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Abstract—One serious difficulty in the deployment of wideband
speech recognition systems for new tasks is the expense in both
time and cost of obtaining sufficient training data. A more econom-
ical approach is to collect telephone speech and then restrict the
application to operate at the telephone bandwidth. However, this
generally results in suboptimal performance compared to a wide-
band recognition system. In this paper, we propose a novel expec-
tation-maximization (EM) algorithm in which wideband acoustic
models are trained using a small amount of wideband speech and
a larger amount of narrowband speech. We show how this algo-
rithm can be incorporated into the existing training schemes of
hidden Markov model (HMM) speech recognizers. Experiments
performed using wideband speech and telephone speech demon-
strate that the proposed mixed-bandwidth training algorithm re-
sults in significant improvements in recognition accuracy over con-
ventional training strategies when the amount of wideband data is
limited.

Index Terms—Acoustic modeling, bandwidth extension, hidden
Markov models (HMMs), speech recognition, telephone speech.

I. INTRODUCTION

THE performance of automatic speech recognition (ASR)
technology has progressed to the point where commerical

systems have been deployed successfully for some small tasks.
The success of these systems has led to the desire for more
widespread use of speech recognition technology. One serious
difficulty in the deployment of ASR systems for new tasks is
the expense of obtaining sufficient training data. This is espe-
cially true for applications which process wideband speech. For
example, training a large-vocabulary desktop dictation system
requires a large corpus of wideband training data. However,
there are many resource-poor languages for which such a corpus
does not exist. A similar lack of training data inevitably occurs
when speech recognition is applied to a new task such as auto-
matic meeting transcription, e.g., [1]. Currently, the amount of
available wideband training data that matches the spontaneous
speaking style frequently used by meeting participants is very
limited [2]. In both of these cases, collecting a sufficient amount
of wideband training data may be prohibitively expensive and
time consuming.

Manuscript received November 30, 2004; revised January 12, 2006. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Ananth Sankar.

The authors are with Microsoft Research, Redmond, WA 98052 USA (e-mail:
mseltzer@microsoft.com; alexac@microsoft.com).

Digital Object Identifier 10.1109/TASL.2006.876774

The cost and time required for data collection can be miti-
gated by collecting speech over the telephone. Recording speech
over the telephone is a relatively economical and efficient way
to collect large amounts of data from a wide variety of geo-
graphic regions. However, collecting speech data in this manner
has the drawback that the speech used to train the recognizer
will be narrowband, typically sampled at 8 kHz with a band-
width of 300–3400 Hz. This means that during decoding, the
test speech must be restricted to the same bandwidth. However,
all other things being equal, recognition systems that process
narrowband speech perform worse than those that process wide-
band speech, i.e., speech sampled 16 kHz with a bandwidth
of 0–8000 Hz [3]. Therefore, the performance obtained by re-
stricting the bandwidth of the speech recognition system to that
of telephone speech is suboptimal.

Thus, when creating a new wideband speech recognition ap-
plication, there are two options for collecting speech data to train
the system. The first is to obviously collect enough wideband
training data to adequately train the recognition system. This op-
tion is expensive in both time and cost, but yields the best perfor-
mance. The second is to collect training data over the telephone
and then restrict the bandwidth of the wideband test speech to
match that of the telephone speech. This option is more cost-ef-
fective but results in suboptimal recognition accuracy.

In this paper, we propose an alternative approach in which
wideband acoustic models are trained using a small amount of
wideband speech and a large amount of narrowband speech. We
present a principled training algorithm based on the expecta-
tion-maximization (EM) algorithm, and show how this approach
can be incorporated into the existing training schemes of hidden
Markov model (HMM) speech recognizers. In the proposed ap-
proach, the wideband model parameters are iteratively updated
using training data of mixed bandwidth. By training the recog-
nizer in this way, we can potentially obtain wideband acoustic
models that outperform those trained on narrowband speech
alone, and still avoid the large costs associated with collecting
large amounts of wideband speech.

The methods proposed in this paper are related to previous re-
search in training mixture models from incomplete feature vec-
tors [4]. However, this work is not directly applicable to speech
recognition applications because of the idiosyncrasies of the
feature extraction process, namely the computation of mel-fre-
quency cepstral coefficients. Missing data techniques have also
been used to improve the robustness of ASR systems to addi-
tive noise for decoding. In these methods, the low signal-to-
noise ratio (SNR) components of the speech spectral vectors
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are disregarded, and classification is performed based only on
the high SNR components [5], [6]. However, these algorithms
require knowledge of which components are most corrupt, a
task which in itself has proven difficult in some noise conditions
[7]. In [8], the authors proposed a method to train narrowband
acoustic models for telephone speech using a high-quality wide-
band speech corpus, the inverse of the problem addressed in this
paper.

Finally, we note that some of the concepts used in this paper
are similar in spirit to bandwidth extension for speech enhance-
ment and coding, e.g., [9]–[11]. In this task, the bandwidth of a
narrowband speech waveform is extended to obtain a wideband
waveform. However, because these algorithms are concerned
with speech enhancement, they require that the full spectrum be
extended, including the phase. In addition, the success of these
methods is measured according to perceptual criteria, while we
are concerned strictly with the speech recognition performance.

The remainder of the paper is organized as follows. In
Section II, the feature extraction process for speech recog-
nition is briefly reviewed and the missing data paradigm for
mixed-bandwidth speech is introduced. In Section III, we show
how to train a Gaussian mixture model from log mel spectral
features using mixed-bandwidth training data. We then de-
scribe the modifications required to generate models of cepstral
features, rather than log mel spectra in Section IV. We show
how the proposed algorithm can be used to train a large-vo-
cabulary HMM-based speech recognition system in Section V.
Section VI describes a series of experiments that show the
efficacy of the proposed method. Finally, we summarize this
work and present some conclusions in Section VII.

II. FEATURE EXTRACTION FOR ASR

In this paper, we assume that mel-frequency cepstral coef-
ficients (MFCCs) are the features used for recognition. For a
given utterance, the sequence of MFCC feature vectors is com-
puted by first segmenting the waveform into a series of overlap-
ping frames of speech and deriving a vector of log mel spectra
for each frame. This process can be expressed as

(1)

where is the th frame of speech, represents the matrix
of the weighting coefficients of the mel filterbank, log() is an
element-wise operation, and is the resulting vector of log mel
spectra. For wideband data sampled at a 16-kHz sampling rate,
the mel spectral coefficients represent the energy in a series of
overlapping frequency regions which range from approximately
100 Hz to 8 kHz. This log mel spectral vector is then converted
to a cepstral vector via a discrete-cosine transform (DCT) as

(2)

where is the MFCC vector for frame and is the DCT
matrix. Dimensionality reduction is also usually performed, so
the DCT matrix is with . Typically, 13-di-
mensional cepstra are computed from 20 to 40-dimensional log
spectral vectors.

We assume that the narrowband speech has been upsampled
to match the sampling rate of the wideband speech. If this speech
is then transformed to a sequence of log mel spectral vectors, the
components derived from mel filters that cover frequencies out-
side the original signal bandwidth will contain no information.
We refer to these components as missing.1 In contrast, the com-
ponents of the spectral vector that do contain reliable content
are considered observed. Thus, a log mel spectral vector can
be partitioned as

(3)

where contains all components of that are observed and
contains all components that are missing. For narrowband

speech, the observed and missing subvectors roughly corre-
spond to the low- and high-frequency components, respectively.
However, for telephone speech, the lowest mel components
typically fall outside the telephone passband and are therefore
considered missing as well. For wideband speech originally
sampled at the target sampling rate, and , i.e.,
there are no missing components.

In a similar manner, we can express a cepstral vector as the
sum of linear transformations of and . Decomposing the
DCT matrix into two submatrices, , an matrix, where

is the length of and , an matrix, where
is the length of , we can write

(4)

(5)

III. TRAINING A GAUSSIAN MIXTURE MODEL

ON MIXED-BANDWIDTH LOG SPECTRA

We are interested in training an HMM-based speech recog-
nizer using cepstral features derived from mixed-bandwidth
speech data. However, for tutorial purposes, we begin by first
discussing how to train a Gaussian mixture model (GMM) from
mixed-bandwidth log mel spectral features. A GMM has the
form

(6)

where , , and are the mean vector, covariance matrix,
and prior probability of the th Gaussian mixture component,
respectively.

We seek to train this model using a combination of narrow-
band and wideband speech data using the EM algorithm [12].
In conventional GMM training using EM, a hidden variable is
used to indicate the Gaussian in the mixture which generated
the current observation. In this paper, we use additional hidden

1Note that if any of the frequencies spanned by a particular mel filter lie out-
side the telephone band, that mel component is considered missing.
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variables to represent the unseen log mel spectral components
in the narrowband training samples. Thus, we start with the

following EM auxillary function:

(7)
where is the frame index, is the hidden state variable indi-
cating the Gaussian index, is the set of model parameters we
seek to optimize, i.e., the means, covariances, and prior proba-
bilities for all Gaussians in the mixture, and is the current esti-
mate of these parameters. Throughout this paper, a “hat” above
a symbol, e.g., , will be used to denote that it is computed from
the current set of model parameters .

Performing the EM on this expression requires the condi-
tional and marginal probability density functions (pdf’s) asso-
ciated with defined in (6). Specifically, we need to fac-
torize as

(8)

To do so, we first sort the means and covariances into ob-
served and missing partitions. We can represent the mean vector
as

(9)

the covariance matrix as

(10)

and the inverse covariance (or precision) matrix as

(11)

where .
Using (9) and (10), we can now express the marginal distri-

bution as

(12)

where and are the mean and covariance of the observed
components only. The conditional distribution can be expressed
as

(13)

where and are the conditional mean and covariance,
respectively, computed as

(14)

(15)

For a derivation of these expressions, see [13].

Using these expressions and following the derivation given
in Appendix I, we can compute the update equations for the
Gaussian parameters. The updated prior probability of the th
Gaussian can be expressed as

(16)

where is the posterior probability of the th Gaussian
based only on the observed components of each feature vector.
This can be computed from (12) using Bayes rule as

(17)

Recall that for wideband speech, because all log spectral com-
ponents are observed, the posterior probabilities are computed
from the full feature vector, i.e., .

To derive the update formulas for and , we first define
as

if frame is wideband

if frame is narrowband
(18)

where is computed from (14) using the current set of model
parameters.

Following the derivation in Appendix I, we can express the
mean update formula as

(19)

Thus, the mean update expression is similar to that of a conven-
tional GMM, except that the missing vector components of each
narrowband frame are replaced by the state-conditional poste-
rior means.

The covariance update is also similar to that of a conventional
GMM. We can express the covariance update formula as

(20)
where

if frame is wideband

if frame is narrowband
(21)

The state-dependent conditional covariance in (21) is
computed from the current model parameters using (15). It is

padded with appropriately sized zero matrices to create .
This additional covariance assigned to the partition of

reflects the uncertainty associated with the absence of these
components in the narrowband training vectors.
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IV. WORKING WITH CEPSTRAL PARAMETERS

In the previous section, it was assumed that the components of
the feature vector could be partitioned into observed and missing
subvectors. When working with mixed-bandwidth data, log mel
spectral features satisfy this assumption, as we can separate the
low- and high-frequency components, as shown in (3). This al-
lows us to express as a joint probability of the observed and
missing components, and therefore derive the required marginal
and conditional pdf’s, as shown in (8).

However, most speech recognition systems do not operate on
log mel spectral features directly, but rather they process cep-
stral features, obtained by performing a truncated DCT on the
log mel spectra. Because of the DCT operation, each cepstral co-
efficient is a linear combination of all log mel spectral features.
Thus, the cepstral vector cannot be partitioned into observed
and missing components. Rather, it is the sum of the missing
and observed cepstral vectors, as shown in (5). Because of this,
we cannot marginalize over the missing cepstra, as required by
the EM algorithm of the previous section. In this section, we
describe the changes that need to be made to the EM algorithm
presented in Section III in order to train a cepstral-domain GMM
from mixed-bandwidth data.

We assume the cepstral vectors are well-modeled by a mix-
ture of Gaussians with mean and covariance parameters and

, respectively, i.e., for .
Note that in most speech recognition systems, is a diagonal
matrix. Thus, recalling (2), we have

(22)

If we assume that the cepstral vectors have the same dimen-
sionality as the log spectral vectors (and thus, the is a square
matrix), then the conversion between cepstral parameters and
log mel spectral parameters can be done trivially via an inverse
DCT (IDCT). However, because most speech recognition sys-
tems perform dimensionality reduction when converting from
log mel spectra to cepstra, the DCT matrix is not square. As a
result, the log mel spectral covariance matrices obtained from
cepstral covariance matrices via an IDCT are rank-deficient.
Specifically, if the DCT matrix is with , then
the log mel spectral covariance matrix is an

matrix with at most rank . This is problematic because
the covariance matrix must be full rank in order for it to be in-
vertible and have a nonzero determinant.

One possible solution is to simply train an -dimensional
cepstral model using a square DCT, and then truncate the model
parameters to dimensions after training is complete. How-
ever, this is suboptimal, as the best way to maximize the overall
likelihood may be to optimize the higher dimensions of the
model, which will be discarded, at the expense of the lower di-
mensions, which are the ones we are interested in.

We need a solution which ensures that the log mel spectral
covariance matrix is full rank but also ensures that the higher di-
mensions in the cepstral domain do not bias the posterior proba-
bility calculations in the EM algorithm. One way to accomplish
this is to set the Gaussian parameters in the cepstral domain to
be equal for all Gaussians for the dimensions we do not wish to

optimize, i.e., dimensions through . By doing so, these
components will contribute to the likelihood of each Gaussian
equally, and thus not alter the posterior probabilities.

We now define to be the number of discarded
dimensions in the truncated DCT. We will use the subscript
to denote the last dimensions of a vector or matrix that are
discarded by the truncation. We further define as the first

columns of the IDCT matrix, and are the last
columns of this matrix. Assuming that the cepstral mean vector

has -dimensions, we can write the correspoding log spectral
mean vector as

(23)

where is a vector of the first elements of the -dimen-
sional cepstral mean vector, and represents the last ele-
ments of this vector.

We can similarly express the log spectral Gaussian covariance
matrix of the th Gaussian as

(24)

where is a zero matrix. and are assumed
to be diagonal, although (24) does not require it.

Both (23) and (24) show that the log mel spectral mean vector
and covariance matrix can be decomposed into the sum

of the two terms, the first reflecting the contribution of the first
dimensions of the cepstral vector and the second the contri-

bution of the last dimensions of the cepstral vector. In order
to ensure that any differences in the posterior probabilities of
the various Gaussians are due only to the first cepstral coef-
ficients, and yet ensure that is full rank, we set the second
additive term to be identical for all Gaussians. To do so, we com-
pute the global mean and covariance of -dimensional cepstral
vectors from the wideband training data. We can then compute
the following terms:

(25)

(26)

where is a vector of the last components of the global
cepstral mean vector, and is the corresponding (diagonal)

partition of the global covariance matrix.
Thus, given truncated -dimensional cepstral Gaussian pa-

rameters and , we can now convert these back to the log
mel spectral domain as

(27)

(28)

Computing the log spectral components in this way ensures
that the covariance matrices for all Gaussians have full rank
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in the -dimensional log mel spectral domain, yet ensures that
any discriminability among the Gaussians arises only from the
first cepstral dimensions. Incorporating this transformation
into the algorithm presented in the previous section results in
the complete training procedure for training a cepstral-domain
GMM from mixed-bandwidth data, outlined in Algorithm 1.

Algorithm 1 Training a cepstral-domain GMM with
mixed-bandwidth data using EM

1: Compute and from wideband data

2: Initialize GMM via EM using only wideband cepstra

3: repeat

4: for all do

5:

6:

7: end for

8: E-step: compute

9: M-step: update

10: for all do

11:

12:

13: end for

14: until likelihood converges

V. HMM TRAINING WITH MIXED-BANDWITH DATA

The proposed algorithm for training a GMM using
mixed-bandwidth speech data can be readily extended to
HMM training. The parameter update formulas for HMM
training are the same as the GMM case, except that the pos-
terior probability is replaced by , the posterior
probability of the th Gaussian in HMM state given the
observation sequence . In our case, is
defined as

(29)

where and are the conventional forward and backward
variables used in the Baum–Welch training algorithm [14],

is the mixture weight of the th Gaussian in state , and
, the likelihood of the given

Gaussian measured using the observed components only.
While this is mathematically the only change required to

apply the proposed mixed-bandwidth training algorithm to
HMMs, some practical issues limit its direct application to
large-vocabulary speech recognition systems. Specifically,
when training a large-vocabulary speech recognizer in practice,
there are many HMM states that have low occupancy counts,
i.e., there are only few observations which contribute to the

sufficient statistics of that state. In such states, the covari-
ance matrix obtained after marginalization is frequently
rank-deficient, and thus, cannot be inverted. Because of this,
the state posterior and the state-conditional posterior dis-
tribution , which both depend on , cannot
be computed.

A. HMM Training Using Globally Shared Wideband
Posterior Distributions

In cases of data sparseness such as this one, one method of
improving the robustness of such calculations is to share data
among different HMM states. Such data sharing has been pro-
posed for a variety of applications and can be performed in a
variety of ways. In this paper, we assume that the state-condi-
tional posterior distribution of the wideband features can be ap-
proximated by a single global distribution that is shared by all
states, i.e., we assume . Thus, the
posterior distribution is conditioned only on the observation but
no longer on the state.

For each frame of narrowband speech , we obtain this dis-
tribution using a front-end processing stage. Using a GMM that
has been trained on the available wideband cepstra, a single
E-step of the training algorithm described in Sections III and
IV is performed. This generates the state posterior probability

, and the mean and variance of the poste-
rior distribution for each Gaussian . The global
distribution is then obtained by computing the first
and second moments of and marginalizing over all
Gaussians, as

(30)

(31)

The mean and covariance of the global posterior distribution
for frame can then be easily computed from these parameters.
Note that because we want to train models in the cepstral do-
main, we can directly compute the parameters of the cepstral
posterior distribution as

(32)

(33)

where we assume that is diagonal.
Notice that whereas the posterior mean for frame was pre-

viously a function of both the state and the observation ,
it is now a function of the observation only. Additionally, the
marginalization operation has resulted in a posterior variance
which is now strictly a function of the observation, and not the
state. This dependence on the observation is apparent from (30)
and (31), where we see that the variance is computed from the
posterior mean and the state posterior, both of which depend on
the . Creating globally shared posterior distributions in this
manner requires slight changes to the HMM update formulas.
These will be detailed in Section V-C.

Authorized licensed use limited to: MICROSOFT. Downloaded on December 24, 2008 at 01:43 from IEEE Xplore.  Restrictions apply.



240 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, JANUARY 2007

B. Computing the Narrowband State Posteriors
in the Cepstral Domain

As (29) shows, the marginalized log spectral distributions
are required in order to compute for the narrow-

band data. However, as mentioned previously, there are many
states for which is rank-deficient and thus is not invert-
ible. Even in cases where there is sufficient data, performing
Gaussian evaluation in the log spectral domain requires signifi-
cantly more computation than in the cepstral domain where di-
agonal covariances can be used. For large-vocabulary systems
where the size of the training corpus can be in the hundreds
or even thousands of hours, this increased computation may be
prohibitively expensive.

In order to efficiently and robustly compute the state poste-
riors, we convert the marginalized log spectral models back to
the cepstral domain using a DCT matrix , where
is the number of observed log spectral components.2 Thus, re-
calling (27) and (28), the narrowband cepstral model parameters
are obtained from the wideband model parameters as

(34)

(35)

(36)

where is an matrix which selects the observed com-
ponents. Thus, we can now compute the HMM state posterior
probabilities in the cepstral domain for narrowband data. Of
course, the narrowband log spectra must be converted to cep-
stra as in order to do so.

C. Implementation Details

The training data for the proposed mixed-bandwidth training
algorithm now consists of a sequence of wideband cepstra
computed from the available wideband speech and a sequence
of narrowband cepstra computed from the narrowband speech.
Each frame of narrowband speech also has a wideband cepstral
posterior distribution . Incorporating
this data into the proposed mixed-bandwidth EM algorithm, we
can rewrite the HMM update formulas as

(37)

(38)

(39)

where indexes the wideband data, indexes the narrowband
data, is the posterior probability of a wideband cepstral

2We note that D 6= C in (4) which is a M � L partition of an M � L
DCT matrix, where L > Lo.

Fig. 1. Flowchart of the mixed-bandwidth HMM training procedure.

vector computed using the wideband models, and is the
posterior probability of a narrowband cepstral vector , com-
puted using the narrowband models obtained using (34)–(36).

is the total number of wideband observations and is
the total number of narrowband observations.

Training is performed as follows. Using the wideband cep-
stra, an initial wideband HMM is trained using the conventional
Baum–Welch algorithm. This is typically a small model, e.g., a
monophone model with a single Gaussian per state. After the
initial model is created, the narrowband data is added to the
training procedure. At this point, mixed-bandwidth training pro-
ceeds by splitting the accumulation of the sufficient statistics
into two parts, one for the wideband data and one for the nar-
rowband data, as implied by (37)–(39). In the first part, the suffi-
cient statistics are accumulated using the wideband models and
the wideband cepstra in the usual manner. In the second part,
the state posterior probabilities are computed using the nar-
rowband cepstra and the narrowband models generated from the
current wideband models using (34)–(36). Using these state pos-
teriors, the sufficient statistics are accumulated using the wide-
band posterior means and variances . This process can be
thought of as modified version of single-pass retraining (SPR)
[15]. Once all the wideband and narrowband data have been pro-
cessed, the sufficient statistics computed by each part are ag-
gregated to compute the updated wideband model parameters.
From this model, a new updated narrowband model is produced
and the process is repeated until the convergence. A diagram of
this training procedure is shown in Fig. 1.
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Fig. 2. WER of the WSJ0 20 k test set set versus the amount of data used
to train the recognizer. The left-most data point represents 1% of the total
training set (0.12 h) while the right-most datapoint represents the full training
set (12.0 h). The figure also shows the WER obtained by a fully trained
narrowband recognition system.

VI. EXPERIMENTAL EVALUATION

In order to evaluate the proposed mixed-bandwidth training
algorithm, we performed a series of experiments using the
Wall Street Journal (WSJ0) corpus [16]. In order to perform
controlled experiments in which the proportion of wideband
to narrowband data is the only variable, we created a parallel
telephony training corpus by passing the WSJ0 training set
through a telephony filter designed to the G.712 specifications.
The useful bandwidth of the telephony speech was assumed to
be between 300–3400 Hz.

The HTK speech recognition system [17] was used to
train three-state context-dependent triphone models with 24
Gaussians per state. The feature vectors used for recognition
were 13-dimensional cepstral vectors derived from 40-dimen-
sional log mel spectra, along with their delta and acceleration
parameters. Frames were 25 ms in duration with a 10-ms shift
between successive frames. Cepstral mean normalization was
performed prior to processing. A trigram language model was
used for decoding. The speech recognizer was trained using the
SI84 training set, which consists of a total of 7200 utterances
from 84 speakers. Performance was measured using the WSJ0
20 k test set, which consists of 333 utterances (approximately 42
for each of 8 speakers), and covers a 20 000 word vocabulary.

In the first series of experiments, we evaluated the recognition
performance when different amounts of wideband speech were
used for training. The complete training set consists of approxi-
mately 12 h of speech. Subsets of the training set, ranging from
1%upto80%of the total trainingsetwereselectedat random,and
used to train the recognizer. Fig. 2 shows the resulting word error
rate (WER) as a function of the amount of data used for training.
Note that the -axis of the figure is displayed on a logarithmic
scale. The leftmost point in the figure represents the performance
obtained when only 1% of the training data is used, while the
rightmost point is the performance obtained when the entire
training set is used. This rightmost WER of 10.4% represents the
upper bound on performance in this experimental framework.
The figure also shows the WER obtained by a narrowband recog-
nition system trained using the full training set. Not surprisingly,
the figure shows that the performance of the wideband system

degrades significantly with fewer training data. As the amount
of wideband training data falls below 20% (approximately 2.4 h
of speech), better performance is obtained from a fully trained
narrowband system. We note that this crossover point in perfor-
mance can be different for different corpora/tasks, e.g., [18].

A. Experiments With Telephony Speech

We will now attempt to improve the performance of wide-
band speech recognition systems when the wideband data are
limited. In these experiments, we assume that only a limited per-
centage of the wideband training data is available and that the
remainder of the training corpus is available as telephone-band-
width speech. Telephone speech that is upsampled to 16 kHz
and converted to 40-dimensional log mel spectral features has
17 out of 40 components that fall outside of the telephone pass-
band. Specifically, the first four and last 13 components of the
40-dimensional log mel spectral vectors are unobserved.

In order to generate the wideband posterior distribution for
each frame of telephone speech, a GMM was trained from
39-dimensional cepstral vectors using the available wideband
training data. Using this GMM, the posterior mean and variance
of the wideband posterior distribution were estimated for each
of the narrowband training vectors. In order to mitigate the
spectral tilt induced by the telephone channel, mean normal-
ization was performed on both the wideband cepstra used to
train the GMM and the telephone-band log mel spectra prior
to processing. We assumed that the covariance matrix in the
log spectral domain was block-diagonal, so that correlations
between static, delta, or acceleration coefficients were assumed
to be zero. Furthermore, because of the independence assump-
tions inherent in GMMs and HMMs, the delta and acceleration
coefficients of the posterior mean vector are not typically
consistent with the static features of the surrounding frames.
As a result, after the posterior distributions were estimated for
a particular utterance, the delta and acceleration components of
the posterior means were recomputed from the posterior means
of the surrounding frames. This ensures that they are consistent
with the manner in which the dynamic cepstral parameters are
computed for the wideband training data and during decoding.

For a given wideband/narrowband partition of the training
utterances, we had a cepstral feature vector for each wideband
speech frame, and a narrowband cepstral feature vector and a
wideband posterior distribution for each narrowband speech
frame. These were then used to train a wideband HMM as
follows. A set of monophone HMMs with a single Gaussian per
state were trained using the wideband training data only. At this
point, the telephony data was added, and the mixed-bandwidth
training procedure was performed. Iterative training of the
HMMs using the both the wideband and narrowband training
data continued until a tied-state triphone acoustic model with
24 Gaussians per state was obtained. All training parameters
were held constant for all experiments.

The final wideband HMM was then used to decode the WSJ0
20 k test set. This experiment was performed for partitions of the
training set in which the wideband data accounted for between
1% and 80% of the training corpus, with the narrowband data
accounting for the rest. In all experiments, the front-end GMM
was trained using the available wideband data only. For the case
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Fig. 3. WER of the WSJ0 20 k test set using the proposed mixed-bandwidth
EM training algorithm as a function of the amount of wideband data avail-
able. For comparison, the WERs obtained by a recognizer trained from the lim-
ited wideband data only and by a fully trained narrowband recognizer are also
shown.

in which only 1% of the training data comes from wideband
speech, the GMM consisted of 64 densities, while in all other
cases, the GMM had 256 densities.

The performance of the proposed mixed-bandwidth training
algorithm is shown in Fig. 3, as a function of the amount of
wideband training data used. For comparison, the WERs ob-
tained by a system trained with the limited wideband data only
and by a fully trained narrowband system are also shown. As
the figure shows, at all percentages, a significant improvement
in the WER is obtained over the use of the wideband data alone.
Perhaps more importantly, the figure also shows that the pro-
posed mixed-bandwidth training method results in better perfor-
mance than a fully trained narrowband recognizer in all cases.
Of course, we expect that as the amount of wideband training
data approaches zero, the narrowband system will outperform
the proposed method, as there simply will not be enough wide-
band data to train a reliable GMM.

B. Model Adaptation Using the Wideband Training Data

The previous experiments demonstrated that the proposed
mixed-bandwidth training technique can generate wideband
acoustic models that outperform those obtained by training on
limited wideband data. However, because the training algorithm
sought to maximize the likelihood of the total pool of available
training data, it may not necessarily be ideally matched to the
wideband data. For example, since the wideband posterior
distributions were generated using a front-end GMM, rather
than from the HMMs themselves, there may be a bias in the
model parameter estimates. As a result, we attempted to im-
prove the model performance further by reusing the wideband
training data to perform supervised model adaptation on the
final wideband acoustic models. This is different from typical
model adaptation in that we are not introducing new adaption
data, but rather simply reusing the available wideband training
data. Mean and variance adaptation was performed using
MLLR [19] with two regression classes. The results obtained
after model adaptation are shown in Fig. 4. As the figure shows,
significant improvements are seen at all wideband-narrowband
combinations.

Fig. 4. WER of the WSJ0 20 k test set after supervised adaptation of the models
obtained from the proposed mixed-bandwidth training. The adaptation was per-
formed by reusing the wideband training data. For comparison, the WERs ob-
tained by three other training methods are also shown: the proposed algorithm
prior to model adaptation, a recognizer trained from limited wideband data only,
and a fully trained narrowband recognizer.

TABLE I
COMPARISON OF THE WER OBTAINED USING FBE AND THE PROPOSED

MIXED-BANDWIDTH EM ALGORITHM (MIXBW-EM) ON THE WSJ0
20 k TEST SET FOR DIFFERENT PROPORTIONS OF WIDEBAND

AND NARROWBAND TRAINING DATA

C. Comparison With Feature Bandwidth Extension

In [18], we presented a preliminary algorithm for mixed
bandwidth training called Feature Bandwidth Extension (FBE)
which was entirely a front-end process and required no changes
to the training software. In this algorithm, data imputation
was performed on each narrowband log spectral vector in
order to generate a point estimate of the wideband feature
vector. These estimates of the wideband features were then
pooled with the available wideband data and used to train the
recognizer using conventional EM. To account for error in the
estimation of the wideband features, a scaling factor was used
in order to deweight the contribution of the estimated wideband
features relative to the actual wideband features in the HMM
parameter estimation. The optimal value of this parameter was
found using a development set. A comparison of FBE and
the mixed-bandwidth EM algorithm proposed in this paper is
shown in Table I.

As the table shows, the proposed algorithm significantly out-
performs the original FBE algorithm, especially as the amount
of wideband data decreases. Because FBE only generates point
estimates of the wideband features, they are implicitly assumed
to be error-free by the training process. Because there is estima-
tion error, this adversely affects the estimation of both the state
posteriors and the model parameters. In contrast, the proposed
algorithm computes the state posteriors through marginaliza-
tion, only using the observed narrowband data, and includes
the uncertainty associated with the wideband feature estimates
in the model parameter updates. It has the additional advan-
tage that it has no parameters that need to be tuned, and thus,
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there is no need for a development set. We note that as more
and more wideband data is available, the wideband feature esti-
mation can be expected to improve, and thus, the performance
of FBE will approach that of the proposed mixed-bandwidth
training algorithm.

VII. CONCLUSION

In this paper, we have proposed a method for training
acoustic models for HMM-based speech recognition systems
using mixed-bandwidth training data. In this method, a limited
amount of wideband training data is augmented with narrow-
band training data in order to train a speech recognizer for
the recognition of wideband speech. We presented an EM
algorithm for training with mixed-bandwidth data where the
missing spectral components of the narrowband signal are
considered additional hidden variables. We also presented a
solution to the problems caused by the spectral rotation and
dimensionality reduction performed via the DCT operation
when computing mel cepstral features from log mel spectra.

Wehighlightedthetwoproblemsthatarisewhenimplementing
the proposed algorithm for a large-vocabulary speech recogni-
tion task, namely the data sparseness that results in rank defi-
cient covariance matrices, and the increased computational ex-
pense incurred by marginalization, i.e., the need for full covari-
anceGaussianevaluation.Weproposedsolutionsforeachofthese
problems. To solve the data sparseness problem, we created glob-
ally shared wideband posterior distributions, in which the poste-
rior distributions are generated by a front-end processing stage
and then shared across all HMM states. To improve the compu-
tational efficiency, we showed how the wideband cepstral model
parameters can be converted to narrowband cepstral model pa-
rameters, which enables the state posteriors to be evaluated in the
cepstral domain using diagonal covariances for both the wide-
band and the narrowband training data.

Through a series of experiments using parallel corpora of
wideband and telephone speech, we demonstrated that the pro-
posed method is able to significantly outperform both a wide-
band recognizer trained with limited data and a fully trained nar-
rowband recognizer. According to Fig. 2, the best performance
using standard training methods is obtained by using a fully
trained narrowband system if less than 20% of the wideband
data is available, and using a wideband system trained on the
limited wideband data if at least 20% of the training set is avail-
able. If we consider this to be the baseline performance, and the
performance of a fully trained wideband system to be the target,
the proposed mixed-bandwidth training algorithm reduces the
gap in performance between the baseline and the target systems
by an average of 31.2% prior to model adaptation and 55.4%
after model adaptation.

Judging from these experiments, it is clear that the pro-
posed method for training acoustic models for wideband
speech recognition using mixed-bandwidth data is an effective
training method when collecting large amounts of wideband
training data is not feasible. Moving forward, we believe
the performance of mixed-bandwidth training algorithm can
be further improved by exploring alternatives to the global
front-end-based data sharing method proposed in this paper,
e.g., using regression classes to share data among HMM states.

In addition, we intend to evaluate the performance of the
proposed algorithm using actual telephone speech, e.g., [20].
We believe there is a significant opportunity for improved
wideband speech recognition performance if we can utilize the
vast amounts of publicly available telephone speech data.

APPENDIX I
DERIVATION OF THE GMM PARAMETER UPDATE FORMULAS

USING MIXED-BANDWIDTH DATA

We start with the following EM auxillary function

(40)
where is the frame index, is the hidden state variable indi-
cating the Gaussian index, is the set of model parameters we
seek to optimize, i.e., the means, covariances, and prior prob-
abilities for all Gaussians in the mixture, and is the current
estimate of these parameters. A “hat” above a symbol, e.g.,

, denotes that it is computed from the current set of model
parameters .

A. E-Step

By applying Bayes’ rule to the probability expressions in
(40), we can obtain the following more workable form of the

function:

(41)

From (41), it is apparent that we need to compute the posterior
probability of each Gaussian in the mixture, . We can
compute this from Bayes’ rule as shown in (17). Recall that for
wideband speech vectors, , i.e., the posterior
probabilities are computed from the complete feature vector,
whereas for narrowband speech vectors, the posterior probabil-
ties are computed from the observed narrowband components
only.

If we partition the Gaussian mean vectors and inverse co-
variance matrices according to (9) and (11) and ignore constant
terms, we can rewrite (41) as

(42)
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Taking the expectations in (42) with respect to leads to

(43)

where and are defined in (14) and (15) and computed
using the current model parameters .3

B. M-Step

1) Updating the Prior Probabilities: Taking the derivative
of (43) with respect to , subject to the constraint that

leads to the update formula that is identical
to that of a conventional GMM, except that the a posteriori
probabilties are measured with respect to the observed
components only. Thus, the update becomes

(44)

2) Updating the Gaussian Means: To compute the update
formula for the Gaussian means, we take the derivative of the
function with respect to and set the result equal
to zero. This produces

(45)

Recalling the definition of in (18), we rewrite (45) as

(46)

which can be solved for to obtain the following update
formula

(47)

3The second integral in (42) was computed using the following identity
(x��) � (x��)N (m;S)dx= (��m) � (��m)+tr(� S).

3) Updating the Gaussian Covariances: If we reform the full
vectors and matrices from the observed and missing partitions
in (43), and ignore terms that are constant with respect to ,
we can rewrite the expression for as

(48)

Using (9), (11), and (18), we can rewrite this simply as

(49)

If we ignore the trace expression in (49), the function we
need to differentiate appears identical to that of a conventional
GMM with respect to . Therefore, following the derivation in
[21], we differentiate (49) with respect to in order to obtain
the following update expression for the covariance matrix:

(50)

However, we still need to account for the trace expression in
(43). The derivative of the trace term with respect to
can be expressed as

(51)

Since only affects the partition of corresponding to
the missing components of the narrowband data, we create the

zero-padded matrix as

(52)

where , , and are appropriately sized zero matrices.

Incorporating into the derivation of the covariance update
gives the final expression for as

(53)
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