
A Preliminary Comparison of Tree Encoding Schemes for Evolutionary
Algorithms

Eduardo G. Carrano, Carlos M. Fonseca, Ricardo H. C. Takahashi, Luciano C. A. Pimenta and Oriane M. Neto

Abstract— This paper presents a comparative study of six
encodings which have been used to represent trees in evo-
lutionary algorithms. The study has been divided into two
steps: 1) The encoding methods have been evaluated taking
into account the time necessary to perform operations such as
decoding, crossover and mutation, the feasibility of solutions
after those operations, and the corresponding heritability and
locality; 2) The encoding methods have been employed in a
genetic algorithm to solve three different instances (with 10,
25 and 50 nodes) of the optimal communication spanning tree
problem. Finally, the results obtained with each of the encodings
are statistically compared using Kruskal-Wallis non-parametric
tests and multiple comparisons. The results of this study provide
insight into the properties of current encoding schemes for
network design problems.

I. INTRODUCTION

The design of network topologies is an important class
of combinatorial optimization problems. Within this class,
tree design problems have received special attention, since
they are the basis for the modeling of a large range of
practical systems, such as telecommunication, gas, electric,
computer and transportation networks [1]. In those cases, the
use of optimization techniques is very important, because
even small improvements in the implemented system often
lead to considerable financial savings.

Let G(V,E) be an undirected, weighted, connected graph
with n = |V | vertices and m = |E| edges, where V and E
are the sets of vertices and edges respectively. By definition, a
spanning tree T in G is any subgraph of G which connects all
V vertices with only n−1 edges (T is necessarily acyclic). In
[2], it is proved that a fully connected graph G with n vertices
contains a set of nn−2 feasible spanning trees (T). Assuming
that the cost of a spanning tree is calculated as the sum of its
edge weights, it is possible to define the minimum spanning
tree (T ∗) as the element of T which has minimum total
edge weight. The problem of finding the minimum spanning
tree (also called MST) can be solved in polynomial time
using well-known algorithms, such as those of Prim [3] or

This work was supported by CNPq, CAPES and FAPEMIG - Brazil.
E. G. Carrano, L. C. A. Pimenta and O. M. Neto are with the Department

of Electrical Engineering, Universidade Federal de Minas Gerais, Av.
Antônio Carlos, 6627, Belo Horizonte, MG, 31270-010, Brazil (e-mail:
carrano@cpdee.ufmg.br, lucpim@cpdee.ufmg.br, oriane@cpdee.ufmg.br).

R. H. C. Takahashi is with the Department of Mathematics, Universidade
Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG,
31270-010, Brazil (e-mail: taka@mat.ufmg.br).

C. M. Fonseca is with the Centre for Intelligent Systems, Universidade
do Algarve, Campus de Gambelas, 8005-139 FARO, Portugal (e-mail:
cmfonsec@ualg.pt).

Kruskal [4]. However, many variants of the MST problem are
computationally difficult, such as the optimal communication
spanning tree (OCST) and the quadratic minimum spanning
tree (QMST) problems, which are both NP-hard. Till now,
these variants cannot be solved in polynomial time using
exact methods [5].

Evolutionary algorithms (EAs) arise as reasonable meth-
ods for solving these variants of the MST and other hard
network problems. However, it is important to note that,
in evolutionary algorithms in general, and in evolutionary
network optimization in particular, the choice of represen-
tation scheme (encoding) is a critical aspect of the design
of the algorithm [6], as the use of inadequate representation
schemes often leads to a noticeable reduction in algorithm
performance. This is usually due to the resulting search
spaces exhibiting undesirable characteristics, such as many
local optima and multiple, disconnected, feasible regions,
which make the optimization process considerably harder.

It is possible to find other works in the literature which
present comparative studies of tree encoding methods [5],
[7], [8]. Although these studies are useful to some extent,
they are usually aimed at justifying the introduction of yet
another encoding scheme, and tend to include only a small
number of alternative methods in the comparison. Another
limitation of those studies is that the comparisons are based
solely on mean values, which can lead to conclusions that
are not statistically well supported.

This paper presents a comparison of six classical tree
encodings for evolutionary algorithms. The performance of
a genetic algorithm (GA) based on each of these encod-
ings, when applied to three OCST problem instances, and
encoding characteristics generally considered relevant in the
literature, are used as merit criteria. The data obtained
is analyzed using Kruskal-Wallis non-parametric tests and
multiple comparisons [9].

This paper is structured as follows:
- Section II shows the general statement of tree optimiza-

tion problems. The OCST problem is also presented in
this section.

- Section III describes a number of characteristics which
are usually considered desirable in tree encoding
schemes.

- Section IV presents the tree encoding schemes consid-
ered in this work.

- Section V presents a practical analysis of some decod-
ing, crossover and mutation operators.

19691-4244-0991-8/07/$25.00/©2007 IEEE

- Section VI discusses the results obtained by the result-
ing algorithms on the OCST problem.

II. PROBLEM STATEMENT

As presented in [7], the MST problem can be formulated
as an integer programming problem, as described below.

Let G(V,E) be a connected, undirected, weighted graph
and wi,j ∈ W be the weight of connection (i, j). Let T ⊆ E
and S be the set of vertices induced by T (i.e., S is the set
of vertices connected by the edges in T). The MST problem
can be formulated as finding T which minimizes the cost:∑

i,j∈V

wi,j · ti,j (1)

subject to:∑
i,j∈V

ti,j = |V | − 1∑
i,j∈V

ti,j ≤ |S| − 1 for any set S

ti,j ∈ {0, 1} , ∀i, j ∈ V

(2)

where (i, j) ∈ T if and only if ti,j = 1.

The formulation shown in (1) and (2) may be extended to
any variant of the MST problem by considering a different
objective function and any additional constraints required.
In particular, in the case of the OCST problem, there are
no additional constraints, and the objective function may be
written as:

min
∑

i,j∈V

Ri,j · CX
i,j (3)

where:
CX

i,j is the sum of weights of edges in path i− j.
Ri,j is the communication requirement between i and j.

The OCST problem can be understood as follows: Let
T be a communication system with n nodes and Ri,j be
the call demand between each pair of nodes i and j. The
cost incurred by each pair of nodes (i, j) is calculated
by multiplying the total cost of path (i, j), (including all
intermediate branches) by the call demand Ri,j .

This problem has been proved to be NP-hard, as shown in
[10], and has broad applicability in practice. In the present
work, it is used as a benchmark problem in section VI, to
evaluate the encoding schemes discussed in section IV.

III. DESIRABLE CHARACTERISTICS OF TREE
ENCODING SCHEMES

References [7], [11] state six characteristics which are
considered to be desirable in tree encoding schemes:

1) Coverage: The encoding should be capable of repre-
senting all possible trees;

2) Unbiasedness: The encoding should represent all pos-
sible trees with the same number of codes (1 → n:
each tree is represented by n different codes). When
each tree is represented by only one code (1 → 1) it
is said that the encoding possesses uniqueness;

3) Feasibility: All possible codes should represent fea-
sible trees, and the result of crossover or mutation
operators should always result in feasible trees;

4) Time: It should be computationally cheap to go back
and forth from code to tree and perform recombination
and mutation operations;

5) Heritability: The crossover operation should result in
trees which combine only the edges of parent trees;

6) Locality: A single mutation in a code should represent
a small change in the decoded tree.

In principle, all tree encodings used in EAs should have
those characteristics. However, most of the available rep-
resentations fail in at least one of them. The next section
presents a short description of six tree encoding methods,
considering the first three aspects described above. The
analysis of time, heritability and locality of those methods
is presented in section V.

IV. TREE ENCODING SCHEMES

Six classical tree encoding schemes are considered in this
work:

• Characteristic vector: In characteristic vector the trees
are represented by binary vectors of dimension m. Each
component of the vector represents one possible edge
and can assume values 0 (the edge is not present in the
tree) or 1 (the edge is present in the tree). This encoding
can be derived directly from the problem formulation
shown in (1) and (2). This encoding is unbiased (1 → 1
mapping) and covers all possible solutions. However,
many possible codes represent infeasible structures.

• Prüfer numbers: In Prüfer numbers [12] the trees are
represented by integer vectors of dimension n−2, each
component of which can assume values from 1 to n.
This encoding scheme is based on Cayley’s Theorem
[2], which states that in a complete graph with n ver-
tices, it is possible to find nn−2 trees. The encoding is
unbiased (1 → 1 mapping), covers all possible solutions
and all codes represent feasible structures. However, the
encoding only works with complete graphs.

• Network random keys: In network random keys [1] the
trees are represented by real vectors of dimension m.
Each component of the vector represents the weight of
an edge, usually from 0 to 1. The tree is obtained using
an MST algorithm, such as those of Prim or Kruskal.
The encoding covers all candidate solutions with full
feasibility. However, it has high redundancy, since the
number of codes which represent the same tree is very
high (in theory, it is infinite).

• Edge sets: In edge sets [8] the trees are represented
by integer vectors of dimension 2n − 2. Each vector
component can assume values in 1, . . . , n. The encoding
is unbiased, redundant and covers all possible solu-
tions. Although the infeasibility rate is smaller than in
characteristic vector, it is still a restrictive aspect of
this encoding. Additional repair mechanisms should be
employed in incomplete graph instances.

1970

• Node biased encoding: In the node biased encoding
[11] the trees are represented by real vectors of dimen-
sion n. Each vector component represents the weight
of a node. Those node weights are used to modify the
weights of the original edges. As with network random
keys, the trees are obtained by an MST algorithm. The
encoding is biased (edges with lower weight have a
higher chance of being selected) and it may not cover
the whole set of alternative solutions in some situations
[11]. The decoding always results in feasible structures,
despite exhibiting high redundancy.

• Link and node biased encoding: The link and node
biased encoding [11] is an adaptation of node biased
encoding, to correct the coverage limitation. In this
encoding, the trees are represented by real vectors
of dimension m + n. Each component of the vector
represents the weight of nodes and edges, all of which
are used to modify the original edge weights. The other
properties described in node biased encoding are valid
for this method, too.

V. ANALYSIS OF EVOLUTIONARY OPERATORS

The decoding, crossover and mutation operators were
tested on three fully-connected graphs of different sizes
(10, 25 and 50 nodes). The nodes were randomly generated
according to a uniform distribution on the unit square and
the edge weights were set to the Euclidean distance between
the corresponding nodes. Four criteria were considered:

1) Time (decoding, crossover and mutation): time neces-
sary to perform the operation;

2) Infeasibility (crossover and mutation): rate of struc-
tures which become infeasible after a crossover or
mutation operation;

3) Heritability (crossover): number of edges in offspring
network which do not belong to the parents;

4) Locality (mutation): number of edges that must be
changed in the parent network to obtain the offspring
network.

The results obtained for each criterion were analyzed using
Kruskal-Wallis non-parametric tests and multiple compar-
isons [9].

It is important to emphasize that all operators presented in
this work (decoding, crossover and mutation) have been im-
plemented with the lowest computational complexity which
could be found in the literature. They have been tested on
a Pentium IV (Prescott) at 3.2GHz with 1024MB of RAM,
using the Matlab 7 environment. Although the times are not
comparable with other approaches, since they are strictly
dependent of the hardware and software used, the time ratio
between the methods can provide useful information about
the computational cost of the methods.

A. Decoding

The analysis of the decoding operators for the six encod-
ings was performed as follows:

1) 250 trees were randomly generated using random vec-
tors of Prüfer numbers (for each graph instance), re-
encoded according to each encoding scheme consid-
ered, and subsequently decoded. The time necessary
to decode each tree using each scheme was recorded.

2) To detect differences between the times measured for
each encoding scheme, a Kruskal-Wallis hypothesis
test was applied to the whole data set, and the cor-
responding multiple comparison procedure was used
to determine which pairs of encodings differed signif-
icantly from each other.

The decoding operators were labeled as follows:

Label Decoding
A Characteristic vector
B Prüfer numbers
C Network random keys
D Edge sets
E Node biased
F Link and node biased

The average decoding time achieved for each encoding
scheme, and the corresponding standard deviation are shown
in Table I, which also summarizes the results by listing
the methods in descending order of performance. In this
list, underlining and overlining are used to indicate which
methods did not exhibit statistically significant differences
from one another.

TABLE I
DECODING - TIME (ms)

10 nodes 25 nodes 50 nodes
Lab. avg sd avg sd avg sd
A 0.031 0.001 0.036 0.000 0.053 0.002
B 0.253 0.003 0.645 0.012 1.323 0.011
C 0.704 0.085 2.154 0.353 4.887 0.838
D 0.057 0.002 0.098 0.001 0.169 0.002
E 1.466 0.139 8.118 1.912 29.745 2.388
F 1.607 0.123 8.681 0.666 32.538 2.012

Order (best to worst):
10, 25 and 50 nodes:
A D B C E F

In this case, all methods differ significantly in decoding
time and, thus, the under/overlining covers only one letter at a
time. If two or more methods were underlined (or overlined)
together, it would mean that the difference observed between
those methods was not statistically significant.

Decoding operators A and D were the fastest methods
for all instances. On the other hand, the time necessary to
perform decoding in E and F was observed to increase
considerably with instance size.

B. Crossover

Two crossover operators were used for each of the six
encoding methods:

1) Single point crossover;
2) Uniform crossover.

1971

Additionally, one crossover operator which performs the
operation in solution space (space of the networks), was
formulated and tested. It operates in the following way:

- Let P1 and P2 denote the two parent trees;
- Create a graph S = P1

⋃
P2;

- Generate two sets of random weights, WS
1 and WS

2 , for
the edges of S;

- Find two offspring trees, O1 and O2, by applying the
Kruskal algorithm to S using each set of weights, WS

1

and WS
2 .

It is straightforward to note that, by construction, this op-
erator always generates feasible networks, and provides full
heritability (only the edges of parent networks are used to
build the offspring networks). The Kruskal algorithm was
implemented using a Union-Find node labeled data structure
and path compression [8]. In the remaining of this work, this
operator will be referred to as Kruskal crossover.

Various crossover operators were compared using the
same methodology described in Decoding section, and were
labeled as follows:

Label Decoding Crossover
A Characteristic vector single point
B Characteristic vector uniform
C Prüfer numbers single point
D Prüfer numbers uniform
E Network random keys single point
F Network random keys uniform
G Edge sets single point
H Edge sets uniform
I Node biased single point
J Node biased uniform
K Link and node biased single point
L Link and node biased uniform
M - Kruskal

Tables II and III present the results obtained for infeasi-
bility and heritability, respectively.

TABLE II
CROSSOVER - INFEASIBILITY

10 nodes 25 nodes 50 nodes
Lab. avg avg avg
A 0.7820 0.9320 0.9720
B 0.9480 1.0000 1.0000
G 0.8240 0.9340 0.9920
H 0.9120 1.0000 1.0000

Order (best to worst):
10 and 25 nodes:
A G H B

50 nodes:
A G H B

Operators C, D, E, F , I , J , K, L and M were not
considered in the infeasibility test since, by construction, they
present full feasibility. It is noticeable that the infeasibility
of operators A, B, G and H is very large, even for small
instances. In practice, it is necessary to use some kind of
repair mechanism together with those operators. In compari-
son with single-point crossover, uniform crossover exhibited
higher infeasibility regardless of the underlying encoding.

TABLE III
CROSSOVER - HERITABILITY

10 nodes 25 nodes 50 nodes
Lab. avg sd avg sd avg sd
C 1.688 1.281 6.566 3.248 15.326 7.021
D 2.784 1.432 12.932 2.462 31.894 3.490
E 0.838 0.902 2.276 1.630 4.922 2.847
F 1.382 1.017 4.350 1.946 9.216 2.970
G 0.226 0.419 0.482 0.500 0.448 0.498
H 2.514 1.429 9.854 2.381 21.838 3.197
I 1.122 1.266 3.748 3.134 7.658 6.135
J 1.344 1.293 5.322 3.284 12.520 6.208
K 1.758 1.340 6.756 3.545 15.796 8.721
L 2.162 1.296 8.886 2.466 21.472 3.670

Order (best to worst):
10 nodes:
G E I J F C K L H D

25 nodes:
G E I F J C K L H D

50 nodes:
G E I F J C K L H D

Operators A, B and M were excluded from the heritability
test, since, by construction, they possess full heritability.
Among the other methods, G exhibited the highest her-
itability (i.e., lowest number of non-parent edges in the
offspring). As reported in the literature ([7], [11]), the Prüfer
numbers presented low heritability. It is still noticeable that
the uniform crossover generally reduces the heritability for
all encodings.

Although the time required to perform crossover was
initially considered an important aspect, the experiments
showed that the time differences between operators A to L
were very minor from a practical point of view. Kruskal
crossover (operator M), on the other hand, was up to 250
times slower than the other operators. This may simply be
due to the fact that the MATLAB implementation of the
Kruskal algorithm required the use of an interpreted for loop,
whereas the remaining operator implementations could be
fully vectorized.

C. Mutation

Two mutation operators were employed for each of the six
encoding methods:

1) Point mutation;
2) Swap mutation.

As in the crossover study, one mutation operator based on
the Kruskal algorithm was formulated. It can be described
as follows:

- Let P denote the parent tree;
- Select an edge p1 from E − P , at random;
- Create a new graph S by adding edge p1 to P ;
- Generate a random set of weights in]0, 1] for the edges

of S and set the weight corresponding to p1 to 0, to
obtain WS ;

- Find the offspring network O by applying the Kruskal
algorithm to S using WS as the set of edge weights.

1972

As in Kruskal crossover, it is easy to see that this operator
possesses full locality (all possible offspring trees may differ
from the parent tree by a single edge replacement), and never
generate non-tree graphs.

The mutation operators considered were labeled as fol-
lows:

Label Decoding Mutation
A Characteristic vector swap
B Prüfer numbers point
C Prüfer numbers swap
D Network random keys point
E Network random keys swap
F Edge sets point
G Edge sets swap
H Node biased point
I Node biased swap
J Link and node biased point
K Link and node biased swap
L - kruskal

Tables IV and V show the results obtained for infeasibility
and locality.

TABLE IV
MUTATION - INFEASIBILITY

10 nodes 25 nodes 50 nodes
Lab. avg avg avg
A 0.6200 0.8280 0.8520
F 0.4480 0.4600 0.4640
G 0.4400 0.4600 0.4760

Order (best to worst):
10, 25 and 50 nodes:
F G A

TABLE V
MUTATION - LOCALITY

10 nodes 25 nodes 50 nodes
Lab. avg sd avg sd avg sd
B 1.456 1.486 2.792 3.253 6.504 6.904
C 2.060 1.169 3.452 2.287 5.928 5.378
D 0.712 0.454 0.860 0.348 0.936 0.245
E 0.780 0.415 0.900 0.301 0.972 0.165
F 0.164 0.371 0.060 0.238 0.028 0.165
G 0.788 0.410 0.924 0.266 0.940 0.238
H 1.044 0.937 1.596 2.062 2.008 2.525
I 1.716 1.559 2.420 2.655 3.100 4.657
J 0.808 0.548 0.912 0.499 1.008 0.634
K 0.812 0.683 0.840 0.418 0.932 0.559

Order (best to worst):
10 nodes:
F D E G J K H B I C

25 nodes:
F K D E J G H I B C

50 nodes:
F K D G E J H I C B

Once again, the methods which guarantee offspring feasi-
bility (B, C, D, E, H , I , J , K and L) were excluded from
the feasibility test. The edge sets representation exhibited sig-
nificantly lower infeasibility than the binary representation,
regardless of the type of mutation (point or swap).

By construction, methods A and L present full locality
and do not need to be considered in the locality test. As
for heritability, the edge sets representation exhibited high
locality. The Prüfer numbers representation showed poor
locality, as discussed in [7], [11].

Regarding computation times, the same considerations
made for crossover apply.

VI. ALGORITHM RESULTS AND ANALYSIS
The operators described in the previous sections were used

to build genetic algorithms for the optimization of the OCST
problem. Single point crossover was used in all versions of
the GA, since it seemed to possess better properties than
uniform crossover. The resulting algorithms were evaluated
based on two criteria:

1) Best function value: Value of the objective function for
the best solution found;

2) Computation time.
The following parameters were used in the simulations:

- Number of runs: 30 runs per method;
- Population size: 50 individuals;
- Crossover probability: 0.80;
- Mutation probability: 0.01;
- Linear ranking and roulette-wheel selection;
- Generational replacement with elitism;
- Stop criterion: 100 generations without improvement.
The algorithms were labeled as follows:

Label Decoding Crossover Mutation
A Characteristic vector single point swap
B Prüfer numbers single point point
C Prüfer numbers single point swap
D Network random keys single point point
E Network random keys single point swap
F Edge sets single point point
G Edge sets single point swap
H Node biased single point point
I Node biased single point swap
J Link and node biased single point point
K Link and node biased single point swap
L - kruskal kruskal

A. OCST Problem

Tables VI and VII show the results (convergence time and
best function value) obtained on three instances of the OCST
problem. The instances were based on the fully-connected
graphs used previously, and the communication requirements
between different nodes were generated uniformly at random.

Algorithms H , I , F , G and L have achieved remarkable
convergence results (Table VII). Those algorithms are based
on node biased and edge sets encodings, and on the Kruskal
operators, respectively.

On the other hand, algorithms D, E, B and C, which
are based on Network random keys and Prüfer numbers
encodings, have achieved the worst convergence results.
In the case of the algorithms based on Prüfer numbers,
this performance can be explained by the poor heritability
and locality associated with this representation. The low
performance of Network random keys may have been caused
by the high redundancy and neutrality of the encoding.

From Table VI, it is possible to note that the algorithms
based on Prüfer numbers, which had poor convergence, was

1973

TABLE VI
OCST - BEST FUNCTION VALUE

10 nodes 25 nodes 50 nodes
Lab. avg sd avg sd avg sd
A 3.65e5 7.25e3 2.58e6 1.09e4 1.19e7 3.52e5
B 3.67e5 1.24e4 2.90e6 2.01e5 1.32e7 7.53e5
C 3.74e5 1.62e4 2.85e6 2.00e5 1.30e7 8.96e5
D 3.75e5 1.59e4 2.93e6 2.81e5 1.42e7 1.36e6
E 3.74e5 1.57e4 2.80e6 1.59e5 1.42e7 1.64e6
F 3.64e5 0.00e0 2.57e6 9.89e3 1.16e7 2.28e5
G 3.64e5 0.00e0 2.60e6 2.13e4 1.25e7 7.30e5
H 3.64e5 0.00e0 2.56e6 6.24e3 1.11e7 2.53e4
I 3.64e5 1.65e3 2.58e6 1.02e4 1.12e7 3.97e4
J 3.64e5 1.44e3 2.64e6 3.37e4 1.17e7 2.98e5
K 3.64e5 9.32e2 2.62e6 3.16e4 1.17e7 3.07e5
L 3.64e5 0.00e0 2.57e6 5.60e3 1.20e7 4.99e5

Order (best to worst):
10 nodes:
F G H L K I J A B E C D

25 nodes:
H L F I A G K J E C B D

50 nodes:
H I F K J A L G C B E D

TABLE VII
OCST - COMPUTATION TIME (ms)

10 nodes 25 nodes 50 nodes
Lab. avg sd avg sd avg sd
A 1.956e4 2.628e3 1.325e5 2.235e4 7.317e5 2.262e5
B 8.984e3 7.426e2 3.009e4 7.329e3 1.917e5 4.363e4
C 8.578e3 1.655e3 2.246e4 4.737e3 1.272e5 4.821e4
D 1.492e4 2.255e3 7.437e4 1.828e4 3.376e5 1.046e5
E 1.648e4 3.692e3 7.306e4 2.400e4 3.194e5 1.132e5
F 1.516e4 1.225e3 6.471e4 9.189e3 4.280e5 9.074e4
G 1.638e4 2.266e3 7.306e4 2.147e4 3.412e5 1.241e5
H 1.648e4 8.892e2 7.474e4 1.331e4 5.401e5 1.531e5
I 1.682e4 4.310e2 5.902e4 1.546e4 3.409e5 9.116e4
J 1.773e4 1.085e3 1.103e5 2.824e4 7.909e5 2.169e5
K 1.913e4 1.785e3 1.321e5 4.066e4 8.369e5 2.968e5
L 2.001e4 1.745e3 9.654e4 1.227e4 6.972e5 1.792e5

Order (best to worst):
10 nodes:
C B D F G E H I J K A L

25 nodes:
C B F E G D I H L J A K

50 nodes:
C B E D G F I H L A J K

also the fastest algorithms for all instances. On the other
hand, the algorithms with good convergence performance,
such as F , G, H , I , J , K and L, were clearly slower
than algorithms B and C. This reflects the stopping criterion
adopted, which only allows the algorithm to proceed as long
as improvement is being made. Overall, the algorithms based
on edge sets and node biased encodings would seem to be the
most suitable methods for the OCST problems considered.

The algorithms based on the link and node biased encod-
ing also exhibited good performance, but they were usually

outperformed by the simpler node biased encoding. Finally,
the binary and the network random keys encodings showed
poor performance, and do not seem appropriate for the OCST
problem, despite exhibiting good heritability and locality.

VII. CONCLUDING REMARKS

This paper has presented a preliminary comparison of six
classical tree encoding methods. The encodings have been
compared in a two step analysis: 1) Study of encoding char-
acteristics (feasibility, heritability, locality and computation
time); and 2) Study of the performance of encodings on a
NP-hard problem.

The results suggest the node biased and edge sets rep-
resentations as the most suitable representations for the
OCST problem. This is in line with the results of previous
comparative studies [8], [11], although neither included both
the node biased and the edge sets representations.

A. Future Work

Since many aspects of tree encodings have not been
addressed in this study, the following extensions are planned
for this work:

- Study of encoding schemes proposed more recently,
such as PrimPred-based encoding, Dandelion code and
Edge-window encodings;

- Evaluation of performance of encoding schemes in other
NP-hard problems, such as DC-MST and QMST;

- Evaluation of performance of encoding schemes in other
types of instances, such as non-Euclidean graphs;

- Constraint handling; and
- Incremental function evaluation.

REFERENCES

[1] F. Routhlauf, D. Goldberg, and A. Heinzl, “Network random key -
A tree network representation scheme for genetic and evolutionary
algorithms,” Evolutionary Computation, vol. 10, pp. 75–97, 2002.

[2] A. Cayley, “A theorem on trees,” Quart. Journal of Mathematics,
vol. 23, pp. 376–378, 1889.

[3] R. Prim, “Shortest connection networks and some generalizations,”
Bell. Syst. Tech. Jour., vol. 36, pp. 1389–1401, 1957.

[4] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling sallesman problem,” Proc. of Amer. Math. Soc., vol. 7, pp.
48–50, 1956.

[5] S. Soak, D. W. Corne, and B. Ahn, “The edge-window-decoder
representation for tree-based problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 124–144, 2006.

[6] H. Chou and G. P. C. Chu, “Genetic algorithms for communication
network design - An empirical study of the factors that influence
performance,” IEEE Trans. Evol. Comput., pp. 236–249, 2001.

[7] L. Lin and M. Gen, “Node-based genetic algorithm for communication
spanning tree problem,” IEICE Trans. Commun., vol. E89-B, pp.
1091–1098, 2006.

[8] G. R. Raidl and B. A. Julstrom, “Edge-sets: An effective evolutionary
encoding of spanning trees,” IEEE Trans. Evol. Comput., vol. 7, pp.
225–239, 2003.

[9] W. J. Connover, Practical Nonparametric Statistics, 3rd ed. Wiley,
1999.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, USA: W. H.
Freeman, 1979.

[11] C. C. Palmer and A. Kershenbaum, “Representing trees in genetic
algorithms,” in Proc. IEEE Conference on Evolutionary Computation,
Bristol, USA, 1994, pp. 379–384.

[12] H. Prüfer, “Neuer Beweis eines Satzes über Permutationen,” Arch.
Math. Phys, vol. 27, pp. 742–744, 1918.

1974

