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Highlights

• New Magnetic Resonance Elastography (MRE) software pipeline incorpo-

rating wavelet-based denoising and feature-detection techniques

• Systematic noise testing with new Finite Element Method (FEM)–based

simulations

• Results robust to noise and show new levels of detail for MRE elastograms
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Abstract

Fine-featured elastograms may provide additional information of radiological

interest in the context of in vivo elastography. Here a new image process-

ing pipeline called ESP (Elastography Software Pipeline) is developed to cre-

ate Magnetic Resonance Elastography (MRE) maps of viscoelastic parameters

(complex modulus magnitude |G∗| and loss angle φ) that preserve fine-scale

information through nonlinear, multi-scale extensions of typical MRE post-

processing techniques. Methods: A new MRE image processing pipeline was

developed that incorporates wavelet-domain denoising, image-driven noise esti-

mation, and feature detection. ESP was first validated using simulated data,

including viscoelastic Finite Element Method (FEM) simulations, at multiple

noise levels. ESP images were compared with MDEV pipeline images, both

in the FEM models and in three ten-subject cohorts of brain, thigh, and liver

acquisitions. ESP and MDEV mean values were compared to 2D LFE mean

values for the same cohorts as a benchmark. Finally the proportion of spectral

∗Corresponding author
Email addresses: e.barnhill@sms.ed.ac.uk (Eric Barnhill ),

s1160274@staffmail.ed.ac.uk (Lyam Hollis), ingolf.sack@charite.de (Ingolf Sack),
juergen.braun@charite.de (Jürgen Braun), Peter.Hoskins@ed.ac.uk (Peter R Hoskins),
Pankaj@ed.ac.uk (Pankaj Pankaj), brown@mentholatum.co.uk (Colin Brown),
edwin-vanbeek@ed.ac.uk (Edwin J R van Beek), neil.roberts@ed.ac.uk (Neil Roberts)
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energy at fine frequencies was quantified using the Reduced Energy Ratio (RER)

for both ESP and MDEV. Results: Blind estimates of added noise (σ) were

within 5.3%± 2.6% of prescribed, and the same technique estimated σ in the in

vivo cohorts at 1.7± 0.8%. A 5× 5× 5 truncated Gabor filter bank effectively

detects local spatial frequencies at wavelengths λ ≤ 10px. For FEM inversions,

mean |G∗| of hard target, soft target, and background remained within 8% of

prescribed up to σ = 20%, and mean φ results were within 10%, excepting hard

target φ, which required redrawing around a ring artefact to achieve similar ac-

curacy. Inspection of FEM |G∗| images showed some spatial distortion around

hard target boundaries and inspection of φ images showed ring artefacts around

the same target. For the in vivo cohorts, ESP results showed mean correlation

of R = 0.83 with MDEV and liver stiffness estimates within 7% of 2D-LFE

results. Finally, ESP showed statistically significant increase in fine feature

spectral energy as measured with RER for both |G∗| (p < 1 × 10−9) and φ

(p < 1×10−3). Conclusion: Information at finer frequencies can be recovered

in ESP elastograms in typical experimental conditions, however scatter- and

boundary-related artefacts may cause the fine features to have inaccurate val-

ues. In in vivo cohorts, ESP delivers an increase in fine feature spectral energy,

and better performance with longer wavelengths, than MDEV while showing

similar stability and robustness.

Keywords: elastography, magnetic resonance elastography, wave inversion,

complex dualtree wavelet, denoising

1. Introduction

In the present study a new post-processing pipeline for the Magnetic Res-

onance Elastography (MRE) inversion problem, known as the Elastography

Software Pipeline (ESP), was developed to enable fine-featured dual-parameter

elasticity map reconstruction. Soft tissue viscoelastic parameters are valuable

diagnostic tools, and more finely featured viscoelastic property mapping would

deliver additional information about the tissue under study that may be of
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radiological interest.

Magnetic Resonance Elastography (MRE) (Muthupillai et al., 1995) uses

phase-contrast MRI imaging to measure tissue viscoelastic properties in vivo.

In a typical MRE experiment, steady-state wave propagation is induced in tis-

sue using an external driver, and wave inversion is used to measure viscoelastic

properties. The most commonly reported result is a measure of tissue stiffness

or elasticity, and some studies also report a second parameter of viscous dis-

persion. Here the magnitude of the complex shear modulus |G∗| is reported as

a stiffness estimate, and phase angle of the complex modulus φ is reported as

a viscosity estimate. While phase angle technically measures the relationship

between storage and loss moduli of the tissue, φ is commonly used as a viscosity

measure since a value of 0 reflects a material with no viscosity, and a value of

π
2 reflects a purely viscous material (Malkin and Isayev, 2006).

Increasing MRE resolution to map fine features in two parameters may en-

able new applications for non-invasive tissue analysis based on viscoelastic prop-

erty measurements. For example, the diffuse mechanical parameter alterations

found in certain brain diseases (Sack et al., 2013) can be mapped to regions

of white or gray matter; or alterations in limb behaviour can be mapped to

changes in specific intra-muscle structures (Barnhill et al., 2013). However, rhe-

ological methods determine viscoelastic properties through wave inversion which

is highly ill-posed and sensitive to noise (Aster et al., 2013). MRE is well de-

scribed by a mixed dense-sparse noise model, as it contains dense high and low

frequency noise common to image processing (Bertero and Boccacci, 2010), as

well as frequency-dependent sparse noise arising from the complexities of shear

wave propagation in complex-boundaried materials. As the first type of noise

is stochastic while the second is structured and reproducible, such a pipeline

must combine varied techniques to address these noise sources without sacrifice

of bandwidth.

In the MRE literature a wide variety of filtering approaches are taken to re-

duce noise, including bandpass or other frequency-domain filtering (Klatt et al.,

2007; Manduca et al., 2003; Green et al., 2008; Honarvar et al., 2012; Park
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and Maniatty, 2006; McGarry, 2013), and derivative-fitting approaches such as

binomial filtering (Sinkus et al., 2000) or Savitsky-Golay filtering (Manduca

et al., 2001). All these filtering approaches require a priori windowing, which

restricts results to features within a specified bandwidth. Recovery of the finest

features, however, requires preservation of the full bandwidth range. This can

be attained by multi-scale, non-linear denoising techniques including wavelet

shrinkage (Donoho and Johnstone, 1995; Selesnick et al., 2005) and sparse ap-

proximation (Aharon et al., 2006; Chen and Selesnick, 2014).

The Elastography Software Pipeline (ESP) was developed to apply such

techniques to preserve fine feature information in elastograms, with the aim of

fine feature mechanical property recovery. ESP accomplishes this with three

steps:

• Denoising is performed in wavelet bases using shrinkage and sparsity pro-

motion;

• Noise is estimated using adaptive, image-driven measurements;

• Multi-scale feature detection is incorporated into Helmholtz inversion us-

ing a bank of truncated Gabor filters.

The new features in the pipeline were tested with analytic and Finite Element

Method (FEM) data at varying noise levels and the pipeline was then applied

to ten-subject cohorts of brain, liver, and thigh muscle.

2. Methods

2.1. Pipeline

2.1.1. Overview

ESP first phase unwraps the data using a 4D Laplacian-based algorithm de-

scribed in Barnhill et al. (2014). ESP then applies two denoising methods not

previously applied to MRE: a divergence-free-wavelet Hodge decomposition with

6
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[6] Chen & Selesnick 2013 [7] Donoho & Huber 1983 [8] Liu et al 2013

Figure 1: Summary of noise removal steps in the ESP pipeline.

SureShrink thresholding (Ong et al., 2014), and a complex dual-tree wavelet de-

noising (Selesnick et al., 2005) with Overlapping Group Sparsity (OGS) thresh-

olding (Chen and Selesnick, 2014). For handling sparse noise, ESP then ap-

plies an overdetermination-based method from the MRE literature known as

the MDEV equations (Papazoglou et al., 2012). However, ESP applies a newly

designed filter bank to extend the MDEV equations so that local directional spa-

tial frequency information is used to weight the inversion at each voxel. ESP’s

methodological components are summarised in Figure 1 and described in more

detail below. Noise standard deviation is described below as % of maximum

signal.

2.1.2. Removal of low frequency dense noise (e.g. bulk waves)

MRE possesses several slowly-varying noise sources, including phase field

biases, rigid body motion, and bulk wave motion: as soft tissue is not fully

incompressible, shear vibration of tissue also produces bulk waves which are

an order of magnitude longer than shear waves. Bulk waves have been shown

to impact shear wave measurements and therefore cannot be neglected (Sinkus

et al., 2000). Techniques used to handle bulk waves in other studies include
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high-pass filtering (Klatt et al., 2010; McGarry, 2013) or the inversion of x and

y gradients (Hirsch et al., 2014). As bulk waves are divergent, one common

technique is application of a Helmholtz-Hodge decomposition (HHD) to the

MRE acquisition with retention of only the rotational component (Sinkus et al.,

2005a; Honarvar et al., 2013). However, from a signal processing standpoint,

the implementation of an HHD to heterogeneous data is not straightforward as

sharp edges such as anatomical boundaries will have high divergence and errors

will propagate through the image (Ong et al., 2014).

In ESP a 3D divergence-free wavelet (Ong et al., 2014) is applied to eliminate

dense low-frequency noise. The technique makes use of the contrast between

the large, sparse divergence coefficients of edges and the small, dense diver-

gence coefficients of low frequency noise sources such as bulk waves and rigid

body motion, thresholding the non-divergence free coefficients to suppress small

values and retain large ones. Image noise is estimated with median absolute

deviation (MAD) and thresholds are determined with SureShrink (Donoho and

Johnstone, 1995). For validation, analysis and comparison with similar denois-

ing algorithms, we refer the reader to Ong et al. (2014).

2.1.3. Removal of high frequency dense noise (e.g. sensor noise)

Correct high-frequency denoising is critical to avoid parameter overestima-

tion from oversmoothing, parameter underestimation from insufficient noise re-

moval, and feature loss in both cases. The features to be denoised span all

scales of the image and extend in arbitrary directions within the 3D volumet-

ric space. In ESP, images are denoised using a 3D complex dual-tree wavelet

(CDTW) transform (Selesnick et al., 2005). The CDTW is reported to be “an

optimal representation”(Selesnick et al., 2005) for piecewise-smooth functions

with discontinuities. As a fine-feature elastogram must contain data about both

smooth wave propagation through homogeneous regions, and wave discontinu-

ities at tissue interfaces, ESP denoises data in the CDTW domain.

MRE images contain phase noise which scales negatively with the magnitude

of the tissue displacement. Consequently SNR levels will be different in different

8
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image regions, depending on such factors as wave penetration. We handle this

complexity with a de-noising technique new to MRE, in which sparsity is en-

forced among overlapping groups at multiple scales, a technique known as Over-

lapping Group Sparsity (OGS)(Chen and Selesnick, 2014) shrinkage. Group size

controls resolution, which we here set to the edge size of the compact Laplacian

operator, 3px, used in the wave inversion, using 3px as an effective minimum

window for both. OGS then requires calibration of one variable, a sparsity en-

forcement parameter λ. More details are found in Chen and Selesnick (2014)

including recommendations for setting the relation between λ and an image

noise estimate σ. However Chen and Selesnick (2014) does not address the 3D

case for which the ESP pipeline is the first published application. Consequently,

herein we add our own calibration described in Experiments. We apply OGS

separately along the Z axis and in the XY plane, as the noise profile along the Z

axis can be quite different due to interslice phase discontinuities (Murphy et al.,

2012). Image noise σ is estimated with a Principal Component Analysis (PCA)

patch-based single image blind noise estimation technique (Liu et al., 2013) and

this result is used to set the OGS sparsity enforcement term. A calibration test

was used to determine a relationship between detected noise level σ and sparsity

enforcement term λ expected to de-noise the image below a value of σ = 0.05%,

and this is described below in Experiments. However, otherwise our procedure

is identical to Chen and Selesnick (2014) in all respects and that paper can be

consulted for algorithm comparison and sensitivity analysis.

λ is not a hard or soft threshold, but is used to separate high and low

magnitude coefficients after the sparsification of the overlapping groups. Given

the findings of basis optimality reported in Selesnick et al. (2005) and the OGS

analysis found in Chen and Selesnick (2014), the technique can be expected to

provide adaptive denoising for a range of noise levels in the image.

9
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2.1.4. Removal of sparse noise / clutter (e.g. low signal areas from standing

wave nodes)

The propagation of acoustic waves through complex-boundaried soft tissue

produces several sources of noise such as standing wave nodes, wave scattering

and mode conversion. (While these noise sources result from violation of the

assumptions of the Helmholtz inversion, rather than sensor noise, they still fit

the standard signal processing definition of noise as unwanted signal.) These

noise sources are irregularly placed and sparse in the input. Further, as their

location is frequency-dependent, they will be highly sparse in an acquisition

overdetermined at multiple frequencies. The MDEV equations, first described

in Papazoglou et al. (2012), extend the Algebraic Helmholtz Inversion (AHI)

or Direct Inversion (DI) approach (Papazoglou et al., 2005; Manduca et al.,

2001). AHI uses simplifying assumptions of isotropy and local homogeneity to

determine the complex shear modulus G∗ of a Fourier-transformed wave field

U(x, y, z). MDEV resolves sparse noise in AHI by overdetermination, pixel-wise

averaging the complex modulus magnitude |G∗| and loss angle φ across frequen-

cies in a multi-frequency acquisition. (Other approaches to MRE inversion that

include multi-frequency based overdetermination can be found in Klatt et al.

(2007) and Honarvar et al. (2013)).

As tissue shear modulus values show frequency-dependence following a power

law (Szabo, 1995), the combining of the |G∗| results at various frequencies is a

source of error. MDEV accepts this error for the benefits of over-determining

the tissue displacement matrix prior to inversion, which allows for the resolution

of wave-related noise without sacrifice of bandwidth. Such error is not present in

the φ calculation which is, per the springpot model, expected to remain constant

at all frequencies (Sinkus et al., 2005b).

2.1.5. Multi-Scale Feature Detection / Gabor-Weighted Inversion

AHI and MDEV require estimation of the Laplacian and, as in the denoising

techniques above, the estimator will favour particular frequencies if the estima-

tion window is kept fixed. Here the scale of the inversion is made responsive

10
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to the features in the image through incorporation of Gabor filter bank results

into the MDEV equations.

Complex Gabor filters are effective multi-scale feature detectors (Gonzalez

and Woods, 2002): similarity between image wavelength λ and Gabor filter tun-

ing φ results in a high magnitude response when the two images are convolved,

while λ more distant from φ results in a lower magnitude response. A Gabor

filter combines a particular spatial frequency with directional smoothing appro-

priate to that frequency, and this provides the needed components for a Gabor

Weighted Inversion (GWI). In the GWI, the image is convolved with each filter

in the bank; the magnitude response is used as a voxel-wise weighting; and the

directionally smoothed image, along with its Laplacian, are incorporated into

the inversion equations, weighted by magnitude response at each voxel.

The weighting ensures that the inversion is not simply the average of differ-

ently smoothed images: each voxel will have high response to the filters that

detect spatial frequencies at that location, and low response to the other filters.

If this response is used as a weight, each voxel will effectively be inverted at its

appropriate scale and not at other scales.

This result can be accomplished by extending the MDEV equations to in-

corporate the directionally smoothed images, the directionally smoothed Lapla-

cians, and the voxel-wise weighting for each. For example, inversion of an acqui-

sition of four frequencies with 3D displacements would previously have combined

4× 3 = 12 results using the MDEV equations. However if the Gabor bank con-

tains 64 filters the inversion now combines 12 × 64 results using the MDEV

equations. The MDEV |G∗| equation (4a in Braun et al. (2013)) thus expands

to

|G∗| = ρ

∑3
m=1

∑N
n=1

∑π
2

Φ=−π
2

∑π
2

θ=−π
2

∑ d
2
ν=1 ω

2
n|û∗mnφθν(ωn)|wmnφθν

∑3
m=1

∑N
n=1

∑π
2

Φ=−π
2

∑π
2

θ=−π
2

∑ d
2
ν=1 |∇2û∗mnφθν(ωn)|wmnφθν

(1)

with Φ pitch, θ yaw, and ν the bandwidth of the directional smoothing, û

the directionally smoothed complex wavefield, ∇2û the Laplacian of this field,
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and w the corresponding voxel wise Gabor magnitude weighting. Similarly the

equation for φ (4b in the same paper) expands to:

φ=acos

(
−
∑
m
∑
n
∑

Φ
∑
θ
∑
ν [<(ûm)<(∇2ûmnφθν )+=(umnφθν )=(∇2ûmnφθν )]wmnφθν

∑
m
∑
n
∑

Φ
∑
θ
∑
ν |û∗mnφθν (ωn)||∇2û∗

mnφθν
(ωn)|wmnφθν

)
(2)

The drawback to this approach is that estimation of large wavelengths λ

typically requires a Gabor filter with wide support. The GWI strikes a balance

between these concerns by truncating the Gabor filters. This trade-off reduces

the ability of the filter to differentiate large λ, but increases the spatial reso-

lution of the inversion. As the interest of the paper is in the development of

fine-featured elastograms, a truncated filter bank was designed to aid detection

and inversion of the desired finer features, without underweighting coarse fea-

tures. The appropriate truncation level, and filter bank size, for the goals of the

pipeline is determined in an experiment described in Section 2.3 below.

In the filter bank, smoothing along the filter’s major axis is set at the “opti-

mal” σ = 2
3θ, with σ the Gaussian kernel and θ the cosine function bandwidth

(Clausi and Jernigan, 2000). Minor axis support was set at σ = 0.65px, effec-

tively setting a support of one pixel along both minor axes to maximise fineness

of feature detection along the major axis (Gonzalez and Woods, 2002). As the

minor axes were symmetric, roll was left stationary; as the magnitude of the

response was retained, phase offset was left at zero.

2.2. Acquisitions

FEM simulations were used to verify accuracy of the ESP parameter recov-

ery, including stiffness values of elastogram regions, and robustness to noise.

Following testing, the pipeline was applied to three in vivo cohorts.

Finite Element Simulations Finite Element Method simulations (Thomas-

Seale et al., 2011) within the ABAQUS software package (Simulia Corp.,

Providence, Rhode Island, USA) were used to verify the accuracy of ESP’s

parameter recovery in varied noise conditions. The model was designed

12
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with background material of 3200 Pa stiffness, one soft target at 1600 Pa,

and one hard target at 7200 Pa. The material was modelled as a Voigt

solid, G∗ = µ+ iωη, with η of 1 Pa · s, and the solid was vibrated at four

frequencies, 50, 60, 70, and 80 Hz, for an expected averaged loss modulus

of 408 Pa. This produced expected |G∗| of 3226 Pa, 1651 Pa and 7211

Pa for the background and two inclusions respectively and expected φ of

0.127, 0.250, and 0.057 radians respectively. These stiffness values were

first verified with caliper measurements at all frequencies using the caliper-

based wave measurement technique in e.g. Bensamoun et al. (2007) and

Barnhill et al. (2013).

In Vivo cohorts Three cohorts of healthy volunteers were analysed with ESP.

All acquisitions were axial:

1. A cohort of ten healthy volunteer abdomens, full field MRE acquisi-

tions, vibrated at seven frequencies (30:5:60 Hz), using a single-shot

SE-EPI sequence with FoV of 320×260mm2, ten slices, and isotropic

2.5mm3 voxels on a 1.5T scanner (Magnetom Sonata; Siemens Er-

langen, Germany) with piezoelectric actuator and acquisition details

as described in Guo et al. (2014).

2. A cohort of ten healthy volunteer brains, full field MRE acquisitions,

vibrated at seven frequencies (30:5:60 Hz), using a single-shot SE-

EPI sequence with FoV of 176 × 192mm2, 15 slices, and isotropic

1.9mm3 voxels on a 3T scanner (Trio, Siemens, Erlangen, Germany)

with a head cradle actuator and acquisition details as described in

Guo et al. (2013).

3. A cohort of ten healthy volunteer thigh muscles, full field MRE ac-

quisitions, vibrated at four frequencies (25:12.5:62.5 Hz) SE-EPI se-

quence on a 3T scanner (Verio, Siemens, Erlangen, Germany) with

FoV of 336 × 336mm2, 5 slices, and isotropic 3mm3 voxels using a

ring actuator as described in Barnhill et al. (2013).

All acquisitions were approved by the relevant ethics boards.

13
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2.3. Experiments

Noise detection and testing To evaluate noise detection and denoising tech-

niques, three experiments were performed. Using the FEM simulation set

described above, image noise σ was progressively added from 0 to 10%

using the MATLAB (Mathworks, Natick, MA) randn function. Then:

• In order to establish the accuracy of the PCA noise detection in

the context of MRE, the PCA-based noise detection technique was

applied to estimate the σ of the simulated MRE data.

• PCA noise detection was then applied to the three acquisition cohorts

described above, to estimate in vivo σ.

• Finally, images were denoised using different levels of the OGS spar-

sity enforcement parameter λ to evaluate the lowest λ that reduces

noise to ≤ 0.05%, for the σ levels detected in the cohorts.

Truncated Gabor filter frequency detection test To investigate the fre-

quency detection capacity of truncated Gabor filters, 1D spatial frequency

data with λ ranging from 1 to 32px were convolved with 1D complex Ga-

bor filters with tunings φ from 1 to 32 px, truncated to several different

sizes. The responses were used to choose a truncated support size for the

bank. A cut-off frequency also had to be chosen for the bank so that cu-

mulatively for the bank, there was equal total response to all frequencies,

to avoid specific frequencies being over-weighted in the inversion.

Comparative inversion of FEM simulations with added noise The FEM

simulated wave images were inverted at six different Gaussian noise levels:

0, 1, 2, 3, 5, 10 and 20 percent. (Including 20% resulted in a noise level

range of 46 to 16 dB which is comparable to a high-impact denoising paper

such as Dabov et al. (2009) in which a range of 35-17 dB was used.) The

volumes were manually segmented into soft target, hard target, and back-

ground using the original simulation settings. The ROIs were measured
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for mean and standard deviation in |G∗| and φ at each noise level, and

the images were inspected for retention of fineness of target boundaries.

ESP results were compared with a previously published multi-frequency

analysis pipeline. Here it is useful to make a distinction between the

MDEV equations, which are used and extended in ESP, and the MDEV

method, an inversion pipeline that uses alternate phase unwrapping and

denoising techniques. In the present study ESP is compared with the

MDEV method as described in Streitberger et al. (2014), which combines

a gradient-based phase unwrap, 4th order Butterworth low-pass filter,

and unweighted averaging of frequencies and components in the MDEV

equations. Both methods are used to invert the FEM simulations at the

six noise levels.

Comparison of in vivo cohorts The FEM results were followed with qual-

itative and quantitative comparisons of both inversion pipelines with in

vivo acquisitions. The qualitative approach is presentation and inspec-

tion of images: an exemplar image is presented and discussed in terms of

features of interest. Then two quantitative comparisons are made. The

first is calculation of means and standard deviations, discussed more in

the next section. Second is a quantitative evaluation of the proportion

of image spectral energy at finer frequencies, the Reduced Energy Ratio

(RER) (Lee et al., 2009), commonly used as a metric of image sharpness

in computational photography. RER quantifies image sharpness by mea-

suring the ratio of selected (i.e. reduced) higher frequency bands to the

DC value of a discrete cosine transform (DCT) within 8 × 8 overlapping

blocks. Here we extend the procedure of (Lee et al., 2009) to three di-

mensions due to the volumetric nature of the image, but retaining the

suggested frequency bands in that paper, using frequencies above the DC

but within radius 5 as the critical band. We refer the reader to (Lee et al.,

2009) for further discussion of the method including robustness and sen-

sitivity analysis. Finally as the method operates on 8× 8× 8 blocks, the
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values at boundaries were unreliable. Consequently RER was calculated

by manually masking the images 8 voxels away from external (skull for

brain, air for thigh muscle, other organs for liver) and internal (ventricles

for brain, bone for thigh muscle) boundaries.

Cohort comparison of mean values of ESP, MDEV and LFE methods

We also compare mean values of ESP and MDEV results with mean values

of results using the LFE method (Manduca et al., 2001; Knutsson et al.,

1994) as made available in the MRE-WAVE (Mayo Clinic, Rochester, MN,

USA) software package. LFE is widely used and is a useful benchmark

for range and stability of ESP results. However, LFE operates on single-

frequency data, and requires manually verified masking as well as several

manual settings. Consequently a full comparison of pipeline results is

outside the scope of this paper and we only use summary statistics of

the results as a benchmark. For LFE, 3D (i.e. full-field) displacements

were unwrapped with a minimum-discontinuity algorithm, filtered with

a 4th order Butterworth bandpass filter with default cutoffs (2.5 and 40

waves/FOV), and inverted with 2D LFE. As LFE is single frequency, the

50Hz acquisition was used in all cases. As LFE produces no φ image, only

ESP and MDEV were compared for φ results. Finally, it should be noted

that LFE stiffness more closely approximates |G∗| when G” is low, but

diverges as G” increases. The manual masks generated with MRE-WAVE

were used to mask the elastograms in all three pipelines, and mean value

and standard deviation for each subject in each pipeline was measured.

3. Results

3.1. Blind Noise Estimation

Figure 2 shows results for the three de-noising experiments. In panel (a),

estimated σ differs by 5.3% ± 2.6% from actual added σ. In panel (b), the

same method is then used to measure the noise of the in vivo cohorts. In vivo

image noise is estimated at 1.7± 0.8%, suggesting that resolution similar to the
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FEM 2% test case will be present in in vivo acquisitions. Finally, the FEM

simulation images have noise added, then are de-noised with varying levels of

the OGS sparsity enforcement parameter λ. As shown in panel (c), at values

of ≈ 2%, that is to say, the estimated noise levels of the cohort, the image is

effectively de-noised, that is to say, noise levels are reduced to < 0.05%, when

λ = 0.3σ.

3.2. GWI Frequency Detection

Figure 3 shows the set of 1D vectors at stepped wavelengths λ of 1 to 32

px, as well as the magnitude of the Gabor response to each wavelength from a

bank of Gabor filters with tunings θ of 1 to 32 px. The Gabor response graph

for ‘full’ shows the response of fully-supported filters, here set to a support of 3

standard deviations. The maximum response values are on the diagonal of the

graph. This shows the expected result, that is, data at wavelength λ produced

the highest response in filters where tuning θ = λ.

As the bank is progressively truncated in panels (c-f), the bank still differen-

tiates finer λ, but the response of the bank to coarser λ becomes more uniform.

The result is a trade-off between support size (with a larger support combining

a larger region of values, limiting image resolution) and sufficient scaling for

coarse wavelengths. For the FEM and in vivo cohorts, a 5 × 5 × 5 truncation,

enabling appropriately scaled inversion of features λ ≤ 10px, was chosen.

As the 5× 5× 5 truncated bank produces a uniform weighting for λ ≥ 10px

when θ ≥ 10px, coarser λ will be overweighted unless a cut-off θ was chosen for

the bank that produced equal total Gabor magnitude response for each λ. This

was done by looking at the cumulative filter bank response as larger θ filters are

added to the bank, and the results are shown in Figure 4. The cut-off θ that

produced the most similar total magnitude response, for the whole inversion, at

all λ, was 12px as seen in panel (b). Since the kernels in the bank needed to be

of odd dimensions, the final bank consisted of 5× 5× 5 truncated Gabor filters

with support sizes [3, 5, 7, 9, 11].
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Estimation Of Added Noise Estimation of Cohort Noise

(a) (b)

Brain Liver Muscle

Calibration Of Sparsity Enforcement Parameter (λ) For OGS Denoising Of Cohorts

(c)

Figure 2: Testing of noise estimators and denoising parameters. Panel (a) shows that the

PCA-based noise estimation technique identifies added noise in an FEM MRE simulation to

within 5.3% ± 2.6% of prescribed. Panel (b) shows the same technique applied to the 30

cohorts in the study; estimated σ in the cohorts is 1.7 ± 0.8%. Panel (c) compares different

de-noising levels, in terms of OGS sparsity enforcement parameter λ, by estimating remaining

noise after denoising with OGS. Added noise is reduced to σ < 0.05%, at the levels of noise

detected in the cohorts, when λ is set at 0.3σ.
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Figure 3: Reponse of truncated Gabor filters with tuning θ to spatial frequencies of wavelength

λ. (a) shows the stack of 1D vectors at wavelengths (λ) = 1-32 px. All values are normalised

0 to 1. (b) shows the response of each Gabor filter tuning θ to each λ. Highest magnitude

response is when θ = λ. In panels (c-f), as the filters are truncated, they lose the ability to

distinguish larger λ, but retain the capacity to distinguish some finer spatial frequencies even

with compact support.

Figure 4: Cut-off for equal total frequency response for truncated Gabor bank. (a) Cumulative

magnitude response for each λ was measured for each possible cutoff θ. (b) The filter bank

with the most equal response across all λ (as measured by normalised SD) was chosen for the

cut-off of the bank.
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To visualise the filter’s impact an illustration of the response of small and

large truncated θ filters on a slice of brain MRE data is shown in Figure 5.

3.3. Simulation Noise Test

With the filter bank chosen, the FEM test data were processed with the

ESP pipeline at the varying noise levels listed in Methods and compared to

the MDEV pipeline. Figure 6 shows displacement and inversion images for the

chosen noise levels for both MDEV and ESP. Figure 7 plots mean and standard

deviation for hard target, soft target, and background material.

For MDEV |G∗|, noise-free estimates for hard target, soft target and back-

ground were 81%, 110% and 99% of prescribed respectively. The values de-

creased with increasing noise, such that in the 20% noise case, values were 33%,

72% and 60% of noise-free estimates respectively. For ESP |G∗|, noise-free es-

timates for hard target, soft target and background were 98%, 108% and 103%

of noise-free estimates respectively. The values remained similar through the

20% noise case, with noise values 94%, 105%, and 99% of noise-free estimates

respectively. Qualitatively, some artefacts can be seen. MDEV inversion retains

shape of targets accurately, but ESP shows some shape distortion as noise level

increases.

For MDEV φ, noise-free estimates for hard target, soft target and back-

ground were 620%, 109% and 110% of prescribed respectively. In the 20% noise

case, values were 187%, 117% and 196% of noise-free estimates respectively. For

ESP φ, noise-free estimates for hard target, soft target and background were

491%, 102% and 107% of noise-free estimates respectively. The values remained

similar through the 20% noise case, with noise values 120%, 87%, and 101% of

noise-free estimates respectively. Qualitatively, bright rings are seen in the φ

values around the hard target. Noting that clinical liver MRE often uses manu-

ally drawn ROIs (Mariappan et al., 2010), a smaller region was drawn post-hoc

in the hard target avoiding the artefactual rings. In the post-hoc ROI, estimates

of hard target φ dropped to 247% for MDEV and 105% for ESP.

For visualisation of the impact of the denoising methods, Figure 8 illustrates
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High frequency filter

(small θ)

Low frequency filter

(large θ)

(a)

(b)

(c)

Figure 5: Illustration of Gabor feature detection in in vivo samples. All filters, image volumes

and convolutions are full 3D in the pipeline, and slices are shown only for demonstration. (a)

Central slice of real component of 3D filter, yaw π
4 , pitch 0, high and low spatial frequencies. (b)

Truncation of filters to 5px compact support. (c) Magnitude of filter response in a slice of brain.

The high-frequency filter responds to fine features, with brighter values at interfaces, and the low-

frequency filter responds to coarse features, with brighter values at homogeneous tissue regions.

Highest response is in the direction of the filter.
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Figure 6: Images from the FEM noise test. (a) Z displacements of the simulation full vec-

tor field. (b), (c) Complex shear modulus magnitude |G∗| from MDEV and ESP pipelines,

respectively. (d), (e) Shear modulus phase angle φ from MDEV and ESP pipelines.
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Figure 7: Plot of summary statistics for the FEM noise test. The MDEV pipeline shows

sensitivity to noise while the ESP pipeline stays robust up to 20% noise.

the impact of the denoising methods using a detail measurement from an axial

muscle acquisition.

3.4. In Vivo Cohorts: Comparison of MDEV and ESP images, and Comparison

of MDEV, ESP, and LFE means.

Image comparisons of stiffness maps for the MDEV, and ESP pipelines are

shown in Figure 9.

Means of each volume are plotted in Figure 11 and summary statistics are

shown in Table 1 and Table 2. All three methods are significantly (p < 0.01)

correlated in liver (R = 0.79, 0.88 and 0.77). ESP and MDEV show a significant

correlation (p < 0.01) in all cohorts but no significant correlations to LFE in

brain or muscle. ESP showed consistently higher results than MDEV (16%,

55% and 32% for brain, liver, and thigh, respectively), while LFE did not show

a consistent relationship to the values of the other two methods, being higher

than both in brain, similar to ESP in liver, and lower than both in muscle.
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Figure 8: Illustration of ESP denoising results on central slice of an axial thigh muscle acqusition.

Images (a) is phase-unwrapped but not denoised. To compare with other image processing pipelines,

(b) shows denoising results for a 4th order Butterworth low-pass filter with cutoff of 10mm. The

remaining images show ESP methods. (c) shows the impact of the divergence-free wavelet. (d)

shows the additional impact of the OGS denoising. To study the denoising results a vertical plot

line was drawn across heterogeneous tissue features in the image. Comparison of the dark red and

dark green lines shows the increase in detail from ESP’s multiscale filtering (red) as opposed to low-

pass filtering (green), even as both produce data sufficiently smoothed for wave inversion. Below

the plot, subtraction images from (a) are shown for each de-noising step.
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BRAIN LIVER MUSCLE

T2

MDEV

|G∗|

0 4000 0 5000 0 4000

ESP

|G∗|

0 6000 0 8000 0 5000

Figure 9: Comparison of |G∗| and φ maps using the MDEV and ESP pipelines. All values

are in Pascals.

Summary statistics for three-pipeline comparison

Mean / SD in Pascals

BRAIN LIVER MUSCLE

LFE 3047± 338 2609± 501 916± 353

MDEV 1919± 184 1570± 216 1725± 85

ESP 2532± 448 2440± 313 2003± 164

Table 1: Means and standard deviations for each cohort by inversion method.
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φ (φ) Image Comparison

BRAIN LIVER MUSCLE

MDEV

φ

ESP

φ

Figure 10: Example images of viscoelasticity parameter φ (in Radians) for the same three

organs as Figure 9 above.
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Figure 11: (a) Cross-pipeline comparison of mean stiffness values, µ for LFE and |G∗| for

MDEV and ESP, for each cohort. (b) Comparison of mean φ values for each volume as

inverted by MDEV and ESP (LFE does not provide a φ image).
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Correlations between pipeline results

Stiffness φ

MDEV & ESP MDEV & LFE ESP & LFE MDEV & ESP

Brain R=0.85** R=0.55 R=0.38 R=0.92***

Liver 0.79** 0.88*** 0.77** 0.32

Thigh 0.85** 0.12 0.18 0.64*

Table 2: Correlations between results for the 3 inversion methods of LFE, MDEV and ESP

(*=p < 0.05, **=p < 0.01, ***=p < 0.001). Results are significantly correlated in the liver

cohort for all three methods, while ESP and MDEV |G∗| are significantly correlated for all

methods.

3.5. Reduced Energy Ratio (RER) Analysis

Results for the RER comparison of the ESP and MDEV pipelines are shown

in Figure 12. Using a two-tailed t test, ESP significantly increases the RER for

both the |G∗| (p < 1× 10−9) and φ (p < 1× 10−3) maps.

4. Discussion

4.1. Noise and artefact in ESP and MDEV: FEM Results

The FEM testing suggests that fine features can indeed be recovered with

ESP, even at SNR levels much lower than that found in vivo, but with some

limitations. For |G∗|, the FEM hard target showed some spatial distortion

while the φ targets showed artefactual rings, particularly around the hard tar-

get. Nonetheless, ESP recovered values within 8% of prescribed, at SNR levels

substantially lower than that found in vivo, except in the case of hard target φ,

and in this case, when the ROI was manually drawn rather than automatically

chosen from the prescribed scheme, values also were within 5%.

In both cases of noticeable artefact – the hard target shape distortion in

|G∗| and the ring artefacts in φ – the ESP inversion of FEM simulation shows

artefact that is asymmetric in the direction of wave motion, but symmetric in
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Brain Thigh Liver

Volunteers

Brain Thigh Liver

Volunteers

Figure 12: Reduced Energy Ratio (RER) comparison for ESP and MDEV pipelines. ESP

shows a statistically significant increase in spectral energy at finer frequencies for both |G∗|
and φ.
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the direction perpendicular to the motion. These artefacts are likely near-field

scattering effects.

Differences between MDEV and ESP pipeline results can be explained by

the differences between the filtering techniques in the pipelines. First, the un-

derestimation of the hard target |G∗| values by MDEV can be ascribed to loss

of low-frequency bandwidth from the inversion of numerically estimated gradi-

ents, which have suppressed low-range frequency response. ESP, which inverts

original displacements and uses a divergence-free-wavelet to remove bulk wave

artefacts, retains these long wavelengths and measures the hard target more

accurately. However, the 1mm resolution of the FEM simulation makes the

hard target waves quite long, and wavelengths of this length are unlikely to be

relevant in vivo. For expected wavelengths in, for example, 2mm voxels with

tissue stiffness ranging up to ≈ 6400Pa (double the background value of the

present study), using MDEV, only a slight underestimation would be expected,

and only at the high end of that stiffness range.

In |G∗|, MDEV does not show ESP’s shape distortion around the hard target.

This is likely a benefit of the MDEV pipeline’s band-pass approach, in which

the fine spatial frequencies from the scattering are well suppressed by the But-

terworth filter, leaving only spatial frequencies that correspond to propagation

rather than scattering. As ESP retains information along the entire available

frequency spectrum, it may be susceptible to scattering from hard areas within

a volume. However, no such shape distortion is shown between the soft tar-

get and background material in ESP, suggesting that, as discussed for MDEV

above, under the conditions and stiffness levels present in in vivo MRE, this is

unlikely to be a concern. This conclusion was supported further by qualitiative

inspection of the in vivo images, which showed good spatial correspondence

between elastogram features and features as seen on a T2 image.

4.2. Details And Values In Three Inversion Pipelines: In Vivo Results

For |G∗| in vivo, ESP and MDEV showed good correlation. While both

methods use the same inversion equations, they use entirely different filtering
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and phase unwrapping techniques, and the correlation between images suggests

that both denoising methods deliver accurate assessment of the relative vis-

coelastic properties of anatomical structures.

In φ, results were mixed, with high R for brain, low R for liver and moderate

R for thigh. Inspection of the φ maps in Figure 10 suggests that as ESP picks up

more details, it gains high scatter-related values, increasing and decorrelating

the results from those of the MDEV pipeline.

The close correlation between ESP and LFE in liver was striking, and a

further validation of the utility of MRE for liver stiffness measurement. MDEV

correlated to both but remained at lower values. What ESP and LFE share,

that MDEV does not, is the use of multiple scales in the inversion (Knutsson

et al., 1994). As MDEV uses only a compact-windowed Laplacian operator, this

may explain its slightly lower values.

One weakness in this analysis is that LFE contains many manual settings,

which were left to defaults when possible. It is possible that tuning of the

setting for each cohort, and indeed for each image, may have produced more

correlated results in all three pipelines. LFE did not show high correlation

values with ESP or MDEV in brain or thigh. This may relate to the default

2D approach of LFE, particularly in brain where waves are highly reverberant

in all three dimensions. Similar concerns may pertain to muscle although other

2D approaches to axial thigh images have produced similar values to this study

(Klatt et al., 2010; Barnhill, 2013; Guo et al., 2015). Overall, such operator-

dependent choices are difficult to objectify and consequently we use the means

from default LFE results for a benchmark comparison only.

The RER quantifies a statistically significant increase in fine frequency spec-

tral energy found in ESP images as compared with MDEV. The requirement of

8 × 8 × 8 blocks created variance at sharp boundaries so that some regions of

anatomy were excluded. However the finding of increased fine frequency activ-

ity in ESP was highly robust and the measurement was likely not confounded

by this. The statistical significance was lower in the φ map and this can be

attributed to the increasing image noise resulting from φ scattering.
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Results from all three pipelines are available on request to interested re-

searchers for further inspection, and a copy of the ESP pipeline as Matlab code

can be obtained by contacting CRIC at the University of Edinburgh.

4.3. Sparsification and Phase Noise

Here our calibration of sparsity enforcement parameter λ resulted in reduc-

tion of estimated noise levels to ≤ 0.05%. This is higher than the results for

speech denoising reported in Chen and Selesnick (2014), in which noisy signals

are reduced to noise levels of σ = 3× 10−4. However, the above-mentioned im-

provement in RER suggests that this denoising takes place without loss of fine

feature information, but rather improves its retention as compared to MDEV,

and is therefore sufficient in the MRE context.

SNR is likely to change across the image in relation to wave amplitude,

with SNR decreasing as the wave amplitude decreases from damping. The

independent sparsification of each overlapping group is expected to be responsive

to this variance, however, the de-noising for each slice is still calibrated to a

single SNR value, and future work will address this limitation. As the FEM

simulation used uniform noise parameters for each image, they did not address

this issue directly, though it is noteworthy that ESP remained robust through a

wide range of noise without changing any settings. As each overlapping group is

de-noised independently one likely avenue for future work is the use of an SNR

map of the image to adaptively determine λ of each individual group.

5. Conclusion

ESP holds promise as a software tool for fine-featured MRE images. The

chief goal of ESP was the inversion of MRE data while preserving the complete

bandwidth of the image. This required denoising in wavelet bases using nonlin-

ear thresholding techniques, combination of results at multiple frequencies, and

the incorporation of Gabor-based feature detection to invert features at their

appropriate scales. The new pipeline produced a significant increase in Re-

duced Energy Ratio (RER) for both viscoelastic parameters, suggesting better
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retention of the fine range of spatial frequencies, though FEM testing showed

that some of the fine-frequency information may be scattering or inhomogeneity

artefact. Also FEM testing showed more accurate measurement than MDEV

with coarse spatial frequencies, suggesting that the techniques incorporated into

ESP improve spatial frequency estimation at both ends of the spectrum.

The combination of FEM and RER results suggest that at the estimated

noise levels of in vivo cohorts of brain, abdomen or thigh muscle, ESP can

be expected to retain fine features and wider stiffness contrasts, while removing

noise and clutter from known MRE noise sources, and this assertion is supported

by qualitative inspection of in vivo results. Further, ESP shows overall good

correlation with the related MDEV pipeline, and in liver produces results similar

in value to the 2D LFE inversion method.
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