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Abstract—Previous research on online media popularity pre-
diction concluded that the rise in popularity of online videos
maintains a conventional logarithmic distribution. However,
recent studies have shown that a significant portion of online
videos exhibit bursty/sudden rise in popularity, which cannot
be accounted for by video domain features alone. In this paper,
we propose a novel transfer learning framework that utilizes
knowledge from social streams (e.g., Twitter) to grasp sudden
popularity bursts in online content. We develop a transfer learning
algorithm that can learn topics from social streams allowing us
to model the social prominence of video content and improve
popularity predictions in the video domain. Our transfer learning
framework has the ability to scale with incoming stream of tweets,
harnessing physical world event information in real-time. Using
data comprising of 10.2 million tweets and 3.5 million YouTube
videos, we show that social prominence of the video topic (context)
is responsible for the sudden rise in its popularity where social
trends have a ripple effect as they spread from the Twitter domain
to the video domain.We envision that our cross-domain popularity
prediction model will be substantially useful for various media
applications that could not be previously solved by traditional
multimedia techniques alone.

Index Terms—Cross-domain media retrieval, social media,
transfer learning, Twitter, video popularity.

I. INTRODUCTION

P REDICTING the popularity of online content has been
a subject of great interest over the years due to its ever-

growing importance in applications, such as network content
caching and advertising, as well as its enormous impact on opin-
ions, culture, policy and profits [1], [24], [25], [28]. Video view
count and web traffic are distinctive measures of popularity.
However, in spite of brave efforts by researchers, dynamics that
drive popularity of online videos in social video portals still re-
mains largely unexplained. In this paper, we aim to throw light
upon the main causes that affect social video popularity, explain
the diverse popularity growth patterns and build a model that
can predict to-be popular videos.
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Fig. 1. Common video popularity growth patterns seen in YouTube. Estab-
lished models are unable to account for bursty video growth, consisting of sev-
eral sharp spikes of view counts. Note that unlike bursty videos, viral videos
contain only a single spike near origin. Bursty videos enjoy several sharp rises
in view counts over their life time.

Previous research on online content popularity prediction
concluded that the growth in popularity often maintains a
logarithmic distribution [20], [28]. This theory asserts that
videos have a gradual rise in view count with no sudden bursts.
Fig. 1 shows some distinguishing popularity growth patterns
exhibited by YouTube videos. However, recent research has
discovered that a significant portion of online videos in video
portals do not in fact display the gradual rise in popularity
[25], [26]. Instead, they exhibit sudden bursts of popularity
[29]; an effect not captured by the established models for video
popularity prediction [20], [27]. Bursty videos are lucrative to
detect computationally, since the sudden rise in popularity of
such videos provides an unique opportunity for advertising and
caching. We define bursty videos as those videos for which
the slope of view count growth changed drastically (slope 45
degrees) over a period of one day not considering the day of
upload (see Fig. 1).
The shift in online activity patterns in recent times can be

deeply attributed to the rise of social media [24], [32]. Consider
the video portal YouTube, which recently reported that over
700 YouTube videos are shared in Twitter (a social micro-blog-
ging site with 500 million users) each minute. Eventually, view
counts are credited to user activity and a significant portion of
what users watch is being increasingly referred by social media
[20]. Moreover, search query logs of video portals are indicative
of what users are looking for. Search in video portals is often
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Fig. 2. In the chain of digitization, a physical event is first detected using
Twitter trends (blue/top). It is then searched online (green/middle), finally
leading to increased views for a video related to the event (red/bottom). The x
and y axes are not to scale. There is a certain time gap between trend appearing
on Twitter and rising popularity in video portals. This time span can be used
to make popularity predictions.

motivated by real world events. Such events are captured fore-
most by social micro blogs like Twitter [16]. This was validated
in our preliminary study [13], which showed a remarkable cor-
relation between terms trending on Twitter and keywords com-
prising video search queries in a commercial video portal. This
effect, in light of the recent “Aurora shootings”, is visualized
in Fig. 2. It would thus seem logical that social trends have a
surprisingly huge impact on what we watch online and subse-
quently on video popularity growth patterns.
The information in social streams like Twitter is a good indi-

cator of crowd sourcing activity of a social community and can
be used to learn about real life events quickly. Consider the re-
cent shootings in Aurora Colorado which were first reported on
Twitter (Fig. 2), closely followed by Reddit and Facebook and
finally in news websites and video portals [30]. Thus, “the chain
of digitization of a real world event”, especially breaking news
usually originates in micro-blogs like Twitter and then spreads
to other web sites. In addition to its enormous sensitivity to
real world breaking news, Twitter data are also being utilized
to solve a lot of multimedia problems that could not be ele-
gantly solved before, including semantic video indexing, video
context annotation, visualizing political activity, Olympics sen-
timent analysis and flu-outbreaks [16], [23], [32].
However, social streams (like Twitter) and traditional media

(like video publishing sites) exist across disparate domains on
the Internet. When dealing with various Internet media (like
Twitter and YouTube), the word ‘domain’ usually indicates the
media platform in which it is generated. The domain greatly af-
fects how fast the data is generated and updated (i.e., the data
distribution), reflecting freshness and usability in real-time ap-
plications. Thus, the potential of these two resources (tweets
vs. videos) is constrained within the domain where it resides.
In order to predict which videos will gain sudden/bursty popu-
larity, we need to incorporate social knowledge from Twitter do-
main to video domain. Incorporating social knowledge into tra-
ditional media applications requires cross-domain information

Fig. 3. Example of using social topics in building social trend aware multi-
media applications. In this example, we show that bursty video popularity can
be predicted by using topics learned from the domain of social streams. This
cross-domain transfer of knowledge is accomplished through a mutual topic
space (e.g., the space includes the topics like “nokmsft” containing words like
“Nokia”, “Microsoft”, “Phone” etc.).

transfer, which bestows the wisdom of the crowds. It is therefore
important to develop a cross-domain knowledge transfer mech-
anism from the crowd-sourced social domain to the traditional
media (video) domain.
There are significant challenges in using social streams to per-

form cross-domain popularity predictions. The main concern is
to transfer knowledge across domains and align features that
are common to both domains (e.g., video tags and social stream
topic words as shown in Fig. 3). With respect to videos, we
deem meta-data (like video tags) as representative features of
the video. Thus, when we mention video features, it does not
exclusively refer to ‘visual’ features. Specifically, some distinct
challenges in making cross domain socialized predictions are:
• A unified framework to combine the social and multimedia
feature information which has different domain-specific
properties.

• An algorithm that can seamlessly propagate the knowledge
(i.e., social topics) mined from the crowd-sourced social
streams to the video domain.

• The scaling up and adaptation of the learning algorithm to
the ever bursty real-time nature of the social streams.

• Capability of dealing with the noisy, incomplete, am-
biguous, and short form nature of social stream data. For
example, each tweet is limited to 140 characters and often
improperly structured in grammar/syntax.

In this paper, we propose an approach to measure the social
prominence of a video by using trends learned from Twitter
streams as social sensors of video popularity. We claim that
the social prominence of a video is substantially responsible
for its bursty popularity in the video domain, depending on the
topic that a video belongs to. The task of finding this topic re-
quires construction of an algorithm capable of scalable real-



ROY et al.: TOWARDS CROSS-DOMAIN LEARNING FOR SOCIAL VIDEO POPULARITY PREDICTION 1257

time transfer learning between the domains of social streams
and traditional media (like video). We call this transfer learning
scheme SocialTransfer, which utilizes topics extracted from so-
cial streams to build an intermediate topic space in between the
social and video domains.
SocialTransfer employs the Online Stream LDA model

(OSLDA) to learn topics from social streams [13]. It is mod-
eled as a graph based framework to resolve the transfer learning
problem (what feature information is transferable and how)
between the social and the video domains. Spectral analysis
of this graph fetches the eigenvectors, using which we can
represent both the social and the video feature information
as a combined feature representation [9]. Since the stream
is temporal nature, SocialTransfer also allows progressively
updating the topic space and seamlessly incorporating newer
trends into the transfer learning framework for socially aware
popularity prediction. The real-time topic updating allows us to
calculate the social prominence of a video in real-time, which
makes prediction of bursty video popularity possible.
The framework we develop can be reused for several

multimedia applications where social influence is capable of
improving performance. Our results show that SocialTransfer
considerably outperforms traditional learners without transfer
learning in detecting online video content which will gain
sudden/bursty popularity. Here, we summarize the main contri-
butions of this work which have not been uncovered in previous
research:
• Modeling the social prominence of media content in var-
ious social media domains on the Internet based on the
visibility of the media topic in online social networks. This
problem of modeling bursty popularity in videos is difficult
to solve by video domain features alone and has not been
previously analyzed from the perspective of social media.

• Intuitive realization and empirical evidence that media in
some social media domains gains bursty/sudden popularity
due to the increased popularity of the media topic in the
another online social network domain. Thus, the popularity
signal is carried across domains of social media existence.
We show how this signal can be transferred across domains
using the SocialTransfer algorithm.

• Large scale experiments on social and video data especially
catered to test the effectiveness of the cross domain popu-
larity penetration hypothesis, i.e., how social network topic
popularity affects the popularity of media with same topic
across disparate social media domains.

The remaining of this paper is organized as follows: Section II
discusses related work. Section III provides an overview of
the social popularity prediction problem in the light of Social-
Transfer. Section IV introduces the SocialTransfer approach
for scalable transfer learning from social stream data. In
Section V, we formulate the social prominence of a video for
socialized video popularity prediction. Section VI describes the
experimental data (videos and tweets) and reports performance
results. We conclude the paper in Section VII.

II. RELATED WORK

We discuss related work in the field of transfer learning,
mining social streams and online video popularity prediction.

A. Transfer Learning

Common machine learning techniques traditionally address
isolated tasks. In contrast, transfer learning aims to transfer
knowledge learned in one source domain and use it to improve
learning in a related target domain. The source domain data

contains the auxiliary data, while target domain
contains the training and test data. A comprehensive survey
of transfer learning techniques is provided in [7]. A unified
framework for transfer learning in scenarios ranging from
cross-domain, cross-category and self-taught learning is de-
scribed in [8]. Transfer learning has been previously used in
various cases including classification, image clustering, collab-
orative filtering, and sensor based location prediction [7], [8].
In contrast to previous work [8], SocialTransfer can scale

transfer learning to specifically incorporate social stream data
as source domain and seamlessly combine topic learning with
transfer learning in real-time. To the best of our knowledge, a
framework that can handle social stream topics distinctively as
source domain for cross-domain social video popularity predic-
tion has not been proposed before. This is challenging due to the
unique characteristics of social stream data [16].

B. Mining Social Streams

Social data from Twitter streams have been used for various
innovative predictions [16], [23], [32] in recent times. Tweets
can also be mined to build a relevant topic space using topic
modeling [12], [15]. A topic space can act as bridge between
the social and the traditional media domain, supporting multi-
media applications like social video recommendation and social
query suggestion [13]. Topic modeling aims to extract topics
from large corpus of unlabeled documents by using generative
models like Latent Dirichlet Allocation (LDA) [15]. There have
been previous efforts to incorporate social data for recommen-
dation [14], [22], but they do not use social streams specifically
[12]. Social streams are more challenging to extract topics from;
due to their dynamic, noisy, short and real-time nature [16].
Thus, large scale matrix decomposition is infeasible for social
streams [14].
In previous research on mining social stream data, it has been

assumed almost without exception that the entire tweet stream
is available to the algorithm at the beginning of the run. This
assumption is only applicable in ideal case; it does not hold in
real life situations. In our paper, we simulate the tweet stream
in pseudo real-time, where the SocialTransfer algorithm has
not seen the entire tweet stream in advance. Instead, the com-
plete timeline is divided into time slots, and a certain number
of tweets occupy each time slot as they are generated in real
life. Tweet chunks are fed to the SocialTransfer algorithm in
time-sequential batches based on the time slots in which they
are generated (pseudo real-time).

C. Video Popularity Prediction

Popularity prediction of online content has been a topic of
consistent interest in the research community [1], [20]. Szabo et
al. introduced a regression model to predict content popularity
using the social news site Digg and YouTube videos [28]. The
authors concluded that online videos demonstrate logarithmic
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TABLE I
NOTATIONS OF AUXILIARY, TRAINING AND TEST DATA FOR SOCIAL TRANSFER

view count growth. Other works have also suggested a gradual
rise in popularity of online videos [20].
Recently however, Wattenhoffer et al. [26] and others [2],

[25] have found that video portals like YouTube have signifi-
cantly different popularity growth characteristics compared to
traditional online streaming media. These findings are coherent
with studies conducted by Ratkiewicz et al., which show that
contrary to the established logarithmic model, changes in pop-
ularity in fact occurs in bursts, whose magnitude and time-sep-
aration are broadly distributed [29].
Such bursts in content popularity might be due to social visi-

bility (trending nature) of some related topic in context of the
video [24]. The trend is indicative of the collective attention
of users and boosts sudden popularity [31]. Categorization of
videos has also been a hot topic for research. There have been
efforts to categorize videos based on related tags [4] and com-
ments [5]. Various patterns of video popularity in YouTube are
discussed in [1], [2], [6].

III. APPROACH OVERVIEW

Before we can model the social popularity of a video, let us
briefly discuss social prominence in light of SocialTransfer and
provide a broader picture as to how the different components of
the system interact. Then, in Sections IV and V, we will conse-
quently elaborate on each of these components.
The bursty or sudden rise in popularity of a video observed

in the video domain can be largely attributed to the social im-
portance of the video topic in the Twitter sphere. This means
before modeling popularity, we should first be able to classify a
video as having a certain membership score to each topic in the
intermediate topic space. The topic space is an abstract space
containing several clusters of words belonging to various topics
that reflect social trends in real time (Fig. 3). A topic modeling
algorithm called OSLDA is used for learning topics from the
social stream.
The main tasks in socialized video popularity prediction are

twofold:
(1) Detecting topic of a video: This is achieved using the

SocialTransfer algorithm, which can classify a video
with its topic membership to different topics in the topic
space by learning from social stream data. The concept
of SocialTransfer was first introduced in our prelimi-
nary work [33], here we improve on that for video pop-
ularity prediction. SocialTransfer is explained in detail
in Section VI-A.

(2) Measuring popularity of the video topic : This task
involves modeling the social prominence. It requires

calculating a popularity score for the video based on
the video’s traditional popularity (based on video view
counts) and its ‘transferred’ social importance (based on
video topic). The fusion of the traditional and social pop-
ularity metrics is called Trend-Aware Popularity (TAP)
for a video and is described in Section V.

Therefore, given a test video, the first task is to find the topic
they belong to. Once we know the topic, we can model the TAP
for the video. We assume that the traditional popularity metric
for a video is based only on its view counts. Therefore, if TAP
is significantly different from the traditional popularity metric,
we predict the video will gain bursty popularity and classify the
video as bursty. Notice in Fig. 1 that for bursty videos, the curve
has a slope greater than 45 degrees at burst points. We set a sim-
ilar threshold for the TAP curve i.e., if any point in the curve has
a slope greater than 45 degree then we consider it as significantly
different from traditional view count growth. The reasoning be-
hind this classification is that sudden popularity of a video is in-
dicative that its topic must be getting social prominence, which
has caused its recognition to shift from its traditional popularity
score.
As shown in Fig. 4, the different pieces of our system are con-

nected in the following way: (1) the OSLDA algorithm extracts
topics from Twitter stream in real-time and populates the topic
space, (2) the SocialTransfer algorithm allows for classifying
videos with social media topics by using this topic space and the
transfer graph. This labels a video with a topic learned from so-
cial domain. The algorithm also allows for continuous updating
of the transfer graph and seamless integration of fresh topics as
newer tweet data is encountered. (3) Finally, we calculate the
social prominence of each topic and make an informed predic-
tion that videos with social prominence will demonstrate bursty
behavior/sudden rise in popularity. This would be empirical ev-
idence that popularity signal of social media traverses across
domains to affect video popularity. These components are sub-
sequently explained in more detail in the next two sections.

IV. SOCIALTRANSFER

In this section, we will (A) first introduce the transfer
learning problem that requires to be solved, and (B) provide
brief overview of the SocialTransfer. Then, we will present (C)
online topic modeling, (D) online spectral graph learning, and
(E) algorithm for SocialTransfer.

A. The Transfer Learning Problem

In SocialTransfer, we have two datasets in the target domain;
the target training data with labels and the
target test data without labels. The training
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Fig. 4. Interaction among different components of the system: (1) Detecting
topics from social streams, (2) Classifying video topics and (3) Modeling social
prominence to detect bursty videos.

data contains instances whereas the test data contains in-
stances. Labeling the data is discussed in detail in Section V-A.
Unlike traditional machine learning, we also have an auxiliary
data set , consisting of tweets instances.
We assume that the target data and the auxiliary data share the
same categories (e.g., both a tweet and a video can be regarding
music), but exist in different domains (e.g., tweets are social
text-basedmicro-blogswhile YouTube videos are part of a video
publishing site). Consider a set of videos in the target domain.
For a video , we can represent the set of tags of
as Each tag in the set is a word,

represented as .
Now consider a stream of tweets picked from the source

domain to be used for modeling the social topic space. For a
tweet , let represent the topical words
in the topic of (we consider only the principal topic, i.e., topic
for which the conditional probability of topic given tweet is
maximum). Then each instance/label of the twitter stream data
can be represented as ). These instances can be
combined into the auxiliary data set .
As shown in Table I, all the instances

are represented by the features in the feature space
. Our goal is to learn an accurate classifier

from and that can predict the testing data
with minimum classification error. We call this classifier

. Thus, the goal of transfer learning is to minimize the
prediction error on by leveraging the auxiliary data from

.

B. Brief Overview

The SocialTransfer framework tackles two distinct problems:
(1) learning the interconnected pattern of shared features be-
tween the source and the target data, (2) progressive inclusion
of topics in pseudo real-time since topics modeled from social
stream (auxiliary data) changes with the real world trends.
Let us first focus on the first problem. The single transfer

framework we use for this purpose is represented as a graph
called the transfer graph (see Fig. 6), which contains the
videos, tweets, feature words and category information. To learn

Fig. 5. The flow diagram addresses the overall approach in solving the two key
problems of SocialTransfer: (1) learning the shared feature representation across
domains in terms of eigenvectors using Spectral Learning (Power Iteration),
and (2) reflecting the progressive inclusion of topics by updating the transfer
Laplacian matrix.

Fig. 6. Transfer graph for SocialTransfer with connections among auxiliary
and target data including features and class labels.

the interconnected pattern of shared features between the source
and the target data, we perform spectral analysis [11] of the
transfer graph. Spectral graph analysis is the study and explo-
ration of graphs through the eigenvalues and eigenvectors of
matrices naturally associated with those graphs. The spectrum
of a graph is an invariant and captures the structural properties
of the graph irrespective of isomorphic changes. As shown in
Fig. 5, spectral learning uses a technique called Power Iteration
[17] to extract the eigenvectors from the Laplacian representa-
tion of the transfer graph (i.e., its Laplacian matrix). Although
this will be described in detail in later sections, let us briefly
explain these concepts. For the transfer graph G, its adjacency
matrix and degree matrix , the Laplacian matrix of
the transfer graph can be defined as: .
The Laplacian matrix is positive semi-definite, implying every
eigenvalue of this matrix will be non-negative. The importance
of such Laplacian eigenvalues is that several properties of the
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graph including graph invariants like maximum cut and con-
nectivity are encoded in it. Power Iteration is a method of re-
trieving the Laplacian eigenvalue without relying on matrix de-
composition. For a symmetric matrix, the rate of convergence of
Power Iteration is , where is the largest eigenvalue,
meaning it converges twice as rapidly compared to some other
eigenvalue algorithms such as the Jacobi Method. The algo-
rithm, when applied to specific situations, can be an extremely
scalable way to calculate eigenvalues, due to its linear conver-
gence and cost per step in order of . For example, Google
uses Power Iteration to calculate the PageRank of documents in
their search engine.
Spectral analysis of the transfer graph gives us the combined

feature representation of the auxiliary and the training data using
eigenvectors. This eigen feature representation reflects the in-
trinsic structure in terms of the principal components of the
combined source and training data. Traditional learners (like
Support Vector Machines/SVM [19]) can then use the com-
bined features for prediction rather than using only the training
features.
Next, let us address the second problem of how to progres-

sively include social topics. Since the tweet stream is incremen-
tally witnessed by the algorithm, the transfer graph needs to
be updated in order to progressively include the twitter topics
in pseudo-real time. This is achieved by treating the topics as
input supervision before spectral learning as explained in the
following sections. The role of input supervision is shown in
Fig. 5, where selected topics act as input supervision for the
Laplacian matrix which allows for smooth incorporation of so-
cial topics into the transfer learning framework.

C. Learning Topics From Social Streams via OSLDA

We use the Online Streaming LDA (OSLDA) model for real-
time topic learning from Twitter stream [13], which generates
a tweet-topic distribution and a topic-word distribution. Each
topic is comprised of a group of related words called topical
words (Table II). Topic learning treats each tweet as a docu-
ment and builds a generative model to connect the tweet to one
or more topics. Thus, the topic of a tweet contains words (top-
ical words) that are related to the tweet words but might not be
explicitly present in the tweet itself. Similar to the original LDA
introduced by Blei et al. [15], we use certain category-indicative
words in the vocabulary when detecting topics, such as the word
‘actor’ might indicate ‘Entertainment’ category. Similarly, the
word ‘goal’ might indicate ‘Sports’. This is a standard technique
in topic modeling.
Since tweets contain less words than standard documents,

it is advantageous to incorporate supervision where available,
as is discussed in [12]. The supervision effectively allows to
expand the number of words per document, by using word
co-occurrence. In addition to this, since the model is online and
streaming, we need to initialize the model with topics from a
group of tweets (say conversations or tweets of an user) at the
beginning, followed by adding additional documents as tweets
with each batch of tweets appearing in each slot [13].
Note that each assigned topic consists of a cluster of top-

ical words. During the process of topic modeling, these words
have some statistical semantic similarity, which is why they

TABLE II
EXAMPLE TOPICAL WORDS AND RELATED TOPICS

were grouped in a cluster called the topic. We can limit our-
selves to incorporating only selected topics from the topic space
as input supervision (an additional set of labeled instances) for
the transfer learning task. Thus for topics in the global topic
space, we can choose a particular set of topical words

for to act as the bias or input supervi-
sion to update the transfer graph before spectral learning. This
sort of input topic supervision is fed into the transfer graph pro-
gressively, as is depicted in Fig. 5, where topics modeled in
real-time from the social stream using OSLDA is used to up-
date the transfer graph by means of a ranked update (5) on the
transfer Laplacian matrix representation of the transfer graph.
This allows progressive and seamless inclusion of topics into
the transfer graph facilitating the social influence in transfer
learning.

D. Transfer Graph

The transfer graph’s main purpose is to capture the cross-do-
main attributes of social streams and videos for using in the
transfer learning task and model the relation between the auxil-
iary data from Twitter and the target video data. This ‘transfer
graph’ (Fig. 6) contains the instances, features and class labels
of the target data and the observed auxiliary data as vertices.
The edges are set up based on the relations between the aux-
iliary and the target data nodes. The transfer graph presents a
unified graph structure to represent the task of transfer learning
from social domain to video domain.
As shown in Fig. 5, the transfer graph consists of

vertices representing instances, features or class labels, and
edges denoting co-occurrences between end nodes in the
target and the auxiliary data i.e.,:

(1)

The weight of each edge where one of the end nodes belongs to
indicates the number of such co-occurrences. Let rep-

resent the importance of the feature that appears in
instance . Then, the weight of an
edge where one of the end nodes belongs to is indicated
by . The importance of a feature word can be calcu-
lated using the topic-word probability distribution matrix ob-
tained from OSLDA. The total number of features and class
label nodes remains fixed in the transfer graph. Let rep-
resent the true label of the instance. If denotes the weight of
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an edge between two nodes and in the transfer graph, then
edge weights can be assigned as:

.

(2)

For all other cases except the onesmentioned in (2), we set
. The edgeweights thus represent the occurrence/importance of
a category or feature present in the auxiliary/target data, which
will be eventually utilized as a distance metric during spectral
clustering. Some nodes in the graph may be isolated with no
edge connections. The matrix updating process (Section IV-E)
adds new edges to the isolated nodes. The transfer graph
is usually sparse, symmetric, real and positive semi-definite,
which allows the possibility of calculating its spectra efficiently
[11]. The graph spectrum in terms of eigenvectors is the impres-
sion of the structure of relations among the source and target
data. This structural relation between the cross domain data is
the essence of transfer learning [8]. Thus, it is necessary to rep-
resent the source and target data as a transfer graph and then
analyze their structural relation by learning the graph spectrum.

E. Learning Graph Spectra

The highlight of SocialTransfer is how it learns transfer graph
spectra and incorporates new social topics into the transfer
graph in real-time. This task is non-trivial, since if not properly
done, it may incur substantial costs in terms of scalability (e.g.,
in eigen-feature extraction) and interoperability (in integration
of topics) between topic modeling and transfer learning. In
this section, we demonstrate how we achieve both these goals
efficiently.
Once the transfer graph is built, we can use graph

spectra analysis to form an eigen feature representation, which
combines the principal component features from the training
and the auxiliary data. In order to extract the top eigenvec-
tors of the transfer graph , we first need to convert
the graph into a Laplacian matrix. Let denote the de-
gree of the -th vertex in G. Then the transfer graph Laplacian

, can be obtained as:

if
if
otherwise.

(3)

If the Laplacian eigen values are represented as:

then the eigen gap can be defined as: .
Since the Twitter stream is extremely dynamic, topics and trends
change over time. This requires a feature extraction scheme that
can reflect and scale with the social stream. Previous approaches
for spectral feature representation in transfer learning have sug-
gested the use of the normalized cut (Ncut) technique for eigen-
vector extraction [8]. However, our experiments (Fig. 9) showed
that the normalized cut technique is incapable of scaling with the
twitter stream.

Fig. 7. Drop in prediction error rate with daily stream inflow from Twitter.

Fig. 8. The influence of the number of eigenvectors extracted on the error rate.

Fig. 9. Runtime comparison for topic modeling and eigen decomposition with
incoming tweet stream in SocialTransfer.

Therefore, we use a Power Iteration technique for computing
the largest eigenvectors of [17]. The method begins
with a random eigenvector matrix and iteratively per-
forms matrix multiplication and ortho-normalization until con-
vergence [11]. The speed of convergence of this method de-
pends on the eigen gap, i.e., the difference between successive
eigen values. In fact, Bach et al. mention that the number of
steps required for the orthogonal convergence in the Power It-
eration method is [11].
Since topics are updated in the topic space with time, we

need to devise a way to progressively incorporate these new
topics into the transfer graph. These topics could be incorpo-
rated by picturing them to be a time-dependent labeled bias (like
a semi-supervised bias) which is an additional set of labeled
instances acting as input supervision. One option for incorpo-
rating the semi-supervised topic bias as input supervision into
the Laplacian representation of the transfer graph is by
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producing a ranked update on (see (5)). The update in ef-
fect recalculates the weights of edge/path between the features
and the corresponding labels within the transfer graph, thus up-
dating the characteristic of the Laplacian ((2), (3)). Essentially,
the ranked update on the Laplacian using the topic bias adds pos-
itive weights between feature words that share the same topic
and adds negative weights between feature words that belong
to different topics. Thus, the target and the auxiliary data in-
stances act as sort of virtual nodes enabling this re-weighing of
the feature edges.
An additional reason for using the ranked update technique

is that previous work [18] has also rigorously demonstrated
that when Laplacians such as is positive semi-definite,
a ranked update can improve eigenvector extraction speed by
spreading the eigen gap. The next subsection elaborates on how
we use ranked updates to incorporate semi-supervised topic bias
and update the transfer Laplacian.
1) Incorporating Social Topics: We know from topic mod-

eling that the words in tweets can be clustered into topics. Let
us consider there are such topic clusters. The semi-super-
vised topic bias is implemented by assuming we know the cor-
rect topic labels for a subset of the feature words. This input is
learned by topic modeling using OSLDA, which was described
in Section IV-C.
The semi supervised bias consists of a set of topical words

for each topic for that act as
input supervision. Let us consider the simple case of two topic
clusters and , such that denotes the
set of labeled bias instances. Also, consider and

. We can then define a regularization
vector as:

,

,
(4)

where if and
if .

The effect of the above (4) is to introduce a quadratic penalty
if there is a violation in the topic bias label constraints. Said
otherwise, this will cause vertices of features that belong to the
same topic to cluster together while vertices of different topics
will be assigned to separate clusters (due to the penalty). A
rank-1 update on the original Laplacian can be made as:

(5)

Similarly, if there are topics, we can modify the orig-
inal matrix with a rank update [18] instead of a
rank-1 update. This supervised ranked update firstly allows us to
seamlessly incorporate streaming data progressively. Secondly,
it aims at tuning certain algebraic properties of the input Lapla-
cian matrix which are related to the convergence rate of the
Power Iteration method, eventually speeding the eigen decom-
position [18].
In summary, the input supervision using topics learned from

the social stream allows us to implement rank updates on
the transfer-Laplacian matrix as a similarity learning mecha-
nism, where vertex similarities are adjusted on the basis of the
topic bias. Note that the number of nodes in the graph is not
changed during updating (dimension is fixed); instead the

updates only introduce new edges or re-weights existing edges
in the graph as it iteratively reuses the eigenvectors from pre-
vious update. Due to lack of space, we refrain from describing
in detail how the rank update improves the speed of eigen-
vector extraction. In fact, the ranked update increases the eigen
gap, which accelerates the convergence of the Power Iteration
method. For a detailed explanation of how a supervised bias
using rank update accelerates the eigenvector extraction
process, please refer to [18].

Algorithm for SocialTransfer

Once the first eigenvectors have been found
by iteratively using the Power Iteration method with the topic-
based input supervision, we can form a combined feature rep-
resentation that depends on both the training and the auxiliary
data. Traditional learners like SVMs can use the combined fea-
tures that include the transfer task to train a classifier .
Described below, is the algorithm for SocialTransfer for clas-
sification in the target domain based on auxiliary social stream
data.

Algorithm 1: SocialTransfer—Transfer Learning from Social

Input: A target classification task which includes the target
training data set , the source auxiliary data set and
the target test data set .

Output: Classification result on

1. Construct the initial transfer graph based on the
social transfer clustering task (cf. Section IV-D).

2. Calculate transfer Laplacian matrix: from using
(3).

3. for each chunk of tweets entering the system do

4. Calculate the regularization vector using the input
supervision of social topics as shown in (4).

5. Perform semi-supervised topic bias update on transfer
Laplacian: as shown in (5).

6. Use Power Iteration to calculate the first eigenvectors
of : which satisfy the
generalized eigenproblem: . The
resulting eigenvectors will be used as initial eigenvectors
for the next updated Laplacian matrix.

7. end for

8. Construct matrix with as columns.

9. for each in do

10. Let be the corresponding row in w.r.t .

11. end for

12. Use a traditional classification algorithm (we use SVM)
to train the classifier based on
instead of the original training set and
then classify in the eigen feature space.
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V. SOCIAL POPULARITY

In this section, we discuss how to utilize the SocialTransfer
in calculating the social prominence of a video and estimate its
social popularity. The steps include: (A) calculate the trending
score for each topic (called Tscore) and use SocialTransfer clas-
sification to find the principal topic of a video. The trending
score of the principal topic of a video is its social prominence;
and (B) fusing social prominence of a video with its traditional
popularity (based on view count) to estimate the final trend
aware popularity score (TAP). (C) The final goal of this work,
predicting which videos will demonstrate bursty nature based
on their TAP.

A. Social Prominence

Trends are temporal dynamic entities, meaning they grow for
a certain period of time, after which they suffer inevitable decay.
In other words, trends remain socially prominent for some time
and their attractiveness fades away. It is therefore necessary to
include a time decay factor when modeling the trending score.
More formally, consider SocialTransfer receives a set of

tweets in one time slot; being the current time slot and
is the time slot when the trend was first observed. We

can then define the trending score of a topic as:

(6)

where is the time dependent decay factor
which is a function of the current time slot and the time slot
when the trend was first seen. The decay factor must actively
respond to trend reoccurrences (i.e., when the trend rises after
an initial fall). The decay can be formulated as:

(7)

where depends on the category of the topic (meme,
music etc.). In addition to the usual trends, active decay can
capture extremely dynamic trends like memes or sports related
topics, which have short life spans compared to music or enter-
tainment related trends.
For some video v, let be the topic to which the video has

maximummembership. This membershipmeasure can be easily
retrieved using SocialTransfer classification, since the output
of the classification is the topic of the video. Then the social
prominence of video is .

B. Trend Aware Popularity (TAP)

In a traditional video ranking system (like in YouTube) videos
with higher view counts are boosted in the rank list [6]. Thus,
these videos get clicked more often, resulting in subsequent
higher view counts for them [3]. Therefore, it is necessary to
engineer a reasonable fusion of the traditional approach and our
proposed social prominence approach. This fusion of the tradi-
tional popularity factors (like view counts) and the social promi-
nence of the video is called the Trend Aware Popularity (TAP).

In formulating the final popularity score, we also need to take
into account the time when the video was uploaded ( )
since we need to discount the fact that older videos already have
higher view counts. Thus, the net temporal Trend Aware Popu-
larity score that we assign to a video is:

where represents the view count at time and is a
weighting factor that balances social vs. traditional popularity
control. The above equation measures the social trend aware
popularity of a video. The traditional popularity is reflected by
the adjusted view count measure, which fractions the view count
of a video based on when the video was uploaded in video do-
main, when the video topic trend was onset in social domain and
when the prediction was performed.

C. Predicting Bursty Videos

The TAP score reflects the social popularity as well as the tra-
ditional (video domain) popularity for a certain video. Our hy-
pothesis is that social popularity signal penetrates across media
domains on the Internet. In other words, if a topic is substan-
tially popular (trending) in the social domain, then media be-
longing to the same topic will gain popularity in other domains
(in this case, video domain). Therefore, a ratio of TAP to a scaled

value will provide us with the quantitative estimation
of the impact of the social signal in boosting the overall video
popularity for some video . The lower the value of this ratio, the
higher the impact of the social prominence of the video in com-
parison to the adjusted view count score. Given the same social
prominence, the ratio seems to favor videos with lower adjusted
view count measure. However, this is not an issue, since the ad-
justed view count measure is lower when the trend has been
seen for longer time period , which practically
means that we are more sure of the prediction if we are exposed
to more of past trend data. Thus, for a certain video, if this ratio
is significantly lower than for others (lower 10th percentile), we
predict the video will gain bursty popularity.

VI. EXPERIMENTS

A. Data Description

Our study is based on a 3.5 million videos crawled from
YouTube and 10.2 million tweets obtained from the NIST
Twitter dataset [10]. The source domain is Twitter and the
target domain is YouTube. The notations for data from each
domain are included in Table I.
1) Twitter Data—Source Domain: The Twitter dataset con-

sists of 10.2 million tweets generated in the US and collected
between Jan 26th, 2011 and Feb 11th, 2011. We simulate the
twitter data as a stream, with each batch of tweets representing
approximately 5 minutes. The resulting rate at which tweets
stream over the last week of Jan, 2011, where the 5 min batch
time slots account for a total of 288 slots spanning 24 hours in
the horizontal axis.
2) YouTube Videos—Target Domain: We collected YouTube

data for 3.5 million videos using the YouTube API v2.0. The
meta-data for each video includes video id, title, tags, view
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count, age (in days since uploading), category. We collect the
view count for each of these videos from Jan 26th, 2011 and Feb
11th, 2011, to synchronize with the time period of our Twitter
data. Then we label all the videos for which the slope of view
count growth changed drastically over a period of 1 day (see
Fig. 1) as bursty. Therefore, each video in dataset is converted
to a instance/label combination:

. For experimentation, a set of videos are picked ran-
domly from the dataset and divided into two sets for training and
testing, called and respectively; where
and represented as ,

, and . The class
distribution of our video dataset mimics YouTube’s inherent
category skewness [2], [34] to a decent extent, which means
most occurring category of video in our data set is Entertain-
ment (34.5%), followed by Comedy (17.1%), People & Blogs
(15.9%), Film & Animation (12.4%), Sports (10.8%), News &
Politics (5.6%) etc.

B. Evaluation Settings

We test our social transfer learning model against traditional
learners like SVM [19] which do not use any auxiliary social
data in prediction. We used LibSVM with the Radial Basis
Function kernel for SVM implementation. Here, the classifi-
cation task is: given a test video, classify whether it is bursty
or not . For the experiments, we set ,
limit the power method to extracting top-34 eigenvectors and
include 60% of the topic space for input supervision. The
reasoning of these choices is explained over the following
sections. We have three datasets for transfer learning—the
target training data, the target test data and the source auxiliary
data. The target dataset consists of 3.5 million videos. Our
training data consists of 60% videos randomly picked from
these 3.5 million YouTube videos. The rest 40% videos
million) are used for testing. As auxiliary data, we use the 10.2
million tweets from the Twitter stream. We ensure to extract
topics from tweets based on approximately 90 categories (16
main other) so that the source and target domains share
same categories. Additionally, we also evaluate category-spe-
cific predictions based on six popular categories (Comedy, Film
& Entertainment, Sports, People & Blogs, Music).
To measure the performance, we use error rate as a metric.

Error rate is calculated as (1—accuracy) where,

C. Results

In Table III, we report the average error in prediction for the
Non-Transfer cases (SVM on training only) vs. SocialTransfer.
Non-Transfer refers to application of the traditional SVM
learner to the original target dataset with no social influence
(only training features are used); SocialTransfermeans to apply
SVM on the combined feature representation learned using
transfer learning from social data (training auxiliary). The per-
formance in Table III is measured in error rate by averaging 10
random repeats on each dataset by the two evaluation methods.

For each repeat, we randomly select 5000 instances per cate-
gory as target training data. We report the prediction error rate
in each of the main categories, along with the overall error for
the entire data set. The results are provided category specific to
show that the algorithm does better in certain video categories,
potentially due to the fact that more information about those
categories can be extracted from the social media in the first
place. We also report the standard deviation of the repeats
in Table III. The two methods are well-tuned using 10-fold
cross validation. The overall gain using SocialTransfer is

compared to non-transfer cases. Please note that the
overall error rate is averaged over all the main categories and
not just the six categories shown in Table III. Performance im-
provement using transfer learning is most in category ‘Music’.
In all the major categories, SocialTransfer performs better than
a traditional non-transfer learner. The F1-score of positive
bursty videos the proposed SocialTransfer algorithm is 0.68
whereas for the non-transfer SVM it was 0.32.
Additionally, we ran a baseline Naive Bayes classifier, which

produces an F1 score of 0.21 without any transfer of auxiliary
data. If we replace the SVM in SocialTransfer with the Naive
Bayes, the F1 score achieved is 0.49. The drop in performance of
Naive Bayes in both transfer and non-transfer cases compared to
SVM ( and respectively) is expected. Naive Bayes
is easy to implement, but it suffers from strong feature indepen-
dence assumptions. Notice that this feature independence as-
sumption is more costly in the transfer scenario, where the drop
in performance is larger than in non-transfer scenario, poten-
tially due to the heavy reliance of SocialTransfer on cross-do-
main feature alignment.
We also provide results of using a majority-class baseline

classifier (in place of SVM in Algorithm 1). The F1 score of
the final bursty video prediction in this case is 0.111. The dis-
tribution of bursty and non-bursty video in our dataset in 17%
and 83% respectively. Thus, a majority-class baseline classifier,
when directly applied to bursty video prediction, will classify
every test video as non-bursty.
We further test the prediction error in the SocialTransfer

framework based on several factors including scalability and
learning capability per day of stream inflow:
1) Accuracy Variation With Stream Inflow: We test the rate

at which the prediction error decreases with incoming stream of
tweets every day across 12 days of the social data (Jan 26th–Feb
7th). Fig. 7 shows that there is a gradual decrease in error rate as
more of the stream is seen by SocialTransfer. Lack of any sharp
drops hints at the fact the social popularity is significantly trend
category specific. On course of the 12 days, we see a 49.4% net
reduction of error.
The classification is done continuously at various time points.

This is why the decrease in error can be tracked each day as
shown in Fig. 7. However, the results shown in Table III are
calculated at the end of the entire period of time for which the
dataset is available (Jan 26th–Feb 7th).
2) EigenVectors: Previously we mentioned that for the ex-

periments, we fix the number of eigenvectors to be extracted
from the transfer Laplacian to 34. The reason for this choice
is due to results of Fig. 8, which shows the variation of the
error rate with the number of eigenvectors extracted. We see
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TABLE III
EXPERIMENTAL RESULTS OF ERROR RATE IN PREDICTING BURSTY VIDEOS FOR SOCIAL VIDEO POPULARITY. THE RESULTS ARE THE AVERAGES OF 10 RANDOM

REPEATS ALONG WITH THEIR STANDARD DEVIATIONS. BOTH METHODS ARE TUNED WITH 10-FOLD CROSS VALIDATION

that when the number of eigenvectors extracted is greater than
34, the error rate is almost constant.
However, there is a trade-off between the time duration re-

quired for extraction vs. error rate of prediction for a certain
number of eigenvectors that can be extracted. Thus, since the
variation of reduction in error rate is not significant beyond
33–35 eigenvectors, we can safely assume that the extraction
of more than 34 eigenvectors is not necessary.
3) Scalability: The speed at which the incoming stream of

tweets is explored for topics by OSLDA together with the time
required for eigen feature extraction from the transfer graph
using spectral learning is important for maintaining scalability
with the real-time social stream. In our system, the topic mod-
eling is done in parallel with the eigenvector extraction to save
time. Thus, our main aim should be to limit the time required to
complete either of these tasks within the incoming tweet flow
time.
Fig. 9 shows the comparison of runtimes for various settings

of OSLDA, eigenvector extraction using power iteration (PI)
and eigenvector extraction using Normalized cut (Ncut) with
the time taken on average for an incoming chunk of tweets to
stream in. For OSLDA, ‘20k’ (in legend) refers to 20 topics ex-
tracted and ‘50i’ refers to 50 iterations of the generative process.
Experiments were run on a IBM server with 2.67 GHz processor
and 8 GB RAM.
From Fig. 9, we can safely conclude that the model scales

to incoming bursts of tweets, since the matrix decomposition
with Power Iteration and the topic modeling using OSLDA re-
quire less time than the speed of incoming tweets. Note that the
Normalized cut method (Ncut) does not scale as it takes longer
time to extract eigenvectors than the speed of the incoming burst
of tweets as shown in Fig. 9. Moreover, for more than 40,000
tweets, Ncut causes our system to run out of memory.
The experimental results suggest that the proposed approach

is an improvement over non-transfer, but it does not ascertain
that the cause of every bursty video is its prior topic popularity
in Twitter.We show that we can improve the prediction of bursty
videos by learning from Twitter trends.

VII. CONCLUSION

In this paper, we shed light upon popularity signatures of on-
line videos. We explain why previous work has detected bursty
nature of online popularity, and confirm that it is mostly due to
the social prominence of such videos. To test our theory, we de-
velop a novel cross-domain real time transfer learning approach
based on social streams called SocialTransfer. Our proposed

scheme can be applied to variousmultimedia applications which
can be boosted by knowledge acquired from cross-domain so-
cial data. Here, we demonstrate the use of the SocialTransfer
in realizing socialized video popularity prediction. Our study
could provide indispensable insight into applications like pop-
ularity based caching and advertisement for bursty traffic.
Visual analytics and traditional object/semantic detection

from video signals will be helpful in enriching the tags in the
video, which would allow our model to utilize an increased
number of features. We assume the worst case in our paper, that
the video only possesses tags extracted from the title and/or
entered by the user. Tag enrichment by comment extraction
or visual object understanding will improve the prediction
power of the model, since it alleviates the meta-data problem
effectively reducing the semantic gap.
Experimental results show that SocialTransfer can outper-

form traditional learners by almost increase in ac-
curacy of predicting videos that will gain social prominence,
identified by their sudden/bursty popularity in the video domain.
The main contribution of this work is the scalable model for
cross-domain real time transfer learning from social streams that
allows the social network trend signal to affect media popularity
across disparate social media domains on the Internet, the for-
mulation of social prominence of a video and the use of social
topics in modeling novel multimedia phenomena that can hardly
be realized by traditional multimedia techniques alone.
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