Our ultimate goal is to learn a disentangled representation
of image variants associated with particular attributes of interest. More specifically, we
present a novel multi-task adversarial network based on an encoder-discriminator-generator
architecture. The encoder extracts a disentangled feature representation for the factors of
interest. The discriminators classify each of the factors as individual tasks. The encoder
and the discriminators are trained cooperatively on factors of interest, but in an adversarial
way on factors of distraction. The generator provides further regularisation on the learned
feature by reconstructing images with shared factors as the input image. We also design a
new optimisation scheme to stabilise the adversarial optimisation process when multiple
distributions need to be aligned. The rest of this chapter is organised as follows: Section 5.1
introduces the primary motivation and contribution of this chapter. Section 5.2 discusses
some related work, including prior works on disentangled representation and adversarial
training. Section 5.3 presents the details of the proposed multi-task adversarial network,

5.1 Introduction 71

including the overall objective functions and the novel optimisation scheme to stabilise the
adversarial optimisation process. We also compare our proposed approach with the three
most relevant generative adversarial networks and auto-encoder variants. In section 5.4, the
experiments conducted on face recognition and font recognition tasks show that our method
outperforms the state-of-the-art methods in terms of both recognising the factors of interest
and generalisation to images with unseen variations. Section 5.5 concludes this chapter.

5.1 Introduction

Image feature representation learning has been one of the central problems in Computer
Vision. One of the most significant developments in the recent years in image feature learning
is the resurgence of convolutional neural networks combined with large-scale datasets [99].
In this chapter, we are interested in extending convolutional neural network based feature
learning to the problems where multiple independent underlying factors determine the image
generation process but only some factors are of our interest.

For many practical applications, the image generation process can be well approximated
by a small number of factors. For instance, images of printed text are determined by factors
such as font and glyph and images of human faces are determined by factors such as identity,
pose, and illumination. We further assume there exists a primary factor for a given application.
For instance, in the case of text images, if the application is font recognition, then font is
the primary factor. But if the application is character recognition, then glyph is the primary
factor. Multi-task learning [28] is the traditional approach to leverage the additional factors
that are present in the image generation process. It learns a shared representation to predict
all the factors. By doing so, we obtain features that can potentially outperform those learned
from individual factors. However, if we are only interested in the performance of the primary
factor, such as the identity for face images, can we do better than conventional multi-task
learning?

Another major challenge in feature learning is generalization. We want the features
learned from training data to perform well on test data that have never been seen in training.
In the case of factored image generation processes, one particularly interesting generalization
is to unseen variations of non-primary factors. For instance, if our problem is font recognition,
we are interested in a feature representation that is robust to glyphs that have never been seen
in training. Generalization is usually accomplished by seeing as many data variations as
possible in training. However, in the case of images with factors, this would mean that we
need to potentially see images with all the combinations of all the factors. We end up with an
explosion of images (exponential with respect to the number of factors in the worse case).

72 Multi-Task Adversarial Network for Disentangled Feature Learning

The interesting question is whether it is necessary to train on all the combinations of all the
factors in order to generalize if there is a primary factor.

In this chapter, we propose a novel feature learning algorithm for factored image genera-
tion processes that answers the two questions posed in the previous two paragraphs. Without
loss of generality, we assume that the image generation process contains two independent
(uncorrelated) factors and we are only interested in recognizing one of two. We refer to
the factor of interest as the content factor and the other as the style factor. The key idea
of the proposed apporach is that instead of learning from both factors in a cooperative way
(traditional multi-task learning where both tasks help each other), we formulate the problem
as learning from two adversarial tasks. To be more precise, given an input image with a
content label and a style label, one task is to learn a content classifier and a shared image
feature that labels the image correctly according to the content label. The other task is to
learn a style classifier and the same image feature that would label the image maximally
incorrectly according to the style label. Through the adversarial process, we learn an image
feature that outperforms that of multi-task learning on the content factor and generalizes to
new images with both unseen content and style factors.

The overall framework of the proposed multi-task adversarial network (MTAN) is shown
in Fig. 5.2. There are four main components in our adversarial multi-task formulation: an
encoder network, a generator network, and two discriminator networks. An input image is
fed into the encoder network which produces the target feature representation. The feature
is used as input to a content discriminator and a style discriminator. Both the encoder and
the content discriminator work cooperatively to minimize a classification loss driven by the
content label, while the encoder and the style discriminator play an adversarial game in
which the interaction is modeled by a minimax optimization over the prediction of the style
label. The two classification tasks are essentially competing with each other as the difference
between the content and style classification losses is used to train the feature encoder. To
ensure the encoded feature contains a full description of the image content, we also add
a generator network to produce an image that matches the content of the input image and
the style of a given style indicator. Depending on whether the style indicator matches the
style label of the input image, the generator is trained to either reconstruct the input image
or transfer it to a different style. By combining the encoder, the generator, and the two
discriminators, we obtain a feature that is optimized with respect to the content factor while
being style-agnostic. In this way the feature can generalize to unseen style factors without
causing confusion on content understanding.

Similarly to other generative adversarial networks (GAN) [4][73], the training process
of the propose network architecture tends to suffer from unstable numerical optimization

5.1 Introduction 73

Fig. 5.2 Overall network architecture of our proposed adversarial disentangling model. The
model is composed of four components: an encoder, a generator, a content discriminator, and
a style discriminator. The encoder is used to extract the content feature representation of the
image, which is good for content recognition but not for differentiating the styles.

due to the minimax loss function. Moreover, in the problems we are interested in, the style
discriminator may need to distinguish as many as hundreds or thousands of classes as opposed
to a binary decision (real or fake) as in most existing GANs. If we break the multi-class
problem into a set of binary classification problems, we are actually required to solve a set
of minimax problems coupled by the same encoder, which is much more challenging than
for GAN. To tackle the problem, we extend the Wasserstein GAN (WGAN) [4] algorithm to
address the multi-class scenario, which significantly improves the training stability.

The main contributions of this chapter are three-fold: 1. We propose a multi-task
adversarial network that learns a disentangled feature representation through adversarial
training of competing tasks on independent (uncorrelated) image factors. 2. We achieve
stable optimization of multiple minimax losses by extending the WGAN algorithm [4] to the
multi-class scenario. 3. Our feature representation outperforms standard cooperative multi-
task learning methods, and achieves the state-of-the-art performance on the face recognition
and font recognition datasets. Our approach can better generalize to unseen variations in
both content factors and style factors.

74 Multi-Task Adversarial Network for Disentangled Feature Learning

5.2 Related Work

5.2.1 Disentangled Representation

There is a large quantity of literature concerning learning disentangled representations. The
bi-linear model is among the first to separate the content and style in the underlying set of
observations [159]. With the recent development of deep learning, auto-encoders [33] [87]
[88] and Boltzmann machines [143] are adopted as regularizers to combine the discrimination
and self-reconstruction criteria, thus discovering the factors of variation beside those relevant
for classification. In particular, Predictability Minimization [148] and the fair variational
auto-encoder [115] encourage independence between different latent factors. In addition to
reconstructing the input, [135] [188] synthesize other images with the same content but with
a different style to implicitly disentangle features. With the help of GANs, the work of [45]
[53] [102] [124] further explores the application of disentangled representations in computer
graphics and video prediction.

Our proposed method differs from the previous methods by combining cross-style image
generation with an adversarial training strategy to learn disentangled features. It is worth
noting that although [160] also uses this combination for feature disentangling, our proposed
multi-task adversarial network differs in the following respects. Since our main goal is to
improve content classification performance instead of synthesizing high-quality images, we
employ multi-task adversarial training on the latent feature representation, instead of on the
synthesized image and the real image. This is designed for explicitly learning a disentangled
latent feature that is good for content recognition but not for style recognition. By combining
cross-style image generation, the learned feature is not only inclusive or generative for
synthesizing a content-preserving image, but also exclusive or invariant to style variations,
thus benefiting image classification.

5.2.2 Adversarial Learning

Adversarial training has been explored for representation learning in various computer vision
applications. In most GANs, the aim is to minimize the divergence between the distribution
of real and fake images. A similar adversarial training strategy has also been adopted in
feature learning in domain adaptation [162] and video prediction [45]. However, these
methods use binary adversarial objective functions, which means their adversarial training
can only be generalized to the cases where data comes from no more than two distributions.
In contrast to their work, our proposed adversarial method considers multiple distributions.
As shown in the adversarial branch in Fig. 5.2, if we break the multi-class problem into a

5.3 Multi-Task Adversarial Network 75

set of binary classification problems, we are actually required to optimize a set of minimax
problems simultaneously, which are coupled by the same encoder.

It is worth noting that some works on GANs have claimed that they consider multiple
categorical GANs, e.g., the Semi-Supervised GAN [131] and the DR-GAN [160]. Indeed,
they have added a new branch for the multi-categorical classification, but in these previous
approaches, the competing adversarial loss only confuses the discriminator by using two
distributions (real or generated) and no adversarial strategies are adopted between different
categories in the auxiliary multi-categorical classifier branch. In our work, the target of
the encoder is to confuse the style classifier with any two classes, which aims to reduce
the feature distribution discrepancy of any two style classes. There is no “real” reference
class that can guide the distribution of other classes. In Section 5.3.2, we will provide an
in-depth discussion concerning the difference between our proposals and the most relevant
work concerning conventional GANs.

It is also worth noting that min-max optimization always suffers from training instability
as has been observed previously in related GAN research. In our model formulation, multiple
min-max problems require to be optimized simultaneously, which further aggravates the
training difficulties. Recent work in [4][136] have proposed methods, that are resilient
to vanishing gradient and model collapse even with an over-trained loss function or a
mildly changed network architecture. In this way, the GAN network can be trained without
properly balancing the generator and discriminator, which leads to improved training stability.
However, these methods do not consider the adversarial loss for multiple distributions larger
than two. Therefore, our work verifies whether these approaches can be extended to address
multiple distributions.

5.3 Multi-Task Adversarial Network

The overall framework of multi-task adversarial network (MTAN) is illustrated in the Fig. 5.2,
where arrows indicate the forward propagation direction. It is composed of four components,
including the encoder E, the generator G, the content classifier DC and the style classifier DS.

Assume we have an image xxx with discrete content label y ∈ Y and discrete style label
z ∈ Z . The image is first mapped by the encoder to its latent feature representation E(xxx).
Based on this latent representation, the discriminators try to predict class distributions
DC(E(xxx)) ∈ R|Y| and DS(E(xxx)) ∈ R|Z| for content and style, respectively. As our goal is
to encode image content information while removing any style variations in the learned
feature representation, a good encoder E should extract a feature that is good for the content
discriminator DC but bad for the style discriminator DS. Based on this intuition, we formulate

76 Multi-Task Adversarial Network for Disentangled Feature Learning

the following adversarial multi-task training objectives:

min
E,DC
LC (5.1)

max
E

min
DS
LS. (5.2)

As can be seen, E and DC work cooperatively to minimize the content classification loss LC,
which is a conventional cross-entropy loss between ground truth y and prediction DC(E(xxx)).
On the other hand, E and DS play an adversarial game on the style loss LS, where E tries
to minimize the divergence of feature distributions for different style classes so that DS

fails to correctly classify sample style no matter how hard it tries. Ideally, at the end of the
competition, DS can perform no better than a random guess. The idea behind (5.2) is the
same as in GAN [73], although our goal is to learn disentangled features instead of generating
images. Moreover, the style loss LS typically involves a large number of classes as opposed
to the binary classification in GAN. In our setting, a “real” reference class does not exist that
can guide the distribution of other classes; yet no trivial solution for E will be obtained as
the encoder is also constrained by (5.1). The details of the loss function and training scheme
for (5.2) will be given in Section 5.3.1.

Besides the multi-task classification branches, our network also includes a generation
branch. The generator takes an encoded latent feature as well as a target style indicator z′

as inputs, and outputs a synthesized image G(E(xxx),z′) which shares the same content of xxx
but is rendered in the style of z′. The training for the generation branch is guided by an L2

reconstruction loss:
min
E,G

∑
(i, j):y j=yi,z j=z′i

∥∥G(E(xxxi),z′i)− xxx j
∥∥

2 , (5.3)

where subscripts i and j denote data indices. z′i is randomly sampled from Z . When z′i = zi,
G tries to reconstruct the original input xxxi; otherwise, G generates a style-transferred version
of xxxi that matches a corresponding sample xxx j with style z′i in the training database. The
encoder-generator design contributes to content feature disentangling in an implicit way, and
makes the encoded feature more inclusive of the image content.

5.3.1 Multi-Class Adversarial Training

Here we discuss the loss function and optimization strategy for the adversarial style classifi-
cation in equation (5.2). The classification loss on a training pair {xxx,z} can be defined as the

5.3 Multi-Task Adversarial Network 77

cross-entropy between predicted class distribution DS(E(xxx)) and ground truth label z:

ℓCE(xxx,z) =− ∑
k∈Z

δ (z− k) logDS(E(xxx),k), (5.4)

where δ (·) is the Dirac delta function, and DS(E(xxx),k) denotes DS’s prediction score for the
k-th style class. However, as pointed out in [4], cross-entropy is not a stable loss if there is
a big disparity between the predicted distribution and target distribution. With the loss in
(5.4), optimization in our case becomes even more unstable due to the large number of style
classes and the absence of a fixed reference distribution.

Following the idea of WGAN [4], we improve optimization stability by replacing the
cross-entropy loss with Earth Mover’s Distance (EMD). As the goal of encoder E here is to
match the feature distributions of multiple style classes, we need to calculate EMD for each
pair of distinct styles. A more efficient alternative is to construct the pairs in a one-versus-all
way, which gives the following multiple-distribution matching objective:

min
E ∑

k∈Z
W (p(E(X)|Z = k), p(E(X)|Z ̸= k)) , (5.5)

where W (·, ·) is the EMD distance, X and Z are the random variables for xxx and z. With the
same approximation used in WGAN, the problem above can be converted to

min
E ∑

k∈Z
max
DS∈D

Exxx∼p(X |Z=k)DS(E(xxx),k)−Exxx∼p(X |Z ̸=k)DS(E(xxx),k), (5.6)

where D is the space of all K-Lipschitz functions for some K. As DS is shared by all the |Z|
EMD operations, it is very hard to simultaneously achieve the optima for all the inner max
problems. As an approximation, we switch the order of summation and maximization in
(5.6), and arrive at our final objective function:

min
E

max
DS∈D

∑
i
−ℓEMD(xxxi,zi), (5.7)

and

ℓEMD(xxx,z) =−DS(E(xxx),z)+
∑k ̸=z DS(E(xxx),k)
|Z|−1

=< zzz,DS(E(xxx))>,

(5.8)

where zzz ∈ R|Z| is a vector representation of z, with the z-th element equal to −1 and all the
others equal to 1/(|Z|−1). Note that when |Z|= 2, our optimization objective reduces to
the original WGAN.

78 Multi-Task Adversarial Network for Disentangled Feature Learning

To enforce the K-Lipschitz condition for DS, we select K = 1 and adopt a gradient loss
as in the improved WGAN [79] which is extended to multi-class as follows:

LR = ∑
k∈Z

Euuu(∥∇uuuDS(uuu,k)∥2−1)2. (5.9)

In practice, we sample latent feature uuu uniformly along the straight lines connecting pairs
of training data (E(xxxi),E(xxx j)), where xxxi and xxx j are randomly sampled from training batch
with different style labels: zi ̸= z j. Note we interpolate feature points between any two style
distributions rather than just two distributions as in the improved WGAN.

Finally, based on the loss terms in (5.8) and (5.9), we can formalize the style loss LS as

LS = ∑
i
ℓEMD(xxxi,zi)+λLR, (5.10)

where λ is a weighting parameter.

5.3.2 Comparison with Prior Adversarial Models

We compare MTAN with the three most relevant GAN and Auto-encoder variants as shown
in Fig. 5.3.

Semi-Supervised GAN: The Semi-Supervised GAN aims to learn a discriminative
classifier where the discriminator D is trained to not only distinguish between real and fake,
but also classify the real image in to K classes. D outputs a (K +1)-dim vector, in which the
last dimension represents real/fake decision. The generator G aims to fool D by aligning
two distributions, i.e., the distribution for real and fake images. MTAN differs to semi-
supervised GAN in two aspects. Firstly, the input of the discriminator is the latent feature
representation, instead of the real and synthesized image, and the goal of the encoder is to
align the feature distributions between any two different style classes. Secondly, the encoder-
generator structure learns a disentangled content representation implicitly by utilizing a target
style indicator to generate images.

Adversarial Auto-encoder (AAE): In AAE, the auto-encoders (E +G) reconstruct the
input image, and the latent vector generated by the encoder matches an arbitrary prior
distribution by training discriminator D. The MTAN model shares a similar image generation
loss for generator but has two major differences. Firstly, besides the latent vector, we provide
a target style indicator to the generator and generate a new image with the same content but in
the style indicated. Secondly, we take advantage of an additional style variation classification
task to disentangle the content-preserving feature representation explicitly.

5.4 Experiments and Results 79

Fig. 5.3 Comparison of previous GAN and auto-encoders architectures with our proposed
MTAN.

DR-GAN: DR-GAN uses the encoder-generator structure to synthesize images. The goal
of the encoder and generator is to fool Discriminator D to classify the synthesized image xxx′

to the identity of input xxx and target style variation. Compared with MTAN, although they
both adopt the encoder-generator structure for image synthesis, the goal of the discriminator
and encoder is different in two respects. Firstly, the input of the discriminator is the extracted
feature representation instead of the real and synthesized images. Secondly, the goal of the
encoder is to extract such a latent feature representation, that contains little discriminative
information about the style type, thus fooling the discriminator to make a random guess. In
other words, the encoder needs to match or align the feature distribution between any two
different style classes, instead of only real and fake distributions.

5.4 Experiments and Results

In this section, we evaluate our feature disentangling method on two content-style image
classification datasets, i.e., font and face datasets. We implement our approach based on
Tensorflow and the relevant code is available at https://github.com/BeCarefulPlease/Ch5. We
quantitatively evaluate the recognition accuracy using the disentangled representation as the
content features with a cosine distance metric [137]. We also show qualitative results of

80 Multi-Task Adversarial Network for Disentangled Feature Learning

(a) Example of three different Fonts (b) Example of three different Glyphs

Fig. 5.4 Examples of the images with different fonts or glyphs. (a) Example of three different
Fonts ; (b) Example of three different Glyphs.

synthetic images to demonstrate that the learned feature is inclusive for generating content-
preserving images.

5.4.1 Evaluation on Font Recognition Dataset

We evaluate our method using various sub-models (that utilize selected elements of the
MTAN model) in order to study the effectiveness and significance of each part of the MTAN
model. We also analyze the training stability and generalization ability by testing on large or
unseen variations.

Dataset and Experiment Setting

For our evaluation, we built a Japanese font dataset, specifically for the font recognition task.
The reason we choose the Japanese language is that a large number of glyphs in the Japanese
language introduce a large intra-class variation for the font recognition task, which makes
the problem more challenging. Fig. 5.4(a) presents a glyph with three different fonts, while
Fig. 5.4(b) presents three different glyphs having the same font.

We collected 300 fonts in total. In addition, we randomly split the data into 200 font
classes for training and used the remaining 100 font classes for testing. In the training stage,
we use 50 frequently used glyphs as the style variation within each font class, and use the font
file of a particular font to render this predefined glyph to form a training sample. We consider
the following three settings to evaluate the generalization performance of our method when
partial font classes or glyph styles are missing in the training stage. More specifically, one
image per font category (with the same glyph) is randomly selected as the gallery and the
others are the query ones throughout this chapter unless otherwise specified.

Unseen Font: We test our model on the images from the remaining 100 unseen font
classes, in which the glyph style is the same as that covered in the training stage.

Unseen Glyph: We select another 50 glyphs, that are different from the training ones,
and rendered them by the 200 seen font classes as the test set. We use the trained font
classifier DC for testing.

5.4 Experiments and Results 81

Table 5.1 Network Structure for Font Recognition

Encoder and Discriminators Generator
Layer Filter/Stride Output Size Layer Filter/Stride Output Size

FConv 6×6×512
Conv11 3×3/1 96×96×32 FConv5 3×3/2 12×12×256
Conv12 3×3/1 96×96×64 FConv4 3×3/2 24×24×128
Conv21 3×3/2 48×48×64 FConv32 3×3/1 24×24×64
Conv22 3×3/1 48×48×64 FConv31 3×3/2 48×48×64
Conv31 3×3/2 24×24×64 FConv22 3×3/1 48×48×64
Conv32 3×3/1 24×24×128 FConv21 3×3/2 96×96×64
Conv4 3×3/2 12×12×256 FConv12 3×3/1 96×96×32
Conv5 3×3/2 6×6×512 FConv11 3×3/1 96×96×1

AvgPool 6×6/1 1×1×512
FC1(DC) 256
FC2(DC) NC

FC1(DS) 256
FC2(DS) NS

Unseen Font and Glyph: We select another 50 glyphs, that are different from the
training ones, as the variation for the test set, and the images are rendered by other 100
unseen font classes.

Network structure and Implementation Details

For the encoder and generator, layer normalization is applied after each convolutional
layer. Since the stability of the adversarial training suffers if sparse gradient layers are
used, we replace MaxPool and ReLu with stride convolution and exponential linear units
respectively. Each discriminator (DC and DS) contains two fully connected layers. The
output of the encoder is the disentangled content feature representation f (x) ∈ R512. f (x) is
then concatenated with a target glyph indicator. The generator contains a series of fractional-
stride convolutions [15], which transforms the (512+|Z|)-dim concatenated vector into a
synthesized image, which has the same size as the original input image. The detailed
information of the network structure for font recognition is provided in the Table 5.1.

We render all font images to size 96×96. The image intensities are linearly scaled to
the range of [-1,1]. The batch size is set to be 256. An Adam optimizer [96] is used with a
learning rate of 0.001 and momentum 0.5. We alternate between one step of optimizing the
discriminators and generator, and one step of optimizing the encoder.

We evaluate the font recognition performance under the three test settings and compare
with the following prior work, i.e., the Controlled Pose Feature (CPF) [188] and the Dis-
entangled Representation learning-Generative Adversarial Network (DR-GAN) [160]. We

82 Multi-Task Adversarial Network for Disentangled Feature Learning

Table 5.2 Recognition rate (%) comparison on Font database

Model Unseen Unseen Unseen
Font Glyph Both

CPF [188] 45.1 44.6 28.3
DR-GAN [160] 46.4 50.5 31.9

DC 36.5 38.6 22.9
G 44.4 42.0 27.7

D(C+S) 24.3 42.3 13.8
D(C−S) 43.2 49.5 30.4

D(C−S)+G 47.9 52.8 34.8

also present an ablation study for each module that we designed in our proposed method.
Specifically, besides the models in [160] [188], we also evaluate and compare with the
following models:
1. Single-Task (DC): trained on encoder and the font classifier DDDC only using a soft-max
cross entropy loss.
2. Encoder-Generator (G): trained on the encoder and the generator only using an L2

reconstruction loss for image generation.
3. Multi-Task (D(C+S)): trained on encoder, font and glyph classifiers with conventional
multi-task training to improve both the font and glyph recognition performance cooperatively.
4. Adversarial-Task (D(C−S)): trained on encoder, font and glyph classifiers with adversarial
training to a learn a disentangled representation as proposed in our model.
5. MTAN (D(C−S)+G): trained on all modules designed in the proposed method, includ-
ing the adversarial training and image reconstruction requirement to learn a disentangled
representation.

The performance of the 7 chosen models are presented in Table 5.2. The single-task
model trained on the encoder and font classifier is only intended to serve as the baseline.
As shown in the table, introducing different combinations of the modules we designed all
boost the performance under all three settings. It is worth noting that although the multi-
task and the adversarial task model both leverage the font and glyph label supervision,
the disentangled feature obtained from adversarial training performs much better than that
achieved by conventional multi-task learning, especially when testing on the unseen font.
Combining the adversarial training and image reconstruction requirement together, MTAN
achieves the best performance among these 7 models in all test settings. It is worth noting
that although DR-GAN also takes advantages of this combination, our method outperforms
DR-GAN by around 2%. This may be because the MTAN uses the multi-task adversarial
training on the latent feature representation, instead of on the real and synthesized images, to

5.4 Experiments and Results 83

disentangle the content feature explicitly. It makes the disentangled feature become more
discriminant for the font classification task.

Another interesting observation is that, for the test on the unseen font, when only adding
one module into the single-task network, adding the generator module yields most of the
available performance gain. It means that image generation makes the learned representation
more inclusive or generative for synthesizing content-preserving images. The use of image
generation also makes the learned feature applicable for extracting the content feature for
the images coming from novel classes (not covered in the training stage). On the other hand,
for the test on an unseen glyph, when only adding one module into the single-task network,
using the adversarial discriminators yields most of the available performance gain. It means
that the multi-task adversarial training between the encoder and two discriminators acts as
the critical role in learning a disentangled content representation that is exclusive or invariant
to glyph variations. It is ideal for the font recognition, especially on images with large or
unseen variations during training.

Analysis

Training stability: We analyze the training stability for our proposed model and compare
it with the model trained using cross-entropy as the style classification loss. Each model
is trained for 5 times to get reliable observations. Fig. 5.5 shows the accuracy for font
recognition (a) and glyph recognition (b) on the test set achieved by the two models during
training. Fig. 5.5 (a) shows that using the EMD loss give results that consistently converge
to a higher font recognition accuracy than those using cross-entropy loss, although the
convergence rate is slower. The error bars in (a) represent the standard deviation of the test
accuracy.

Fig. 5.5 (b) plots the glyph recognition accuracy for all the training trials of the two
models. The model trained with cross-entropy converges to either 1 or 0 quickly, indicating
that the balance between E and DS cannot be well maintained and the model collapses
to a local optimum. In contrast, the glyph accuracy of the model trained with EMD loss
mildly oscillates around 50%, and the variation among different trials is small. In this way,
the competition between E and DS is more effective. Therefore, our proposed EMD loss
can improve multi-class adversarial optimization stability, leading to better disentangled
representation for font content.

Font image synthesis: Our generator is trained to synthesize new glyphs with the same
font style as an input font feature. The feature could be calculated based on one input
glyph image or the average of multiple glyphs from the same font. The identity of the new
glyph is specified by the style (glyph) indicator. Fig. 5.6 shows some visualizations of the

84 Multi-Task Adversarial Network for Disentangled Feature Learning

(a) Font recognition accuracy (b) Glyph recognition accuracy

Fig. 5.5 Comparison of font and glyph recognition accuracy on test set between models
trained with different adversarial losses. (a) the mean and standard deviation (error bar) of
font recognition; (b) the glyph recognition accuracy in multiple training trails.

synthesized images. The synthetic glyphs are similar to the ground truth with well-preserved
font attributes such as weights, and some fine-grained attributes like serif or sans-serif are also
captured. The synthesized images demonstrate the learned disentangled feature includes most
of the content-relevant information (font) which is faithfully reconstructed in the synthesized
images.

5.4.2 Evaluation on Face Reognition Dataset

We also evaluate our method on the face recognition dataset and compare with other state-of-
the-art pose-invariant face recognition approaches. We also demonstrate our method can be
used to disentangle more than one type of style variation.

Dataset and Experiment Setting

Multi-PIE [78] is a large database used for evaluating face recognition under pose, illumina-
tion, and expression variations in a controlled setting. The Multi-PIE face dataset contains
more than 750,000 images of 337 people recorded in up to four sessions over the span of five
months. Subjects were imaged from 15 view points and for 19 illumination conditions while
displaying a range of facial expressions. We adopt this dataset for our evaluation because
there are multiple distraction style factors, which makes the problem more challenging.
Following the experimental setting in [199], we use 337 subjects with the neutral expression,
9 poses within 600, and 20 illuminations for evaluation of our proposed approach. The first
200 subjects are used for training and the remaining 137 for testing. For testing, one image

5.4 Experiments and Results 85

Fig. 5.6 Synthetic images that matches the font of the input image and the style of given style
indicators. We compare synthetic images (top) and their ground truth images (bottom).

per subject with the frontal view and neutral illumination is the gallery and the others are
the query samples. For Multi-PIE experiments, we disentangle more than two style factors,
i.e., illumination and pose from the face identity. More specifically, we add additional pose
and illumination codes as the input of the generator, and use two style discriminators to
disentangle features explicitly.

Network Structure and Implementation Details

To be consistent with the experimental setting of the comparison approaches, we adopt
CASIA-NET [187] for the encoder and the generator design, where batch normalization
and an exponential linear unit are utilized after each convolutional layer. The identity, pose
and illumination discriminators are stacked after the encoder. Each of them contains one
fully connected layer. The output of the encoder is the identity representation f (x) ∈ R320,
and this feature representation is then concatenated with a target pose indicator zzzp ∈ R9 and
a target illumination indicator zzzi ∈ R20. Finally, the generator, which contains a series of
fractional-stride convolutions [15], transforms the concatenated vector into a synthetic image.
The detailed information of the network structure for face recognition is provided in Table
5.3.

We follow the same data pre-processing as [160] [187]. The batch size is 64, and all
weights are initialized from the zero-centered normal distribution with a standard deviation
0.02. An Adam optimizer [96] is used with a learning rate of 0.0002 and momentum 0.5. We

86 Multi-Task Adversarial Network for Disentangled Feature Learning

Table 5.3 Network Structure for Face Recognition

Encoder and Discriminators Generator
Layer Filter/Stride Output Size Layer Filter/Stride Output Size

FC 6×6×320
Conv11 3×3/1 96×96×32 FConv52 3×3/1 6×6×160
Conv12 3×3/1 96×96×64 FConv51 3×3/2 12×12×256
Conv21 3×3/2 48×48×64 FConv43 3×3/2 12×12×256
Conv22 3×3/1 48×48×64 FConv42 3×3/1 12×12×128
Conv23 3×3/1 48×48×128 FConv41 3×3/1 12×12×192
Conv31 3×3/2 24×24×128 FConv33 3×3/2 24×24×192
Conv32 3×3/1 24×24×96 FConv32 3×3/1 24×24×96
Conv33 3×3/1 24×24×192 FConv31 3×3/1 24×24×128
Conv41 3×3/2 12×12×192 FConv23 3×3/2 48×48×128
Conv42 3×3/1 12×12×128 FConv22 3×3/1 48×48×64
Conv43 3×3/1 12×12×256 FConv21 3×3/1 48×48×64
Conv51 3×3/2 6×6×256 FConv13 3×3/2 96×96×64
Conv52 3×3/1 6×6×160 FConv12 3×3/1 96×96×32
Conv53 3×3/1 6×6×320 FConv11 3×3/1 96×96×1
AvgPool 6×6/1 1×1×320
FC(DC) NC

FC(DS) NS

update G more frequently than D, i.e., 5 steps for optimizing the encoder and 1 step for the
classifiers.

Results and Comparisons

In this section, we compare our proposed method with other existing pose-invariant face recog-
nition approaches. The benchmark algorithms for comparison are Face Identity-Preserving
(FIP) [199], multi-view perception (MVP) [200], multi-view deep network (MvDN) [93],
Controlled Pose Feature (CPF) [188] and Disentangled Representation learning-Generative
Adversarial Network (DR-GAN) [160].

Table 5.4 shows the face recognition performance on MultiPIE of our methods compared
with the existing methods under the same setting, except for DR-GAN which uses multipe
images for testing [160]. The components of the proposed MTAN are evaluated individually
under the following settings:

1. MTAN w/o D: trained on the encoder and the generator only for image generation
without using any adversarial training.

2. MTAN1 (D(C−S1)+G): trained on all modules, using adversarial training and having
an image reconstruction requirement to disentangle two factors (identity and pose).

5.4 Experiments and Results 87

Table 5.4 Recognition rate (%) comparison on Multi-PIE database

Method 0o 15o 30o 45o 60o Avg.
FIP [199] 94.3 90.7 80.7 64.1 45.9 72.9

MVP [200] 95.7 92.8 83.7 72.9 60.1 79.3
MvDN [93] 96.1 93.1 83.3 75.1 61.2 80.1
CPF [188] 99.5 95.0 88.5 79.9 61.9 83.3

DR-GAN [160] 97.0 94.0 90.1 86.2 83.2 89.2
MTAN w/o D 94.1 92.7 83.7 72.9 60.1 79.3

MTAN1 95.2 93.2 88.9 84.7 82.6 88.9
MTAN2 96.5 95.3 89.7 87.9 84.1 89.6

Fig. 5.7 Face synthesis with varying poses and illuminations conditioned on single input
image (indicated by red boxes).

3. MTAN2 (D(C−S1−S2)+G): trained on all modules, using adversarial training and an
image reconstruction requirement to disentangle three factors (identity, pose and illumina-
tion).

Our method shows an improvement for faces with extreme pose variations by disentan-
gling the features using multi-task adversarial training and the image generation requirement.
Compared with the other methods, the variation of recognition rates across different poses is

88 Multi-Task Adversarial Network for Disentangled Feature Learning

much lower except for DR-GAN, which suggests that our learned disentangled representation
is more robust to the pose variation. The model MTAN2 which disentangles three latent
factors further boosts the performance, which achieves comparable performance with the
state-of-the-art performance, while not using multiple testing images as is done in DR-GAN.
We also show some synthetic images in Fig. 5.7. In the synthetic images, the identity of the
input image can be faithfully preserved and the style is controlled by arbitrary style (pose,
illumination) indicators. This means that the learned content (identity) representation is
largely disentangled from other style variations (pose and illumination).

5.5 Chapter Summary

In this chapter, we address the problem where multiple independent factors exist in the
image generation process, but only some factors are of interest to us. We propose a new
deep network architecture based on a novel type of multi-task learning to disentangle image
variation factors in the learned feature representation. The network includes an encoder-
generator structure as well as a set of adversarial discriminators. Through the interaction
with the discriminators and generator, the encoder learns to extract features good for content
factor recognition but not useful for style factor recognition. The overall network can be
trained stably with a new loss function which is an extension of WGAN for multi-class
scenario. Quantitative and qualitative evaluation on both font and face datasets demonstrate
the superiority of our proposed model over the current state-of-the-art approaches.

Chapter 6

Re-weighted Adversarial Adaptation
Network for Domain Adaptation

Conventional machine learning algorithms address isolated tasks; however, they work well
only under the assumption that the training and test data are drawn from the same feature
space and from the same distribution. When the distribution changes, most statistical models
need to be rebuilt from scratch using newly collected training data. In many real-world
applications, it is expensive or impossible to recollect the required training data and rebuild the
models. It would be advantageous to reduce the need for and the effort required to recollect
the training data. In this chapter, we incorporate prior knowledge about commonalities
(common factors) between multiple learning tasks, in order to share statistical strength. More
specifically, we leverage some labelled data that already exists for some related task or
domain. As shown in Fig. 6.1, when multiple tasks share common factors, we can adapt the
domain knowledge gained in solving the source task (domain) and apply it to our problem
of interest, which is represented as the target task (domain). It is worth noting that domain
adaptation is a common requirement in image classification tasks as often the data that has
easily accessible labelled information and the data that we care about are different. There are
two aspects concerning the benefits of using prior information about common factors in the
feature learning model, as will now be discussed.

Firstly, exploiting common factors among multiple tasks can make the learned feature
more robust to the variance of uncommon factors. It is worth noting that in contrast to the
approach demonstrated in Chapter 5, exploiting common factors among multiple tasks does
not require us to define the type of nuisance factors we want to remove from the representation
before learning. It can be interpreted as a way to wipe all the uncommon factors (out of our
interest) from the feature representation.

90 Re-weighted Adversarial Adaptation Network for Domain Adaptation

Fig. 6.1 Multiple Tasks share common factors.

Secondly, by exploiting common factors among multiple tasks, the model can generalise
from very few labelled samples. As unlabelled data is easy and inexpensive to obtain, we can
leverage unsupervised or semi-supervised learning to extract information from unlabelled
data, thereby reducing the reliance on labelled samples. Unsupervised domain adaptation
(UDA) is a specific application belonging to this situation, where no labelled data in the
target domain are available while a lot of labelled data in the source domain are available.
We will discuss more details about UDA in this chapter.

UDA aims to transfer domain knowledge (common factors) from existing well-defined
tasks to new ones where labels are unavailable. The common factors in conventional
UDA tasks is that two domains share the same set of image categories. In real-world
applications, since the domain (task) discrepancies are usually uncontrollable, there is
significant motivation to match the feature distributions even if the domain discrepancies are
disparate. Additionally, as no label is available in the target domain, how to successfully
adapt the classifier from the source to the target domain remains an open question. In this
chapter, we propose the Re-weighted Adversarial Adaptation Network (RAAN) to reduce
the feature distribution divergence and adapt the classifier when domain discrepancies are
disparate. The rest of this chapter is organised as follows: Section 6.1 provides the primary
motivation and clarifies our main contribution on UDA. Section 6.2 summarises the most
relevant prior work including feature distribution matching approaches and instance re-
weighting schemes. Section 6.3 presents the details of the proposed re-weighted adversarial

6.1 Introduction 91

adaptation network. Specifically, to alleviate the need for common supports in matching
the feature distribution, we aim to minimise optimal transport (OT) based Earth-Mover
distance (EMD) by reformulating it to a minimax objective function. To further adapt the
classifier, we also match the label distribution and embed it into the adversarial training. In
Section 6.4, extensive experiments are performed on UDA datasets of varying difficulty that
demonstrate the effectiveness of our proposed approach. We also provide an ablation study
of the proposed approach. Finally Section 6.5 concludes this chapter.

6.1 Introduction

Recent developments in Convolutional Neural Networks (CNNs) have yielded state-of-the-art
results from supervised learning applications in computer vision [49][85][150]. However, the
success of CNNs requires a large amount of well annotated training data which is not always
feasible to perform manually. Therefore, this has acted as a driver to transfer knowledge
from datasets for which labels are well-defined. The Domain Adaptation (DA) problem [133]
was proposed in this context where the data distribution between the target domain (where
only a few labels are available) and the source domain (well-annotated labels) varies so that
the discriminative features and the classifiers in the source domain cannot be transferred to
the target domain[133][174]. Under this regime, unsupervised domain adaptation (UDA) is
the most challenging problem where no label information in the target domain is available.
To successfully conduct adaptation between domains in UDA, two essential problems are
required to be addressed, specifically matching the feature distribution and adapting the
classifier from source to target domains.

Since CNN based methods exhibit strong capacity to extract transferable feature rep-
resentations among datasets, research has been conducted investigating measurements to
estimate distribution divergence of deep features among domains and the relevant methods
to minimize them. As an un-biased estimate of distribution divergence, Maximum Mean
Discrepancy (MMD) [77] has been employed in various CNN based methods for UDA [110]
[113] [114] [163] [165] [179]. More recently, inspired by the best-performing adversarial
training in generative models, state-of-the-art UDA methods utilize the Jenson-Shannon (JS)
divergence or the more generalized f -divergence [130] implemented using CNNs to estimate
the distribution divergence [19] [61] [62] [109] [162].

However, both the MMD and f -divergence based methods require that feature distribu-
tions of the source and target domain share a common support (significant overlap exists
between the feature distributions of two domains). We argue that this is an unrealistic condi-
tion that can rarely be met in the real-world adaptation tasks, since the domain discrepancies

92 Re-weighted Adversarial Adaptation Network for Domain Adaptation

are caused by a variety of factors that are difficult to control [39], such as light conditions,
acquisition devices or even from different image formats e.g., Red-Green-Blue (RGB) and
HHA1 [80]. From this point of view, these methods fail to adapt between domains once
their distributions do not have significant overlap. More recently, to alleviate the need of
a common support in UDA, optimal transport (OT) based methods have been proposed to
match the source and target feature distributions by minimizing the global transportation
efforts [39] [40]. However, OT based methods have not been formalized and embedded
into an end-to-end pipeline to train CNNs, which limits its application to large-scale UDA
problems.

In UDA, besides selecting a good divergence measure of the marginal feature distribution,
it is essential to adapt the classifier between domains. Long et.al [112][113] and Courty.et.al
both [39] proposed to match the joint distribution of features and labels by regarding the
transductive features from the final layer’s activation map of the CNN as an approximation
of the target domain labels. In fact, how to match the feature distribution and meanwhile
adapting the classifier is still an open question in UDA.

In this chapter, we propose a Re-weighted Adversarial Adaptation Network (RAAN) for
UDA to reduce disparate domain discrepancies and to adapt the classifier. More specifically,
there are two main contributions:

1. To match feature distributions when domains discrepancies are disparate, we train
a domain discriminator together with the feature encoders in an adversarial manner
to minimize the OT based EMD. Compared with other methods adopting geometry-
oblivious measures, RAAN can better reduce large feature distribution divergence.

2. To help adapt the classifier in UDA, we propose to match the label distribution by
estimating a re-weighted source domain label distribution so that it can be similar to
the unknown target label distribution. In addition, we embed it into the procedure of
minimizing the EMD during the end-to-end adversarial training procedure. This not
only adapts the classifier but also helps match the marginal feature distribution.

Finally, our proposed RAAN is evaluated by conducting a series of experiments using datasets
with different domain distribution divergence.

1HHA encodes the image depth with three channels at each pixel: horizontal disparity, height above ground,
and the angle the pixel’s local surface normal makes with the inferred gravity direction.

6.2 Related Work 93

6.2 Related Work

In this section, we review the state-of-the-art methods in reducing the domain distribution
divergence for the UDA problem.

6.2.1 Matching Feature Distribution using Adversarial Training

JS-divergence based methods are the best-performing techniques for measuring the diver-
gence of feature distributions in deep adaptation networks [19] [109] [162]. Although it is
not a new statistical measure, the JS divergence or the f -divergence loss is widely adopted
in CNNs trained in an adversarial manner [73] [130]. DANN [62] may be the first to add a
domain classifier, with the aim of extracting not only discriminative features for the main
classification task, but also indistinguishable ones for the domain classifiers. The adversarial
loss of DANN is implemented by directly maximizing the domain classification loss and
reversing the gradient in the back-propagation. DRCN [65] utilized the same approach
but added another loss function to minimize the reconstruction error of the data samples
between domains. More recently, ADDA [162] designed two separate feature extractors
(one for each domain) to extract useful features for the main classification task. The domain
discriminator network is added so that the target network and the domain discriminator
network can compete with each other in an adversarial game until the target and source
domain features cannot be distinguished.

Inspired by the good performance of adversarial training in generative models, some
methods generate new images that are transferable in both domains. Co-GAN [109] may be
the first to design two Generative Adversarial Nets (GANs) that generate diverse images for
both source and target domains. Although Co-GAN achieved good performance in adapting
domains having a small discrepancy, it cannot work well when the domain shifts are disparate
[162]. In contrast to Co-GAN, the pixel-level domain adaptation network (pixelDA) proposed
in [19] uses one generative network to generate images indistinguishable from source and
target domains. In addition, constraints on pixel level similarity between the generated and
source images are utilized. In fact, the ability of generative model based methods for UDA
having large discrepancy is still under investigation.

6.2.2 Matching Feature Distribution using Optimal Transport

The most closely related approach to ours for reducing the distribution divergence is through
solving the OT problem directly, as described in [39] [40]. However, this implementation has
not been included into the end-to-end learning framework and only the stand-alone De-Caffe

94 Re-weighted Adversarial Adaptation Network for Domain Adaptation

features [49] from the DANN network are used. Instead, our proposed RAAN utilizes the
domain discriminator network with the objective of minimizing the dual formulation of the
Earth-Mover distance (EMD). From this perspective, the Wasserstein GAN [4] [79] is a
special case to minimize the dual of the EMD, however, their ultimate goal is to generate
images. To the best of author’s knowledge, RAAN may be the first to learn domain invariant
features for UDA utilizing the OT based EMD in a CNN. Note that the concurrent work [149]
also adopted the EMD as the divergence measurement in UDA, however, we are handling
the more generalized scenario with unbalanced datasets.

6.2.3 Instance Re-weighting Scheme

The instance re-weighting scheme is well documented in the literature [36] [189], for example
in the instance re-weighting of the bias in the discriminative models [179], or in the causal
inference regime [193]. In CNN based methods for UDA, Yan.et.al [179] recently proposed
to learn the bias of the source domain instances by the classification expectation maximization
(CEM) algorithms using the MMD as the divergence measure [29].

In contrast, our proposed approach (RAAN) differs from [179] as the instance re-
weighting is achieved by estimating the density ratio vector of label distributions between
domains. Specifically, the density ratio vector is embedded into the adversarial training, that
can be learned or estimated via back-propagation. Finally, we also argue and explain why
matching the label distribution helps to adapt the classifier in UDA.

6.3 Re-weighted Adversarial Adaptation Network

First, we introduce the notation and formulate our problem. Suppose we are given a nc-class
source domain set SSS = {(xxxs

i ,y
s
i)}

ns
i=1 including ns images xxxs

i labeled by ys
i and an unlabelled

nc-class target domain set TTT = {(xxxt
j)}

nt
j=1 composed of nt images xxxt

j. The random variables
representing the image and label in general are denoted as XXX and YYY respectively. It is worth
noting that the common factors between the two domains is that they have the same set
of image categories. As illustrated in Fig. 6.2, RAAN is composed of four components,
including the source feature encoder EEEs, the target feature encoder EEEt , the classifier CCC and
the domain discriminator DDD. The general function of each component and motivation for the
design are provided in the caption of Fig. 6.2, with additional detail in the follow text.

The first objective of RAAN is to adapt the classifier, which is difficult without the
target domain labels. However, as the label is a low-dimensional and discrete variable,
it is fairly straightforward to match between domains and we argue that this can assist

6.3 Re-weighted Adversarial Adaptation Network 95

Fig. 6.2 RAAN’s architecture: first, in the source domain, the source feature encoder Es and
the classifier C are trained to extract discriminative features from images xxxs labeled by ys
by minimizing the cross entropy loss LCE . Second, to adapt the classifier by matching the
label distribution between domains, the re-weighted source domain label distribution PRe(YYY s)
is computed by transforming a learnable variable ααα using the soft-max function. We use
the soft-max function in order to guarantee that the sum of all entries in PRe(YYY s) is equal to
1. Then it is straightforward to obtain the ratio vector as follows: βββ = PRe(YYY s)

Ps(YYY s) . To extract
transferable features for the target domain images xxxt , the target feature encoder Et , domain
discriminator D and the estimated density ratio vector βββ play the following adversarial game:
βββ and D try to discriminate whether features are from the target or source domain, while Et
tries to confuse D and βββ .

with the adaptation of classifiers (see the reasons in section 6.3.2). With this intuition, a
re-weighted source domain label distribution PRe(YYY s) is obtained by mapping a variable
ααα ∈ Rnc using the soft-max function. We use of the soft-max function here is to guarantee
that each entry in PRe(YYY s) is not less than zero and that the sum of all entries in PRe(YYY s) is
equal to 1. Then the estimation of ααα aims to ensure that PRe(YYY s) is similar to the unknown
target label distribution Pt(YYY t). The density ratio vector is denoted as βββ ∈Rnc , with its (ys)th

element βββ (ys) calculated by βββ (ys) = PRe(YYY s=ys)
Ps(YYY s=ys) . As βββ can be directly computed based on ααα ,

consequently in the following context, we regard βββ as the variable under estimation. After
learning the ratio vector βββ , we can now reweight the source domain instances (assigning
different significance to instances), in order to align the reweighted label distribution of
the source domain with the unknown target label distribution, consequently helping the
adaptation of the classifier.

The second objective of RAAN is to learn the Feature encoders Es and Et in order to
extract the domain invariant features, so that the disparate divergence between marginal
feature distributions Pt(Et(XXX t)) and Ps(Es(XXX s)) is reduced. Given the images and labels in

96 Re-weighted Adversarial Adaptation Network for Domain Adaptation

the source domain {xxxs,ys} ∈ SSS, with the aim of extracting discriminative features Es(xxxs) for
the classification, it is straight-forward to train the classifier C and source feature encoder Es

cooperatively by minimizing the cross-entropy loss LCE as follows:

min
Es,C
LCE . (6.1)

To obtain transferable features Et(xxxt) without labels, the target feature encoder Et is
trained by playing an adversarial game with the domain discriminator D and the ratio
vector βββ so that the divergence between the re-weighted feature distribution in the source
domain βββ (ys)Ps(Es(xxxs)) and the target domain Pt(Et(xxxt)) is reduced. Additionally, to better
reduce the divergence between disparate domains, the OT-based EMD is reformulated in an
adversarial manner, with more details given in section 6.3.1. Specifically, RAAN is trained in
the following adversarial manner, where D with the help of βββ aims to discriminate whether
features are from source or target domains, while Et tries to confuse them. Based on the
discriminator loss LRe

adv, the following objective function can be obtained:

min
Et

max
D,βββ
LRe

adv. (6.2)

In fact, besides helping the adaptation of the classifier, matching the label distributions also
eases the difficulty of matching the marginal feature distribution. The possible reason may
be: if we assume that the feature generation processes are the same between domains, that
is Ps(Es(XXX s)|YYY s) = Pt(Et(XXX t)|YYY t), then PRe(YYY s) = Pt(YYY t) helps match the marginal feature
distributions Ps(Es(XXX s)) = Pt(Et(XXX t)).

In section 6.3.1, to match the marginal feature distributions between domains, an OT
based EMD is introduced and implemented in an adversarial manner in RAAN. Then in
section 6.3.2, we propose to match label distributions between domains and embed it in the
adversarial training. We also explain why this helps to adapt the classifier and meanwhile to
match marginal feature distributions. Finally in section 6.3.3, we formulate the final objective
function of RAAN.

6.3.1 Optimal Transport in Adversarial Training

Suppose that the empirical distributions of source and target domain features are denoted as
µµµs and µµµ t respectively as follows:

µµµ
s =

ns

∑
i

ps
i δEs(xxxs

i)
,µµµ t =

nt

∑
j

pt
jδEt(xxxt

j)
(6.3)

6.3 Re-weighted Adversarial Adaptation Network 97

where δEs(xxxs
i)

and δEt(xxxt
j)

are the Dirac functions at location Es(xxxs
i) and Et(xxxt

j) and ps
i and pt

j

are their probability masses. Then, the joint probabilistic coupling, or the transportation plan
[40] between feature distributions in source and target domains can be defined as γγγ with
the marginals µµµs and µµµ t . In the discrete version, the set of probabilistic couplings BBB can be
defined as the following:

BBB =
{

γγγ ∈ (R+)ns×nt |γγγ111nt = µµµ
s,γγγT 111ns = µµµ

t} . (6.4)

In general, to reduce feature distribution divergence, OT based methods first estimate the
optimal transportation plan between two distributions and then learn the feature transforma-
tion to minimize the cost of such a plan. Therefore, we first define the metric J(µµµs,µµµ t) in
Eq. (6.5) to measure the total cost of transporting probability masses from target to source
domains,

J(µµµs,µµµ t) = ⟨γγγ,MMM⟩F , with γγγ ∈ BBB, (6.5)

where MMM is the distance matrix whose (i, j)th element is defined by the distance cost function
m(Es(xxxs

i),Et(xxxt
j)) between features. The (i, j)th element γγγ(i, j) indicates how much mass is

moved from Et(xxxt
j) to Es(xxxs

i), and F is the Frobenius dot product. Subsequently for brevity,
we drop the index i, j to represent xxxs

i ,xxx
t
j as xxxs,xxxt . After that, the OT γγγ0 can be estimated by

minimizing the cost J(µµµs,µµµ t) in equation (6.6), with the optimal transportation cost or the
well-known EMD [94] defined by W (µµµs,µµµ t) in equation (6.7) . Finally, assuming the ideal
source domain features Es(xxxs) are available as a reference to guide the feature learning in
target domains, it is intuitive to train the Target feature encoder Et under the objective of
minimizing the EMD Loss W (µµµs,µµµ t), as shown in (6.8),

γγγ0 = argmin
γγγ∈BBB

J(µµµs,µµµ t) (6.6)

W (µµµs,µµµ t) = min
γγγ∈BBB

J(µµµs,µµµ t) (6.7)

min
Tt

W (µµµs,µµµ t). (6.8)

To avoid using linear programs or iterative algorithms to compute the solution that
satisfies the constraint of matrix γγγ in Eq.(6.4) directly, the dual formulation of W (µµµs,µµµ t) is
utilized in Eq.(6.9) and (6.10) (following equation(5.3) in [166]), considering the capability
of batch-wise back-propagation in CNN. More specifically, we use the domain discriminator
D and its variant D̂ as two dual functions in the following:

98 Re-weighted Adversarial Adaptation Network for Domain Adaptation

W (µµµs,µµµ t) = max
D D̂
Ladv, where

Ladv = E
xxxs∼Ps(XXX s)

D(Es(xxxs))+ E
xxxt∼Pt(XXX t)

D̂(Et(xxxt)) (6.9)

s.t.D(Es(xxxs))+ D̂(Et(xxxt))≤ m(Es(xxxs),Et(xxxt)). (6.10)

In this chapter, we choose the following distance cost function m(Es(xxxs),Et(xxxt)) =

∥Es(xxxs)−Et(xxxt)∥ for reasons of computational efficiency and also for permitting gradient
measurements, however, this does not infer that it is the only function that could be se-
lected. According to the constraint (6.10), the best value that function D̂(Et(xxxt)) can take is
−D(Es(xxxs)), since m(Es(xxxs),Et(xxxt)) is defined to be non-negative. In this way, the constraint
in (6.10) is equivalent to ensuring that D is a 1-Lipschitz function, or alternatively its gradient
norm is smaller than 1. Therefore, if we use (6.9) and (6.10) in (6.8) to replace the EMD,
the target feature encoder Et and the domain discriminator D can be trained based on the
mini-max objective function in (6.11),

min
Et

W (µµµs,µµµ t) = min
Et

max
D
Ladv, where

Ladv = ∑
(xxxs,ys)∼Ps(XXX ,YYY s)

D(Es(xxxs))Ps(Es(xxxs)|ys)Ps(ys)− E
xxxt∼Pt(XXX t)

D(Et(xxxt))

s.t.∥▽Et(xxxt) D(Et(xxxt))∥2 ≤ 1,∥▽Es(xxxs) D(Es(xxxs))∥2 ≤ 1. (6.11)

6.3.2 Adapting the Classifier by Label Distribution Matching

Although OT based EMD is utilized to match feature distributions Ps(Es(XXX s)) and Pt(Et(XXX t)),
we argue that it is not enough to successfully adapt the classifier from source to target domain,
since Ps(Es(XXX s)) = Pt(Et(XXX t)) does not infer Ps(YYY s|Es(XXX s)) = Pt(YYY t |Et(XXX t)). However,
according to Bayes rule in (6.12), instead of matching Pt(YYY t |Et(XXX t)) and Ps(YYY s|Es(XXX s))

directly, we can learn Et under the objective of matching the product ot distribution between
Ps(Es(XXX s)|YYY s)Ps(YYY s) and Pt(Et(XXX t)|YYY t)Pt(YYY t),

P(E(XXX)|YYY)P(YYY) ∝ P(YYY |E(XXX)). (6.12)

In fact, as no label information in the target domain Pt(YYY t) is available, it is non-trivial
to directly match Pt(Et(XXX t)|YYY t)Pt(YYY t) and Ps(Es(XXX s)|YYY s)Ps(YYY s). However, as the label
is a low-dimensional and discrete variable whose distribution is well-defined, it is more
straightforward to match label distributions between domains compared with its conditional

6.3 Re-weighted Adversarial Adaptation Network 99

variant. Therefore, we take a step back and propose to estimate the re-weighted source
domain label distribution PRe(YYY s) so that it is similar to the unknown Pt(YYY t) in the target
domain. In fact, we argue that matching the label distributions between two domains
can also help the adaptation of the classifier, because at least part of Pt(Et(XXX t)|YYY t)Pt(YYY t)

and Ps(Es(XXX s)|YYY s)PRe(YYY s) is matched. Based on such an assumption, since the EMD has
been adopted to match Pt(Et(XXX t) and Ps(Es(XXX s), we propose to embed the re-weighted
label distribution PRe(YYY s) into the procedure of matching the marginal feature distribution
Ps(Es(XXX s)) and Pt(Et(XXX t)) in the adversarial training.

To estimate the re-weighted label distribution PRe(YYY s), the following constraint should
be considered:

nc

∑
i=1

PRe(YYY s = yi) = 1, (6.13)

where, yi indicates the label of the ith class. However, this constraint has already been
considered in the implementation via the use of the softmax function.

Finally, to estimate the re-weighted label distribution, if we directly replace Ps(YYY s) by
PRe(YYY s) in the mini-max objective function Ladv in (6.11), a new one LRe

adv is obtained in
(6.14), where the domain discriminator D, target feature encoder Et and the ratio vector βββ

are trained in the following manner: D and βββ are trained in a cooperative way to estimate the
EMD, while Et is trained to minimize the EMD. From the perspective of implementation, βββ

can be regarded as assigning different significance to images xxxs in the source domain, so that
the mini-batches in the two domains are sampled from similar distributions, which helps D
and Et to focus on matching Ps(Es(xxxs)) and Pt(Et(xxxt)),

min
Et

max
D,βββ
LRe

adv, where

LRe
adv = ∑

(xxxsss,ys)∼Ps(XXX s,YYY s)

D(Es(xxxs))Ps(Es(xxxs)|ys)PRe(ys)− E
xxxt∼Pt(XXX t)

D(Et(xxxt))

= ∑
(xxxs,ys)∼Ps(XXX s,YYY s)

D(Es(xxxs))Ps(Es(xxxs)|ys)βββ (ys)Ps(ys)− E
xxxt∼Pt(XXX t)

D(Et(xxxt))

= E
(xxxs,ys)∼Ps(XXX s,YYY s)

βββ (ys)D(Es(xxxs))− E
xxxt∼Pt(XXX t)

D(Et(xxxt))

s.t.∥▽Et(xxxttt) D(Et(xxxt))∥2 ≤ 1,∥▽Ts(xxxs) D(Es(xxxs))∥2 ≤ 1.

100 Re-weighted Adversarial Adaptation Network for Domain Adaptation

6.3.3 Optimization in RAAN

As shown in Fig. 6.2, RAAN is proposed to jointly minimize the cross entropy loss of the
source domain samples and to reduce the divergence of the extracted feature distributions.
First, we define the empirical estimate of the loss function LRe

adv as follows:

LRe
adv =

1
ns

ns

∑
i=1

D(β (ys
i)Es(xxxs

i))−
1
nt

nt

∑
j=1

D(Et(xxxt
j)). (6.14)

Following on from the idea of controlling the 1-Lipschitz function of the domain discriminator
network D, we explicitly constrain the gradient norm penalty [79] term as follows:

Lgp = ∥▽Ê(x̂xx)L
Re
adv−1∥2, (6.15)

where Ê(x̂xx) is the weighted interpolation of samples Et(xxxt) and Es(xxxs). In summary, the total
objective function in RAAN is formulated in the following adversarial manner:

min
Et ,D,βββ

−LRe
adv +λgpLgp +λreg∥βββ∥2, (6.16)

min
Et
− 1

nt

nt

∑
j=1

D(Et(xxxt
j)), (6.17)

min
Es,C

1
ns

ns

∑
i=1
LCE(C(Es(xxxs

i)),y
s
i), (6.18)

where LCE(C(Es(xxxs
i)),y

s
i) indicates the cross-entropy function between the predicted label

C(Es(xxxs
i) from the classifier C and the ground truth label ys

i . Note that to train the networks
stably, the source feature encoder Es is trained first while Et and D are then trained to match
the feature distributions between Et(xxxt) and Es(xxxs) in an adversarial manner. In addition, to
stably learning the ratio vector, we add the ℓ2 norm of β as the regularization term in (6.16).
λgp and λreg indicate the regularization weights of the gradient penalty term and the ℓ2 norm
of the ratio vector respectively.

6.4 Experiment and Results

In this section, RAAN is evaluated in three UDA tasks, specifically one between hand-
written digit datasets, one between cross-modality datasets and the final one between object
datasets. We implement our approach based on Tensorflow and the relevant code is avail-
able at https://github.com/BeCarefulPlease/Ch6. For all the experiments, RAAN achieves

6.4 Experiment and Results 101

competitive results compared with the state-of-the-art methods and outperforms them by a
large margin when the distribution divergence is large between domains. We also perform an
ablation study to verify the effectiveness of our proposed approach.

6.4.1 Datasets and Experimental Settings

In this section, we first introduce the datasets and adaptation tasks we used to evaluate
the performance, and then provide the implementation details. We selected these datasets
because they are the benchmarks for the evaluation of unsupervised domain adaptation in the
literature.

Adaptation Tasks and Dataset

The first UDA task adapts between four hand written digit datasets, including MNIST[105],
USPS [44], SVHN [129] and MNIST-M [61]. As shown in Fig. 6.3(a), adaptation between
these four datasets are of varying difficulty. MNIST and USPS are both composed of
grey-scale images in a fairly well-controlled environment while images in MNIST-M are
synthesized using patches from BSDS500 dataset [3] as the background and MNIST images
as the foreground. To evaluate RAAN in reducing large domain discrepancies, SVHN is also
explored which is composed of RGB images in more complicated real-world scenarios, e.g.,
including misalignment of images and different light conditions. In addition, note that the
number of sub-class instances between SVHN and the other datasets are largely unbalanced.

To evaluating RAAN in reducing large domain shifts, the second adaptation task is
designed using the NYU-D dataset [127], adapting from the indoor object images in RGB
format to the depth variants encoded by the HHA format [80]. The 19-class dataset is
extracted following the scheme in [162]. As shown in Fig. 6.3(b), the domain shifts between
images in RGB and HHA formats are fairly large, mainly due to the low image resolutions
and potential mis-alignments caused by the coarse cropping box. In addition, as shown
by the number of instances in Table 6.3, this dataset has unbalanced sub-class instances.
Furthermore, it is particularly challenging as the images from the target domain are in a
completely different format from those in the source domain.

We additionally evaluate RAAN’s performance using the benchmark in the Office-Caltech
dataset released in [70] to evaluate its performance on a small-scale dataset. The Office-
Caltech dataset contains 10 categories in total and has 2533 images of which about half
belong to Caltech256. We regard Amazon (A), DSLR (D), Webcam (W) and Caltech256 (C)
as separate domains. In addition, note that the number of samples per category is unbalanced,

102 Re-weighted Adversarial Adaptation Network for Domain Adaptation

Fig. 6.3 DA datasets: (a) four hand-written digit datasets; (b) cross-modality dataset including
RGB and RGB-depth images.

Fig. 6.4 Example images from the MONITOR category in Caltech256, Amazon, DSLR, and
Webcam. Caltech and Amazon images are mostly from online merchants, while DSLR and
Webcam images are from offices.

with approximately 8 to 151 samples per category per domain. Fig. 6.4 highlights the
differences among these domains with example images from the MONITOR category.

6.4 Experiment and Results 103

Implementation Details

All the experiments are conducted on a GPU cluster.The regularization weights, λgp and λreg

are chosen from the following sets {1,10,50,100} and {0.1,1,10,50,100,500} respectively.
For all the experiments, we utilize the Adam optimizer, with the learning rate selected from
the following set: {2e−5,5e−5,1e−4,2e−4,5e−4,1e−3}. We used exponential decay for the
learning rate, with a decay factor of 0.99 for every 1000 iterations. All experiments are run
10 times, each for 100000 iterations and we report the average results. For adapting from
MNIST to MNIST-M, the batch size is 32 while for others, the batch size is 128.

6.4.2 Evaluation on Hand-Written Digit Dataset

For the task of adapting between hand written digit datasets, the following four adaptation
directions are chosen for the evaluation: from MNIST to USPS, from USPS to MNIST, from
SVHN to MNIST and from MNIST to MNIST-M. For the first three adaptation tasks, we
adopt a variant of LeNet [105] as network architecture of the feature encoders Es, Et and
the domain discriminator D is composed of three fully-connected layers activated by the
rectified linear unit (ReLU) with output activation numbers of 512,512,1 respectively. For
adapting from MNIST to MNIST-M, we adopt the basic model architecture of pixelDA [19]
but change their domain discriminator network to an OT-based objective function and embed
the ratio vector βββ . As for the experiment protocols, we utilized the one in [111] for adapting
between MNIST and USPS, while for adaptation from SVHN to MNIST, we choose that in
[162]. The protocol used for adapting from MNIST to MNIST-M is the same as that in [19]
to permit fair comparisons.

To assess the reasons underlying RAAN’s performance, we evaluate RAAN(+) and
RAAN(-) as RAAN with and without the re-weighting scheme respectively. As shown in
Table 6.1, when adapting between MNIST and USPS, compared with ADDA and Co-GAN,
the proposed RAAN(-) and RAAN(+) achieved competitive results and RAAN(+) slightly
outperforms RAAN(-). In the most difficult task, i.e., adapting from SVHN to MNIST,
RAAN(-) and RAAN(+) achieved 80.7% and 89.2% respectively, outperforming the state-
of-the-art ADDA by 4.7% and 13.2% respectively, while Co-GAN does not converge in this
experiment. It seems that the weight-sharing approach utilized in Co-GAN is not capable of
generating transferable images between disparate domains such as MNIST and SVHN. As
RAAN(-) utilized the same CNN architecture to ADDA’s, RAAN(-)’s superior performance
is mainly owing to the OT based objective function. We hypothesize that the OT based
objective function is able to better reduce feature distribution divergence when the domains
are disparate, e.g., SVHN and MNIST. In addition, based on the fact that RAAN(+) achieves

104 Re-weighted Adversarial Adaptation Network for Domain Adaptation

Table 6.1 Recognition rates of adapting hand-written digit datasets; RAAN(+) and RAAN(-)
indicate results with and without the re-weighting scheme respectively.

Methods MNIST to USPS USPS to MNIST SVHN to MNIST
Source Only 0.725 0.612 0.593

Gradient Reversal[62] 0.771 0.730 0.739
Domain Confusion [163] 0.791 0.665 0.681

Co-GAN[109] 0.912 0.891 No Converge
ADDA [162] 0.894 0.901 0.760

RAAN(-)(Ours) 0.883 0.915 0.807
RAAN(+)(Ours) 0.89 0.921 0.892

Table 6.2 Recognition rates of adapting from MNIST to MNIST-M; RAAN(+) and RAAN(-)
indicate results with and without the re-weighting scheme respectively.

Source Only[19] CORAL[153] MMD[19] DANN [62] DSN [20] PixelDA[19] RAAN(+)/(-)
0.636 0.577 0.769 0.774 0.832 0.982 0.985

superior performances to both ADDA and RAAN(-), we hypothesize that matching the label
distribution helps adapt the classifiers, and embedding it into minimizing the EMD of the
feature distributions can be regarded as two cooperative tasks.

For adaption from MNIST to MNIST-M, as shown in Table 6.2, RAAN achieves slightly
better performance than pixelDA. In addition, as expected RAAN(-) and RAAN(+) achieve
similar results since the label distribution of the two domains are quite similar. Although
it has been argued that the domain shift between MNIST and MNIST-M is large for a
conventional CNN based method[62], we argue that reducing the domain shift caused by the
background images in MNIST-M is easier than reducing the one between MNIST and SVHN
if a generative model is utilized. The possible reason may be that the domain shifts led by
background patches in MNIST-M exhibit fewer details and variations than the one caused by
the complex real-world variations present in SVHN. In addition, we argue that the adversarial
training based generative model is good at generating such background patches. These
considerations may suggest and explain the slight outperformance achieved by RAAN in this
task, compared with RAAN’s large improvement when adapting from SVHN to MNIST.

6.4.3 Evaluation on the Cross-modality Dataset

In this section, RAAN is evaluated in the presence of large domain shifts that confront the
adaptation from RGB images to RGB-depth images (HHA). To enable a fair comparison,
we follow ADDA’s experimental set-up [162] and utilized the VGG-16 architecture [150]

6.4 Experiment and Results 105

Table 6.3 Adaptation results in cross-modality dataset; RAAN(+) and RAAN(-) indicate
results with and without the re-weighting scheme respectively.

cl
as

s

ba
th

tu
b

be
d

bo
ok

sh
el

f

bo
x

ch
ai

r

co
un

te
r

de
sk

do
or

dr
es

se
r

ga
rb

ag
e

bi
n

No. instances 19 96 87 210 611 103 122 129 25 55
Source Only 0.000 0.760 0.000 0.105 0.131 0.029 0.090 0.457 0.000 0.036

ADDA 0.000 0.469 0.000 0.005 000...777666222 0.194 0.016 0.519 0.040 0.018
RAAN(-) (ours) 0.000 0.500 0.299 0.000 0.629 0.019 0.000 0.271 0.000 0.000
RAAN(+) (ours) 0.000 0.104 0.000 000...111444888 0.703 0.485 0.000 0.612 0.000 0.000

Est.βββ 2.040 1.395 1.568 0.872 0.492 1.440 1.297 1.206 1.640 1.629

cl
as

s

la
m

p

m
on

ito
r

ni
gh

ts
ta

nd

pi
llo

w

si
nk

so
fa

ta
bl

e

te
le

vi
si

on

to
ile

t

O
ve

ra
ll

No. instances 144 37 51 276 47 129 210 33 17 2401
Source Only 0.125 0.000 0.000 0.549 0.000 0.023 0.148 0.030 0.000 0.189

ADDA 0.007 0.000 0.000 0.083 0.000 0.062 0.138 0.000 0.000 0.276
RAAN(-) (ours) 0.000 0.000 0.000 0.692 0.000 0.000 0.043 0.000 0.000 0.308
RAAN(+) (ours) 0.007 0.000 0.000 0.638 0.106 0.000 0.205 0.000 0.000 0.343

Est.βββ 1.057 1.858 1.652 0.805 1.527 1.102 0.682 1.814 1.858 −−

for feature encoders Es and Et . The domain discriminator network D is composed of three
fully-connected layers activated by the Relu, with 1024,2048,1 outputs respectively.

As shown in Table 6.3, we report the sub-class classification accuracy achieved by
RAAN(-) and RAAN(+), along with the the estimated ratio vector βββ yielded by RAAN(+),
to align the reweighted source label distribution PRe(YYY sss) and the target distribution Pt(YYY ttt).
It can be observed from the overall recognition rates that RAAN(+) achieves an average
of 34.3%, outperforming ADDA by 6.7% and RAAN(-) by 3.5%. In addition, RAAN(-)
outperforms ADDA by 3.2%. For classes with fewer samples, RAAN(+) and RAAN(-)
achieve better performances than ADDA. In fact, ADDA only achieved better performance
in class ‘chair’ because that class has the largest number of samples. It can also be seen that
RAAN(+) outperforms RAAN(-) not only in terms of the overall recognition accuracy but
also from how many classes the classifier can recognize (classes with the recognition rates
more than 0%). This is potentially due to the fact that the re-weighting scheme increases the
significance of instances from the sub-classes with fewer instances. This can be verified by
comparing the number of sub-class instances with the estimated ratio vector βββ in Table 6.3.
The sub-classes with fewer instances, generally are assigned with a larger βββ , that increases
the significance of each instance from those sub-classes in classifier training.

106 Re-weighted Adversarial Adaptation Network for Domain Adaptation

Table 6.4 Adaptation Result on the Office-Caltech Dataset

Source Only MMD DANN [62] CORAL[153] RAAN (-) RAAN (+)
A→C 84.0 888888...777 87.8 86.2 87.1 888888...444
A→ D 81.1 90.5 82.5 91.2 999333...111 999333...111
A→W 75.4 91.6 77.8 90.5 89.5 999222...000
C→ A 91.6 93.1 93.3 93.0 999333...777 93.3
C→ D 87.7 91.2 91.2 89.5 94.2 999555...444
C→W 84.2 91.6 89.5 92.6 91.8 999333...666
D→ A 84.4 90.1 84.7 85.8 91.3 999222...888
D→W 96.8 999999...000 999999...000 97.9 97.9 98.5
D→C 80.5 87.8 82.1 85.3 89.8 999111...444
W → A 78.8 92.2 83.0 88.4 93.0 999333...222
W → D 98.3 100 100 100 100 111000000
W →C 79.7 88.6 81.3 88.6 89.4 888999...888

6.4.4 Evaluation on the Office-Caltech Dataset

In this section, we conducted 12 experiments in this dataset that is composed of four domains:
Amazon (A), Caltech (C), Dslr (D) and Webcam (W). The feature encoders Es and Et are
selected as the Alexnet network [100], so that a fair comparison with the state-of-the-art
DANN method [62] can be performed. The domain discriminator network D is designed as
three fully connected layers with the output activation number of 512, 512 and 1.

Table 6.4 shows the detailed comparison results of different approaches in 12 adapta-
tion tasks. We observe that our proposed RAAN(+) outperforms all the other compared
approaches in 10 out of the 12 domain adaptation tasks, and it achieves the second best scores
in the remaining 2 tasks. Thus we can draw a conclusion that RAAN(+) can also be applied
effectively to small-scale datasets. The matching of the joint feature distribution does not
greatly rely on a large number of training samples. Another interesting observation is that our
method RAAN (-) in most cases also outperforms DANN which also uses adversarial training.
This illustrates the effectiveness of using the OT based objective function. In addition, it is
worth noting that RAAN(+) achieves superior performance to RAAN(-), that demonstrates
the effectiveness of matching the label distribution in the domain adaptation tasks.

6.4.5 Analysis

In this section, we analyze the results presented in the previous sections, including the
re-weighting scheme in adversarial training and the domain distribution divergence in both
quantitative and qualitative ways. The evaluation is in the context of the most challenging
scenario, which involves adapting from SVHN to MNIST.

6.4 Experiment and Results 107

0 2 4 6 8 10

Digit Class from 0 to 9

0.4

0.6

0.8

1

1.2

1.4

1.6

R
a
ti

o
 V

e
c
to

r
o

f
L

a
b

e
l
D

is
tr

ib
u

ti
o

n

Ground Truth Ratio

Learned Ratio

Fig. 6.5 Ratio of label distribution βββ between SVHN and MNIST; red line indicates the
ground truth ratio, while blue one indicates the estimated ratio.

As the label distributions between SVHN and MNIST are largely mismatched, it will
confuse the domain discriminator and the feature distributions will be matched in a biased
manner. In addition, the mismatch of label distribution will directly give rise to the mismatch
of classifiers as well. However, as shown in Fig. 6.5, RAAN(+) successfully matches the
distribution of labels by simply learning the ratio vector embedded in the adversarial training.
Therefore, this can be regarded as the main reason for the 9% improvement achieved by
RAAN(+) compared to RAAN(-) shown in Table 6.1. To sum up, matching the label
distribution can better adapt the classifiers.

To understand the instance re-weighting scheme intuitively, it is implemented by assigning
different significance to the source domain instances. For example, as shown in Fig. 6.5, the
learned ratio of digit “0” is around 1.5, which means that in the adversarial training, each
sample from digit “0” in SVHN dataset can be regarded as effectively 1.5 samples.

Evaluate Distribution Divergence of Feature Embeddings

To analyze the distribution divergence in a quantitative way, we calculate the A distance
suggested by the UDA community [7] [122], taking the input features extracted by various
methods. Using the SVM classifier, we first calculate the generalization error θ of classifying
the source and target domain features as a binary classification task. Then the A distance
can be calculated as follows: dA = 2(1−2θ). As shown in the Table 6.5, the A distances of
feature embeddings with Source Only (no adaptation), adapted by ADDA, OT based RAAN(-

108 Re-weighted Adversarial Adaptation Network for Domain Adaptation

Table 6.5 A-Distance of Adversarial Training Method

Metric Source Only ADDA RAAN(-) RAAN(+)
A-Distance 1.673 1.548 1.526 1.506

) and RAAN(+) progressively decrease. In the experiment, since RAAN uses the same CNN
architecture as ADDA’s, compared with ADDA, the lower A distance achieved by RAAN(-)
infers that feature distribution between domains can be better matched using RAAN(-).
This may be due to the fact that the OT based EMD is a better measure for reducing large
distribution divergence than the geometry-oblivious JS divergence. In addition, compared to
RAAN(-), the smaller A distance achieved by RAAN(+) indicates that matching the label
distribution and the feature distribution are two cooperative tasks and this cooperative training
may be the main reason for the lower A distance.

Evaluation of the Re-weighting Scheme

In Fig. 6.5, we evaluated the re-weighting scheme by comparing the ground truth label ratio
vector (red) and the learned one (blue). It can be seen that some ratios are accurate while
others are not. However, the relative ratio trend of the learned ratio vector βββ follows that of
the ground truth.

Fig. 6.6 T-SNE plot of features when adapting from SVHN to MNIST; (a) No adaptation
(b) Adaptation after ADDA (c) Adaptation after RAAN. We randomly select 1000 features
samples from 10 classes, with 100 samples per class.
.

Finally, to measure the feature distribution divergence in a qualitative way, we utilized
the T-SNE software package [118] to visualize the 2-D embedding of the extracted features.
It can be seen in Fig. 6.6 that the example points from the same class adapted by RAAN in
Fig. 6.6(c) are clustered closer than those in Fig. 6.6(b) by ADDA and also those without the
adaptation method shown in Fig. 6.6(a).

6.5 Chapter Summary 109

6.5 Chapter Summary

In this chapter, we explore the significance and use of prior knowledge about common factors
among multiple tasks/domains in discriminative feature learning. More specifically, for
UDA tasks, we propose a Re-weighted Adversarial Adaptation Network (RAAN) to reduce
disparate domain feature distribution and to adapt the classifier. Through an extensive set of
experiments using various UDA datasets, RAAN outperforms state-of-the-art methods by a
large margin when the domain distribution divergence is large. Therefore we argue that the
OT based objective function in the adversarial training exhibits better properties to match
distributions when they share less common support. In addition, embedding the estimation
of the ratio vector into the adversarial training demonstrates that it is capable of matching the
label distribution between domains and further also adapting the classifier. It is also shown
that this scheme can help reduce feature distribution divergence.

Chapter 7

Conclusion and Future Work

This dissertation investigates incorporating several types of general-purpose prior knowledge
into the feature learning process, in order to learn a discriminative and compact image
representation, that is ideal for robust image classification. In this chapter, the work presented
in this dissertation is summarized and possible areas for future work are outlined.

7.1 Contribution Summary

This dissertation focuses on exploring discriminative feature representation for robust image
classification. Besides leveraging prior information that comes from the labels as most preva-
lent feature learning methods currently do, we also explore incorporating some other general
types of prior knowledge and evaluate their effectiveness in improving the performance of
image classification tasks. More specifically, we apply sparsity and hierarchical priors on
the explanatory factors that describe data, in order to better discover the data structure. We
also explore the priors on the relationship between multiple factors, i.e., multiple factors that
can change independently, or common explanatory factors that exist in multiple tasks. As
more powerful representation can be learned by implementing such general priors, our novel
approaches achieve state-of-the-art results on challenging benchmarks.

Specifically, our contributions include:

1. In Chapter 3, we focus on exploring the role of a sparse prior in discriminative feature
learning for the image classification task. The sparse prior encourages information
disentangling and allows variable-size feature representation for different input images.
The sparse prior can also serve as a regularizer in overfitting prevention. From the
view of implementation, we incorporate structured sparsity and propose a support
discrimination dictionary learning method, which finds a dictionary under which the

112 Conclusion and Future Work

feature representation of images from the same class have a common sparse structure
while the size of the overlapped signal support of different classes is minimised. The
superior performance of the proposed approach in comparison to the state-of-art is
demonstrated using face, object and scene datasets.

2. In Chapter 4, we present the work conducted concerning using both sparse and hierar-
chical priors on feature representation to achieve more powerful and discriminative
features. Using a hierarchical prior promotes the reuse of features and can lead to an ab-
stract representation that is more invariant to local changes of the input. From the view
of implementation, by incorporating dictionary learning (i.e., sparse prior) and deep
learning (hierarchical prior), we provide a unified framework to automatically select
the most useful low-level features and effectively combine them into more powerful
and discriminative features for our specific image classification problem. Moreover, we
take advantage of the structure of the dictionary and design a new label discriminative
regressor to further improve the discriminative capability and avoid overfitting. Our
proposed approach is evaluated using various challenging scene datasets and shows
superior performance to many state-of-the-art approaches.

3. In Chapter 5, we address the problem where multiple independent factors exist in
the image generation process, but only some factors are of interest to us. More
specifically, we build a model that disentangles the underlying factors of the image
variants associated with particular attributes of interest, consequently benefiting image
understanding. A disentangled feature representation is significantly more robust to
complexly structured variations of images and enables controllable generation of new
data through a generative model. From the view of implementation, we present a
novel multi-task adversarial network based on an encoder-discriminator-generator
architecture. The encoder and the discriminators are trained cooperatively on the
factors of interest, but in an adversarial way on the factors of distraction. The generator
provides further regularisation on the learned feature. The experiments conducted
on face recognition and font recognition tasks show that our method outperforms the
state-of-the-art methods

4. In Chapter 6, we address the problem where multiple learning tasks share common
explanatory factors. Leveraging common factors cannot only make the learned feature
representation more robust to the variance of uncommon factors but also enable the
model to generalise from very few labelled samples. More specifically, we focus on
the unsupervised domain adaptation task, i.e., no labelled data in the target domain are
available while some labelled data in the source domain are available. By incorporating

7.2 Future Work 113

common factors between the source and target domain, we propose the re-weighted
adversarial adaptation network, that reduces the feature distribution divergence and
adapts the classifier between two domains. The overall network can be trained in
an end-to-end adversarial manner. Empirical evidence shows that the new approach
outperforms state of the art methods on standard domain adaptation benchmarks,
particularly when the domain shifts are disparate.

7.2 Future Work

Now we put forth some directions that can be pursued in the future.

7.2.1 Other Potential Priors in Supervised Learning Problems

Besides the general-purpose priors that we have explored in this dissertation, there are some
other priors that are potentially useful for improving representation in supervised learning
problems, i.e., classification tasks. For example, the prior knowledge about the temporal and
spatial coherence is useful for sequence classification problems. Since consecutive (from a
temporal sequence) or spatially nearby observations tend to preserve the same or relevant
categorical concepts, leveraging the prior knowledge to enforce the slowly changing feature
representation might be useful for capturing such categorical concepts. Some related work
has been presented in [6] [125] [8] [132].

We expect the future successful application of feature learning will refine and increase the
list of useful priors. Another potential direction is to incorporate multiple priors in a unified
framework instead of focusing on only one. Discovering more valuable prior knowledge
and using them in an appropriate combination can better discover the data structure, thus
learning an informative feature representation and consequently improving the performance
of many supervised learning problems. Research regarding training criteria that better take
these priors into account will also be worthwhile.

7.2.2 Priors for Large-scale Unsupervised Learning Problems

In this dissertation, we explore the effectiveness of several general-purpose priors for dis-
criminative feature learning in order to boost the image classification performance. However,
in some applications, the annotated data is difficult and laborious to collect. Since unlabeled
images and video are available in practically unlimited quantities, how to use them for
large-scale representation learning is an interesting direction to explore. More specifically,
self-supervised learning [48] has been proposed in the last few years as a powerful tool to

114 Conclusion and Future Work

learn an effective representation without any manual labels. Self-supervision tasks generally
involve taking a complex input signal, hiding part of it from the machine learning model, and
then asking the model to fill in the missing information, e.g., relative position [47], colouriza-
tion [195], the “exemplar” task [52], and motion segmentation [134]. It is worth investigating
how to incorporate general-purpose priors and evaluate their effectiveness in self-learning
problems. This motivates longer-term unanswered questions about the appropriate objectives
for learning good representations in large-scale unsupervised problems.

7.2.3 Priors for Model Compression and Training Acceleration

In this dissertation, we combine some general-purpose priors with the deep neural networks.
Although deep neural networks have recently achieved great success in many visual recog-
nition tasks, they are computationally expensive and memory intensive, thus limiting their
applicability in devices having limited memory and for applications having strict latency
requirements. During the past few years, tremendous progress has been made in this area.
Some prevailing approaches have taken the sparse priors into consideration for reducing
redundant parameters that are not sensitive to the performance [81] [170]. Some low-rank
priors are adapted to decompose the parameter matrix/tensor for estimating the informative
parameters [158]. We recommend a comprehensive survey conducted concerning model
compression [32].

However, how to select and incorporate effective prior knowledge into the model compres-
sion tasks is still somewhat under-investigated. Some other general-purpose priors can also
be attempted using the weight sharing mechanism [164], quantification [34] or binarization
[38] strategies, in order to perform model compression and acceleration in deep networks
without significantly decreasing the model performance.

References

[1] Aharon, M. and Elad, M. (2008). Sparse and redundant modeling of image content using
an image-signature-dictionary. SIAM Journal on Imaging Sciences, 1(3):228–247.

[2] Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An algorithm for design-
ing overcomplete dictionaries for sparse representation. IEEE Transactions on signal
processing, 54(11):4311–4322.

[3] Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and
hierarchical image segmentation. IEEE transactions on pattern analysis and machine
intelligence, 33(5):898–916.

[4] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial
networks. In International Conference on Machine Learning, pages 214–223.

[5] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202.

[6] Becker, S. and Hinton, G. E. (1992). Self-organizing neural network that discovers
surfaces in random-dot stereograms. Nature, 355(6356):161.

[7] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W.
(2010). A theory of learning from different domains. Machine learning, 79(1):151–175.

[8] Bengio, Y. and Bergstra, J. S. (2009). Slow, decorrelated features for pretraining complex
cell-like networks. In Advances in neural information processing systems, pages 99–107.

[9] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798–1828.

[10] Bengio, Y., Delalleau, O., and Roux, N. L. (2006). The curse of highly variable functions
for local kernel machines. In Advances in neural information processing systems, pages
107–114.

[11] Bengio, Y., Delalleau, O., and Simard, C. (2010). Decision trees do not generalize to
new variations. Computational Intelligence, 26(4):449–467.

[12] Bengio, Y. et al. (2009). Learning deep architectures for ai. Foundations and trends®
in Machine Learning, 2(1):1–127.

[13] Bengio, Y., LeCun, Y., et al. (2007). Scaling learning algorithms towards ai. Large-scale
kernel machines, 34(5):1–41.

116 References

[14] Berg, A., Deng, J., and Fei-Fei, L. (2010). Large scale visual recognition challenge
(ilsvrc), 2010. URL http://www. image-net. org/challenges/LSVRC, 3.

[15] Berthelot, D., Schumm, T., and Metz, L. (2017). BEGAN: Boundary equilibrium
generative adversarial networks. arXiv preprint arXiv:1703.10717.

[16] Bioucas-Dias, J. M. and Figueiredo, M. A. (2007). A new twist: Two-step iterative
shrinkage/thresholding algorithms for image restoration. IEEE Transactions on Image
processing, 16(12):2992–3004.

[17] Bishop, C., Bishop, C. M., et al. (1995). Neural networks for pattern recognition.
Oxford university press.

[18] Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer.

[19] Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., and Krishnan, D. (2016a). Un-
supervised pixel-level domain adaptation with generative adversarial networks. arXiv
preprint arXiv:1612.05424.

[20] Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., and Erhan, D. (2016b).
Domain separation networks. In Advances in Neural Information Processing Systems,
pages 343–351.

[21] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed op-
timization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122.

[22] Cai, S., Zuo, W., Zhang, L., Feng, X., and Wang, P. (2014). Support vector guided dic-
tionary learning. In European Conference on Computer Vision, pages 624–639. Springer.

[23] Candes, E. and Romberg, J. (2005). l1-magic: Recovery of sparse signals via convex
programming. URL: www. acm. caltech. edu/l1magic/downloads/l1magic. pdf, 4:14.

[24] Candes, E. J. (2008). The restricted isometry property and its implications for com-
pressed sensing. Comptes rendus mathematique, 346(9-10):589–592.

[25] Candès, E. J. et al. (2006). Compressive sampling. In Proceedings of the international
congress of mathematicians, volume 3, pages 1433–1452. Madrid, Spain.

[26] Candes, E. J., Romberg, J. K., and Tao, T. (2006). Stable signal recovery from incom-
plete and inaccurate measurements. Communications on pure and applied mathematics,
59(8):1207–1223.

[27] Candes, E. J., Wakin, M. B., and Boyd, S. P. (2008). Enhancing sparsity by reweighted
1 minimization. Journal of Fourier analysis and applications, 14(5-6):877–905.

[28] Caruana, R. (1997). Multitask learning. Machine Learning, 28.

[29] Celeux, G. and Govaert, G. (1992). A classification em algorithm for clustering and
two stochastic versions. Computational statistics & Data analysis, 14(3):315–332.

References 117

[30] Chartrand, R. and Yin, W. (2008). Iteratively reweighted algorithms for compres-
sive sensing. In Acoustics, speech and signal processing, 2008. ICASSP 2008. IEEE
international conference on, pages 3869–3872. IEEE.

[31] Chen, S. S., Donoho, D. L., and Saunders, M. A. (2001). Atomic decomposition by
basis pursuit. SIAM review, 43(1):129–159.

[32] Cheng, Y., Wang, D., Zhou, P., and Zhang, T. (2017). A survey of model compression
and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282.

[33] Cheung, B., Livezey, J. A., Bansal, A. K., and Olshausen, B. A. (2014). Discovering
hidden factors of variation in deep networks. arXiv preprint arXiv:1412.6583.

[34] Choi, Y., El-Khamy, M., and Lee, J. (2016). Towards the limit of network quantization.
arXiv preprint arXiv:1612.01543.

[35] Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.

[36] Cortes, C., Mansour, Y., and Mohri, M. (2010). Learning bounds for importance
weighting. In Advances in neural information processing systems, pages 442–450.

[37] Cotter, S. F., Rao, B. D., Engan, K., and Kreutz-Delgado, K. (2005). Sparse solutions to
linear inverse problems with multiple measurement vectors. IEEE Transactions on Signal
Processing, 53(7):2477–2488.

[38] Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016). Binarized
neural networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830.

[39] Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy, A. (2017a). Joint distribu-
tion optimal transportation for domain adaptation. arXiv preprint arXiv:1705.08848.

[40] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2017b). Optimal transport
for domain adaptation. IEEE transactions on pattern analysis and machine intelligence,
39(9):1853–1865.

[41] Damelin, S. B. and Miller Jr, W. (2012). The mathematics of signal processing,
volume 48. Cambridge University Press.

[42] Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on pure and
applied mathematics, 57(11):1413–1457.

[43] Deng, W., Yin, W., and Zhang, Y. (2013). Group sparse optimization by alternating
direction method. In SPIE Optical Engineering+Applications, pages 88580R–88580R.
International Society for Optics and Photonics.

[44] Denker, J. S., Gardner, W., Graf, H. P., Henderson, D., Howard, R., Hubbard, W., Jackel,
L. D., Baird, H. S., and Guyon, I. (1989). Neural network recognizer for hand-written zip
code digits. In Advances in neural information processing systems, pages 323–331.

118 References

[45] Denton, E. and Birodkar, V. (2017). Unsupervised learning of disentangled representa-
tions from video. arXiv preprint arXiv:1705.10915.

[46] Dixit, M., Chen, S., Gao, D., Rasiwasia, N., and Vasconcelos, N. (2015). Scene
classification with semantic fisher vectors. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2974–2983.

[47] Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsupervised visual representation
learning by context prediction. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1422–1430.

[48] Doersch, C. and Zisserman, A. (2017). Multi-task self-supervised visual learning. In
The IEEE International Conference on Computer Vision (ICCV).

[49] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T.
(2014). Decaf: A deep convolutional activation feature for generic visual recognition. In
International conference on machine learning, pages 647–655.

[50] Donoho, D. L., Maleki, A., and Montanari, A. (2009). Message-passing algorithms for
compressed sensing. Proceedings of the National Academy of Sciences, 106(45):18914–
18919.

[51] Donoho, D. L., Tsaig, Y., Drori, I., and Starck, J.-l. (2006). Sparse solution of under-
determined linear equations by stagewise orthogonal matching pursuit, submitted to. In
IEEE Trans. on Information theory. Citeseer.

[52] Dosovitskiy, A., Springenberg, J. T., Riedmiller, M., and Brox, T. (2014). Discriminative
unsupervised feature learning with convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 766–774.

[53] Dosovitskiy, A., Tobias Springenberg, J., and Brox, T. (2015). Learning to generate
chairs with convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1538–1546.

[54] Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representa-
tions over learned dictionaries. IEEE Transactions on Image processing, 15(12):3736–
3745.

[55] Eldar, Y. C. (2009). Generalized sure for exponential families: Applications to regular-
ization. IEEE Transactions on Signal Processing, 57(2):471–481.

[56] Eldar, Y. C. and Mishali, M. (2009). Robust recovery of signals from a structured union
of subspaces. IEEE Transactions on Information Theory, 55(11):5302–5316.

[57] Elhamifar, E. and Vidal, R. (2011). Robust classification using structured sparse
representation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1873–1879.

[58] Engan, K., Aase, S. O., and Husøy, J. H. (2000). Multi-frame compression: Theory and
design. Signal Processing, 80(10):2121–2140.

References 119

[59] Fei-Fei, L., Fergus, R., and Perona, P. (2007). Learning generative visual models from
few training examples: An incremental Bayesian approach tested on 101 object categories.
Computer Vision and Image Understanding, 106(1):59–70.

[60] Figueiredo, M. A., Nowak, R. D., and Wright, S. J. (2007). Gradient projection for
sparse reconstruction: Application to compressed sensing and other inverse problems.
IEEE Journal of selected topics in signal processing, 1(4):586–597.

[61] Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain adaptation by backpropaga-
tion. In International Conference on Machine Learning, pages 1180–1189.

[62] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marc-
hand, M., and Lempitsky, V. (2016). Domain-adversarial training of neural networks.
Journal of Machine Learning Research, 17(59):1–35.

[63] Gao, B.-B., Wei, X.-S., Wu, J., and Lin, W. (2015). Deep spatial pyramid: The devil is
once again in the details. arXiv preprint arXiv:1504.05277.

[64] Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J. (2001). From few to many:
Illumination cone models for face recognition under variable lighting and pose. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(6):643–660.

[65] Ghifary, M., Kleijn, W. B., Zhang, M., Balduzzi, D., and Li, W. (2016). Deep
reconstruction-classification networks for unsupervised domain adaptation. In European
Conference on Computer Vision, pages 597–613. Springer.

[66] Girshick, R. (2015). Fast r-cnn. arXiv preprint arXiv:1504.08083.

[67] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256.

[68] Glowinski, R. and Le Tallec, P. (1989). Augmented Lagrangian and operator-splitting
methods in nonlinear mechanics, volume 9. SIAM.

[69] Glowinski, R. and Oden, J. (1985). Numerical methods for nonlinear variational
problems. Journal of Applied Mechanics, 52:739.

[70] Gong, B., Shi, Y., Sha, F., and Grauman, K. (2012). Geodesic flow kernel for unsu-
pervised domain adaptation. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 2066–2073. IEEE.

[71] Gong, Y., Wang, L., Guo, R., and Lazebnik, S. (2014). Multi-scale orderless pooling
of deep convolutional activation features. In European Conference on Computer Vision,
pages 392–407. Springer.

[72] Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning,
volume 1. MIT press Cambridge.

[73] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680.

120 References

[74] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013).
Maxout networks. arXiv preprint arXiv:1302.4389.

[75] Gorodnitsky, I. F. and Rao, B. D. (1997). Sparse signal reconstruction from limited
data using focuss: A re-weighted minimum norm algorithm. IEEE Transactions on signal
processing, 45(3):600–616.

[76] Gregor, K. and LeCun, Y. (2010). Learning fast approximations of sparse coding. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
399–406.

[77] Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A
kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773.

[78] Gross, R., Matthews, I., Cohn, J., Kanade, T., and Baker, S. (2010). Multi-pie. Image
and Vision Computing, 28(5):807–813.

[79] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017). Im-
proved training of wasserstein GANs. arXiv preprint arXiv:1704.00028.

[80] Gupta, S., Girshick, R., Arbeláez, P., and Malik, J. (2014). Learning rich features
from rgb-d images for object detection and segmentation. In European Conference on
Computer Vision, pages 345–360. Springer.

[81] Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.

[82] Hastad, J. (1986). Almost optimal lower bounds for small depth circuits. In Proceedings
of the eighteenth annual ACM symposium on Theory of computing, pages 6–20. ACM.

[83] Håstad, J. and Goldmann, M. (1991). On the power of small-depth threshold circuits.
Computational Complexity, 1(2):113–129.

[84] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034.

[85] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

[86] Herranz, L., Jiang, S., and Li, X. (2016). Scene recognition with cnns: objects, scales
and dataset bias. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 571–579.

[87] Hinton, G. E., Krizhevsky, A., and Wang, S. D. (2011). Transforming auto-encoders.
In International Conference on Artificial Neural Networks, pages 44–51. Springer.

[88] Huang, F. J., Boureau, Y.-L., LeCun, Y., et al. (2007). Unsupervised learning of
invariant feature hierarchies with applications to object recognition. In Computer Vision
and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE.

References 121

[89] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

[90] Jenatton, R., Audibert, J.-Y., and Bach, F. (2011). Structured variable selection with
sparsity-inducing norms. The Journal of Machine Learning Research, 12:2777–2824.

[91] Ji, S., Xue, Y., and Carin, L. (2008). Bayesian compressive sensing. IEEE Transactions
on Signal Processing, 56(6):2346–2356.

[92] Jiang, Z., Lin, Z., and Davis, L. S. (2013). Label consistent K-SVD: Learning a
discriminative dictionary for recognition. volume 35, pages 2651–2664.

[93] Kan, M., Shan, S., and Chen, X. (2016). Multi-view deep network for cross-view
classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4847–4855.

[94] Kantorovitch, L. (1958). On the translocation of masses. Management Science, 5(1):1–
4.

[95] Kim, S.-J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D. (2007). An interior-point
method for large-scale ℓ1-regularized least squares. IEEE journal of selected topics in
signal processing, 1(4):606–617.

[96] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

[97] Kline, D. M. and Berardi, V. L. (2005). Revisiting squared-error and cross-entropy
functions for training neural network classifiers. Neural Computing & Applications,
14(4):310–318.

[98] Kong, S. and Wang, D. (2012). A dictionary learning approach for classification:
separating the particularity and the commonality. In European Conference on Computer
Vision, pages 186–199. Springer.

[99] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012a). Imagenet classification
with deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105.

[100] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012b). Imagenet classification
with deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105.

[101] Kukreja, S. L., Löfberg, J., and Brenner, M. J. (2006). A least absolute shrinkage and
selection operator (lasso) for nonlinear system identification. IFAC proceedings volumes,
39(1):814–819.

[102] Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenenbaum, J. (2015). Deep convolu-
tional inverse graphics network. In Advances in Neural Information Processing Systems,
pages 2539–2547.

122 References

[103] Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Computer vision and
pattern recognition, 2006 IEEE computer society conference on, volume 2, pages 2169–
2178. IEEE.

[104] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551.

[105] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[106] Li, J., Zhang, T., Luo, W., Yang, J., Yuan, X.-T., and Zhang, J. (2017a). Sparseness
analysis in the pretraining of deep neural networks. IEEE transactions on neural networks
and learning systems, 28(6):1425–1438.

[107] Li, Y., Dixit, M., and Vasconcelos, N. (2017b). Deep scene image classification with
the mfafvnet. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5746–5754.

[108] Liu, B., Liu, J., Wang, J., and Lu, H. (2014). Learning a representative and dis-
criminative part model with deep convolutional features for scene recognition. In Asian
Conference on Computer Vision, pages 643–658. Springer.

[109] Liu, M.-Y. and Tuzel, O. (2016). Coupled generative adversarial networks. In
Advances in neural information processing systems, pages 469–477.

[110] Long, M., Cao, Y., Wang, J., and Jordan, M. (2015). Learning transferable features
with deep adaptation networks. In International Conference on Machine Learning, pages
97–105.

[111] Long, M., Wang, J., Ding, G., Sun, J., and Yu, P. S. (2013). Transfer feature learning
with joint distribution adaptation. In Proceedings of the IEEE international conference on
computer vision, pages 2200–2207.

[112] Long, M., Wang, J., Ding, G., Sun, J., and Yu, P. S. (2014). Transfer joint matching
for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1410–1417.

[113] Long, M., Wang, J., and Jordan, M. I. (2016a). Deep transfer learning with joint
adaptation networks. arXiv preprint arXiv:1605.06636.

[114] Long, M., Zhu, H., Wang, J., and Jordan, M. I. (2016b). Unsupervised domain
adaptation with residual transfer networks. In Advances in Neural Information Processing
Systems, pages 136–144.

[115] Louizos, C., Swersky, K., Li, Y., Welling, M., and Zemel, R. (2015). The variational
fair autoencoder. arXiv preprint arXiv:1511.00830.

[116] Lounici, K., Pontil, M., Tsybakov, A. B., and Van De Geer, S. (2009). Taking
advantage of sparsity in multi-task learning. arXiv preprint arXiv:0903.1468.

References 123

[117] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision, 60(2):91–110.

[118] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579–2605.

[119] Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009). Online dictionary learning for
sparse coding. In Proceedings of the 26th annual international conference on machine
learning, pages 689–696. ACM.

[120] Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A. (2008). Discriminative
learned dictionaries for local image analysis. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE.

[121] Manly, B. F. (1994). Multivariate statistical methods: a primer. CRC Press.

[122] Mansour, Y., Mohri, M., and Rostamizadeh, A. (2009). Domain adaptation: Learning
bounds and algorithms. arXiv preprint arXiv:0902.3430.

[123] Martinez, A. M. (1998). The AR face database. CVC Technical Report, 24.

[124] Mathieu, M. F., Zhao, J. J., Zhao, J., Ramesh, A., Sprechmann, P., and LeCun, Y.
(2016). Disentangling factors of variation in deep representation using adversarial training.
In Advances in Neural Information Processing Systems, pages 5040–5048.

[125] Mobahi, H., Collobert, R., and Weston, J. (2009). Deep learning from temporal
coherence in video. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 737–744. ACM.

[126] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814.

[127] Nathan Silberman, Derek Hoiem, P. K. and Fergus, R. (2012). Indoor segmentation
and support inference from rgbd images. In ECCV.

[128] Needell, D. and Tropp, J. A. (2009). Cosamp: Iterative signal recovery from incom-
plete and inaccurate samples. Applied and computational harmonic analysis, 26(3):301–
321.

[129] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 5.

[130] Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-gan: Training generative neural
samplers using variational divergence minimization. In Advances in Neural Information
Processing Systems, pages 271–279.

[131] Odena, A. (2016). Semi-supervised learning with generative adversarial networks.
arXiv preprint arXiv:1606.01583.

124 References

[132] Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. (2015). Action-conditional
video prediction using deep networks in atari games. In Advances in Neural Information
Processing Systems, pages 2863–2871.

[133] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359.

[134] Pathak, D., Girshick, R., Dollár, P., Darrell, T., and Hariharan, B. (2017). Learning
features by watching objects move. In Proc. CVPR, volume 2.

[135] Peng, X., Yu, X., Sohn, K., Metaxas, D. N., and Chandraker, M. (2017).
Reconstruction-based disentanglement for pose-invariant face recognition. intervals,
20:12.

[136] Qi, G.-J. (2017). Loss-sensitive generative adversarial networks on lipschitz densities.
arXiv preprint arXiv:1701.06264.

[137] Qian, G., Sural, S., Gu, Y., and Pramanik, S. (2004). Similarity between euclidean
and cosine angle distance for nearest neighbor queries. In Proceedings of the 2004 ACM
symposium on Applied computing, pages 1232–1237. ACM.

[138] Quattoni, A. and Torralba, A. (2009). Recognizing indoor scenes. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 413–420. IEEE.

[139] Rabaud, V. and Belongie, S. (2006). Counting crowded moving objects. In Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1,
pages 705–711. IEEE.

[140] Ramirez, I., Sprechmann, P., and Sapiro, G. (2010). Classification and clustering via
dictionary learning with structured incoherence and shared features. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3501–3508. IEEE.

[141] Rao, B. D., Engan, K., Cotter, S. F., Palmer, J., and Kreutz-Delgado, K. (2003). Subset
selection in noise based on diversity measure minimization. IEEE transactions on Signal
processing, 51(3):760–770.

[142] Rao, B. D. and Kreutz-Delgado, K. (1999). An affine scaling methodology for best
basis selection. IEEE Transactions on signal processing, 47(1):187–200.

[143] Reed, S., Sohn, K., Zhang, Y., and Lee, H. (2014). Learning to disentangle factors of
variation with manifold interaction. In International Conference on Machine Learning,
pages 1431–1439.

[144] Rodriguez, F. and Sapiro, G. (2008). Sparse representations for image classification:
Learning discriminative and reconstructive non-parametric dictionaries. Technical report,
DTIC Document.

[145] Rubinstein, R., Zibulevsky, M., and Elad, M. (2008). Efficient implementation of the
K-SVD algorithm using batch orthogonal matching pursuit. CS Technion, 40(8):1–15.

[146] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal
representations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science.

References 125

[147] Saunders, M. A., Kim, B., Maes, C., Akle, S., and Zahr, M. (2002). Pdco: Primal-
dual interior method for convex objectives. Software available at http://www. stanford.
edu/group/SOL/software/pdco. html.

[148] Schmidhuber, J. (1992). Learning factorial codes by predictability minimization.
Neural Computation, 4(6):863–879.

[149] Shen, J., Qu, Y., Zhang, W., and Yu, Y. (2017). Adversarial representation learning for
domain adaptation. arXiv preprint arXiv:1707.01217.

[150] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning Representations.

[151] Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

[152] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958.

[153] Sun, B. and Saenko, K. (2016). Deep coral: Correlation alignment for deep domain
adaptation. In Computer Vision–ECCV 2016 Workshops, pages 443–450. Springer.

[154] Sun, Y., Wang, X., and Tang, X. (2015). Deeply learned face representations are
sparse, selective, and robust. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2892–2900.

[155] Suo, Y., Dao, M., Tran, T., Mousavi, H., Srinivas, U., and Monga, V. (2014). Group
structured dirty dictionary learning for classification. In Image Processing (ICIP), 2014
IEEE International Conference on, pages 150–154. IEEE.

[156] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of
initialization and momentum in deep learning. In International conference on machine
learning, pages 1139–1147.

[157] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A., et al. (2015). Going deeper with convolutions. In
Computer Vision and Pattern Recognition (CVPR).

[158] Tai, C., Xiao, T., Zhang, Y., Wang, X., et al. (2015). Convolutional neural networks
with low-rank regularization. arXiv preprint arXiv:1511.06067.

[159] Tenenbaum, J. B. and Freeman, W. T. (1997). Separating style and content. In
Advances in neural information processing systems, pages 662–668.

[160] Tran, L., Yin, X., and Liu, X. (2017). Disentangled representation learning GAN for
pose-invariant face recognition. In CVPR, volume 4, page 7.

[161] Tropp, J. A. and Gilbert, A. C. (2007). Signal recovery from random measurements
via orthogonal matching pursuit. IEEE Transactions on information theory, 53(12):4655–
4666.

126 References

[162] Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. (2017). Adversarial discriminative
domain adaptation. arXiv preprint arXiv:1702.05464.

[163] Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. (2014). Deep domain
confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474.

[164] Ullrich, K., Meeds, E., and Welling, M. (2017). Soft weight-sharing for neural network
compression. arXiv preprint arXiv:1702.04008.

[165] Venkateswara, H., Eusebio, J., Chakraborty, S., and Panchanathan, S. (2017). Deep
hashing network for unsupervised domain adaptation. In (IEEE) Conference on Computer
Vision and Pattern Recognition (CVPR).

[166] Villani, C. (2008). Optimal transport: old and new, volume 338. Springer Science &
Business Media.

[167] Wang, H., Yuan, C., Hu, W., and Sun, C. (2012). Supervised class-specific dictionary
learning for sparse modeling in action recognition. Pattern Recognition, 45(11):3902–
3911.

[168] Wang, K., Lin, L., Zuo, W., Gu, S., and Zhang, L. (2016). Dictionary pair classifier
driven convolutional neural networks for object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2138–2146.

[169] Wang, Z., Liu, D., Yang, J., Han, W., and Huang, T. (2015). Deep networks for image
super-resolution with sparse prior. In Proceedings of the IEEE International Conference
on Computer Vision, pages 370–378.

[170] Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). Learning structured sparsity
in deep neural networks. In Advances in Neural Information Processing Systems, pages
2074–2082.

[171] Wipf, D. and Nagarajan, S. (2010a). Iterative reweighted and methods for finding
sparse solutions. IEEE Journal of Selected Topics in Signal Processing, 4(2):317–329.

[172] Wipf, D. and Nagarajan, S. (2010b). Iterative reweighted ℓ1 and ℓ2 methods for finding
sparse solutions. IEEE Journal of Selected Topics in Signal Processing, 4(2):317–329.

[173] Wipf, D. P., Rao, B. D., and Nagarajan, S. (2011). Latent variable bayesian models
for promoting sparsity. IEEE Transactions on Information Theory, 57(9):6236–6255.

[174] Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.

[175] Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., and Yan, S. (2010). Sparse
representation for computer vision and pattern recognition. Proceedings of the IEEE,
98(6):1031–1044.

[176] Wright, S. J., Nowak, R. D., and Figueiredo, M. A. (2009). Sparse reconstruction by
separable approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493.

References 127

[177] Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010). Sun database:
Large-scale scene recognition from abbey to zoo. In Computer vision and pattern recog-
nition (CVPR), 2010 IEEE conference on, pages 3485–3492. IEEE.

[178] Xie, G., Zhang, X., Yan, S., and Liu, C. (2017). Hybrid cnn and dictionary-based
models for scene recognition and domain adaptation. IEEE Transactions on Circuits and
Systems for Video Technology, 27(6):1263–1274.

[179] Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y., and Zuo, W. (2017). Mind the class weight
bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. arXiv
preprint arXiv:1705.00609.

[180] Yang, J., Yu, K., Gong, Y., and Huang, T. (2009). Linear spatial pyramid matching
using sparse coding for image classification. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 1794–1801. IEEE.

[181] Yang, J., Yu, K., and Huang, T. (2010). Supervised translation-invariant sparse
coding. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
3517–3524.

[182] Yang, J. and Zhang, Y. (2011). Alternating direction algorithms for l1-problems in
compressive sensing. SIAM journal on scientific computing, 33(1):250–278.

[183] Yang, M., Dai, D., Shen, L., and Van Gool, L. (2014a). Latent dictionary learning for
sparse representation based classification. In Proceedings CVPR 2014, pages 4138–4145.

[184] Yang, M., Zhang, L., Feng, X., and Zhang, D. (2011). Fisher discrimination dictionary
learning for sparse representation. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 543–550. IEEE.

[185] Yang, M., Zhang, L., Feng, X., and Zhang, D. (2014b). Sparse representation based
Fisher discrimination dictionary learning for image classification. International Journal
of Computer Vision, 109(3):209–232.

[186] Yang, S. and Ramanan, D. (2015). Multi-scale recognition with dag-cnns. In Proceed-
ings of the IEEE International Conference on Computer Vision, pages 1215–1223.

[187] Yi, D., Lei, Z., Liao, S., and Li, S. Z. (2014). Learning face representation from
scratch. arXiv preprint arXiv:1411.7923.

[188] Yim, J., Jung, H., Yoo, B., Choi, C., Park, D., and Kim, J. (2015). Rotating your
face using multi-task deep neural network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 676–684.

[189] Yu, Y. and Szepesvári, C. (2012). Analysis of kernel mean matching under covariate
shift. arXiv preprint arXiv:1206.4650.

[190] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 68(1):49–67.

128 References

[191] Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer.

[192] Zeng, J., Lin, S., and Xu, Z. (2014). Sparse solution of underdetermined linear
equations via adaptively iterative thresholding. Signal Processing, 97:152–161.

[193] Zhang, K., Schölkopf, B., Muandet, K., and Wang, Z. (2013). Domain adaptation
under target and conditional shift. In International Conference on Machine Learning,
pages 819–827.

[194] Zhang, Q. and Li, B. (2010). Discriminative k-svd for dictionary learning in face
recognition. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on, pages 2691–2698. IEEE.

[195] Zhang, R., Isola, P., and Efros, A. A. (2016). Colorful image colorization. In European
Conference on Computer Vision, pages 649–666. Springer.

[196] Zhao, N., Li, C., Shi, H., and Lin, C. (2011). Multi-frame image super-resolution
based on regularization scheme. In Control, Automation and Systems Engineering (CASE),
2011 International Conference on, pages 1–4. IEEE.

[197] Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. (2014). Learning deep
features for scene recognition using places database. In Advances in neural information
processing systems, pages 487–495.

[198] Zhou, N., Shen, Y., Peng, J., and Fan, J. (2012). Learning inter-related visual dictionary
for object recognition. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 3490–3497. IEEE.

[199] Zhu, Z., Luo, P., Wang, X., and Tang, X. (2013). Deep learning identity-preserving
face space. In Proceedings of the IEEE International Conference on Computer Vision,
pages 113–120.

[200] Zhu, Z., Luo, P., Wang, X., and Tang, X. (2014). Multi-view perceptron: a deep model
for learning face identity and view representations. In Advances in Neural Information
Processing Systems, pages 217–225.

	Table of contents
	List of figures
	List of tables
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Feature Learning
	1.2 Contribution
	1.3 Organization
	1.4 Publication List

	2 Preliminaries
	2.1 Sparse Representation and Dictionary Learning
	2.1.1 Overview
	2.1.2 Sparse Coding
	2.1.3 Sparse Representation based Classification
	2.1.4 Dictionary Learning

	2.2 Neural Networks
	2.2.1 Convolutional Neural Network
	2.2.2 Loss functions
	2.2.3 Backpropagation
	2.2.4 Strategies in Training Neural Networks
	2.2.5 Deep Neural Network Architectures

	2.3 Application of Prior Information
	2.4 Chapter Summary

	3 Support Discrimination Dictionary Learning
	3.1 Introduction
	3.2 Support Discrimination Dictionary Learning
	3.2.1 Problem Formulation
	3.2.2 Optimisation
	3.2.3 The Classification Scheme

	3.3 Experiments and Results
	3.3.1 Parameter Selection
	3.3.2 Factors Analysis
	3.3.3 Evaluation on Object Recognition Dataset
	3.3.4 Evaluation on Face Recognition Dataset
	3.3.5 Evaluation on Scene Recognition Dataset

	3.4 Chapter Summary

	4 Dictionary Learning Inspired Deep Network for Scene Recognition
	4.1 Introduction
	4.2 Integration of Dictionary Learning and CNN
	4.2.1 Network Architecture
	4.2.2 Loss Function Design with Integration of the Label Discriminative Regressor
	4.2.3 Nonlinear Dictionary Learning Layer

	4.3 Experiments and Results
	4.3.1 Datasets and Experimental Settings
	4.3.2 Factor Analysis
	4.3.3 Results and Comparisons

	4.4 Chapter Summary

	5 Multi-Task Adversarial Network for Disentangled Feature Learning
	5.1 Introduction
	5.2 Related Work
	5.2.1 Disentangled Representation
	5.2.2 Adversarial Learning

	5.3 Multi-Task Adversarial Network
	5.3.1 Multi-Class Adversarial Training
	5.3.2 Comparison with Prior Adversarial Models

	5.4 Experiments and Results
	5.4.1 Evaluation on Font Recognition Dataset
	5.4.2 Evaluation on Face Reognition Dataset

	5.5 Chapter Summary

	6 Re-weighted Adversarial Adaptation Network for Domain Adaptation
	6.1 Introduction
	6.2 Related Work
	6.2.1 Matching Feature Distribution using Adversarial Training
	6.2.2 Matching Feature Distribution using Optimal Transport
	6.2.3 Instance Re-weighting Scheme

	6.3 Re-weighted Adversarial Adaptation Network
	6.3.1 Optimal Transport in Adversarial Training
	6.3.2 Adapting the Classifier by Label Distribution Matching
	6.3.3 Optimization in RAAN

	6.4 Experiment and Results
	6.4.1 Datasets and Experimental Settings
	6.4.2 Evaluation on Hand-Written Digit Dataset
	6.4.3 Evaluation on the Cross-modality Dataset
	6.4.4 Evaluation on the Office-Caltech Dataset
	6.4.5 Analysis

	6.5 Chapter Summary

	7 Conclusion and Future Work
	7.1 Contribution Summary
	7.2 Future Work
	7.2.1 Other Potential Priors in Supervised Learning Problems
	7.2.2 Priors for Large-scale Unsupervised Learning Problems
	7.2.3 Priors for Model Compression and Training Acceleration

	References

