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ABSTRACT 

 

Objective: Antithrombin, protein C (PC) and protein S (PS) are circulating natural-anticoagulant 

proteins that regulate hemostasis and of which partial deficiencies are causes of venous 

thromboembolism. Previous genetic association studies involving antithrombin, PC, and PS 

were limited by modest sample sizes or by being restricted to candidate genes. In the setting of 

the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, we meta-

analyzed across ancestries the results from 10 genome-wide association studies (GWAS) of 

plasma levels of antithrombin, PC, PS free and PS total. 

 

Approach and Results: Study participants were of European and African ancestries and 

genotype data were imputed to TOPMed, a dense multi-ancestry reference panel. Each of 10 

studies conducted a GWAS for each phenotype and summary results were meta-analyzed, 

stratified by ancestry. We also conducted transcriptome-wide association analyses and multi-

phenotype analysis to discover additional associations. Novel GWAS findings were validated by 

in vitro functional experiments. Mendelian randomization was performed to assess the causal 

relationship between these proteins and cardiovascular outcomes. 

 

GWAS meta-analyses identified 4 newly associated loci: 3 with antithrombin levels (GCKR, 

BAZ1B, and HP-TXNL4B) and 1 with PS levels (ORM1-ORM2). TWAS identified 3 newly 

associated genes: 1 with antithrombin level (FCGRT), 1 with PC (GOLM2), and 1 with PS 

(MYL7). In addition, we replicated 7 independent loci reported in previous studies. Functional 

experiments provided evidence for the involvement of GCKR, SNX17, and HP genes in 

antithrombin regulation.  
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Conclusion: The use of larger sample sizes, diverse populations, and a denser imputation 

reference panel allowed the detection of 7 novel genomic loci associated with plasma 

antithrombin, PC, and PS levels. 

 

ABBREVIATIONS 

TOPMed: Trans-Omic for Precision Medicine  

PC: protein C 

PS: protein S 

VTE: venous thromboembolism 

CAD: coronary artery disease 

PAD: peripheral artery disease 

IS: ischemic stroke 

GWAS: genome-wide association study 

TWAS: transcription-wide association study 

EA: European ancestry  

AA: African ancestry 

eQTL: expression quantitative trait locus 
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INTRODUCTION 

Antithrombin, protein C (PC), and protein S (PS) are circulating anticoagulant proteins, and low 

levels or low activity of these proteins are associated with the risk of venous thromboembolism 

(VTE)1-5. Variation in the protein-coding genes for antithrombin, PC, and PS (SERPINC1, 

PROC, and PROS1, respectively)6-8 has been studied for decades, and rare mutations have 

been associated both with low protein levels and with risk of VTE6,9-12. There have been at least 

6 agnostic genome-wide association studies (GWAS) for antithrombin, PC, and PS, with sample 

sizes ranging from 351 (GAIT, antithrombin) to 13,968 (ARIC, PC). For antithrombin, no 

additional genome-wide significant loci beyond SERPINC1 were identified13,14. For PC, 

significant loci at the GCKR and BAZ1B genes had been identified in European ancestry (EA) 

populations15,16, and the CELSR2-PSRC1-SORT1, PROC and PROCR loci were identified in 

both EA and African ancestry (AA) populations14,16-18. For PS, no genome-wide significant 

associations have been found. In this report, using larger sample sizes, diverse populations, 

and a denser imputation reference panel, we sought to identify novel genomic loci associated 

with plasma antithrombin, PC, and PS levels. 

 

METHODS 

Overview 

We used densely imputed genotypes to perform cross-ancestry (antithrombin and PC) and EA-

only (PS) GWAS meta-analyses and attempted replication of the lead variants using available 

summary data from a proteomics-based study19. This was followed by a multi-phenotype 

analysis and transcriptome-wide association analyses (TWAS) in EA individuals. For 

characterization and prioritization of genes, we used colocalization and fine-mapping analyses, 

and novel GWAS findings were functionally interrogated. Last, we conducted Mendelian 

randomization (MR) analyses to assess causal relationships with cardiovascular clinical events. 

Figure 1 is a schematic summarizing our approach. 
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Study Design and Participating Studies 

The setting for the meta-analysis is the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) Consortium Hemostasis Working Group20. We included data from 10 

studies from the US and Europe that measured 1 or more of the 3 natural anticoagulants in 

plasma, by antigen or activity methods. Study details including genotype and phenotype 

measurement, study design, population, and baseline time are found in Supplemental Tables 

S1, S2, and Supplementary Materials14,16,21-31. In total, 27,606 EA and 2,688 AA participants 

were included. All studies were approved by appropriate research ethics committees and all 

participants provided informed consent. 

 

Discovery Analysis 

Study-Specific Genome-Wide Association Analyses 

Each study imputed measured genotypes to the Trans-Omic for Precision Medicine (TOPMed) 

reference panel before association analyses32. Study-specific quality control was implemented 

before the analysis. Details about genotyping platforms and specific quality control parameters 

can be found in Supplementary Table S2. Each study followed a common analysis plan that 

required performing linear regression within each ancestry group, adjusting for sex, age, 

principal components, and study-specific variables, which included a kinship matrix when 

necessary to account for family structure. Residuals from regression were inverse-normal 

transformed and were re-scaled by the standard deviation (SD) of the pre-transformed values 

for antithrombin and PS. Because different studies had different unit measures for PC, we did 

not re-scale by SD, and used the inverse-normal transformed levels for the PC analyses. Details 

of the measures of the 3 natural anticoagulants can be found in Supplemental Table S2. 

Associations with imputed genotypes were then tested using an additive genetic model between 

each imputed dosage and the residuals for each re-scaled (antithrombin, PS) or inverse-normal 

transformed (PC) phenotype using linear regression and adjusting for all the covariates used in 
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the phenotype regression. The X chromosome was additionally stratified by sex where women 

and men were coded as 0, 1, 2 and 0, 2, respectively. 

 

Population-Specific and Cross-Ancestry Meta-Analysis 

Quality control across studies was conducted using EasyQC33. Details of meta-analysis quality 

control can be found in Supplementary Materials. We meta-analyzed study-level summary 

results, first by phenotype measure (antigen or activity), then by ancestry. Only variants 

appearing in at least 2 cohorts were retained in the final meta-analyses. Cross-ancestry meta-

analyses were conducted on those phenotypes that included EA and AA participants (AT and 

PC). Meta-analyses were performed by 2 analysts in parallel. 

 

The significance threshold34 was set at 5 x 10-9. A locus was defined as 1 Mb upstream and 

downstream of the variant with the lowest p-value. Genome-wide significant variants with MAF < 

1%, present in 2 cohorts or less, or with inconsistent beta directions between cohorts were not 

considered. 

 

Conditional Analysis 

We performed approximate conditional and joint analyses for all variants with MAF > 1% using 

summary statistics from ancestry-specific meta-analyses using COJO (Conditional & Joint; 

gcta—cojo--slct)35, implemented in the Genome-Wide Complex Trait Analysis (GCTA) 

software36, to identify additional independent signals at the associated loci. 

 

Replication 

We sought for replication of associations for the identified lead variants in an external dataset, 

using available summary data from DeCODE Genetics (available at 

https://www.decode.com/summarydata/)19. DeCODE Genetics used the SOMAscan multiplexed 
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proteomics assay to obtain proteomic measurements on 35,559 individuals of Icelandic origin, 

for which antithrombin, PC and PS data is available. The significance threshold p-value of the 

replication cohort was set at 4.2 x 10-3, after correcting for the number of identified lead variants 

(n = 12; 0.05/12 = 4.2 x 10-3). 

 

Transcriptome-Wide Association Analyses 

We used GWAS results and S-PrediXcan and S-MultiXcan37,38 to perform transcriptome-wide 

analyses for each phenotype within the EA populations in order to infer significant associations 

between the cis component of gene expression and the phenotypes. See detailed methods in 

Supplementary methods. Only tissues with a potential role in the synthesis or regulation of 

anticoagulants proteins (artery aorta, artery coronary, artery tibial, liver and whole blood) were 

considered to reduce false positives from more distally related tissues. The significance 

threshold was established as a Bonferroni correction to the number of genes interrogated: up to 

66,745 genes/0.05 = 7.5 x 10-7. 

 

Multi-Phenotype Meta-Analysis 

We jointly analyzed the 4 meta-analyses results (cross-ancestry meta-analyses for antithrombin 

and PC, and the 2 EA PS meta-analyses) using a multi-phenotype method implemented in the 

metaUSAT R package 1.1739. Significant multi-phenotype associations were defined as any 

genome-wide significant lead variants in the multivariate analysis (p-valuesmultivariate for the lead 

variant < 5 x 10-9), that were also nominally significant in a least 2 of the phenotypes individually 

(p-valueunivariate < 0.005)40. Additionally, we considered novel variants to be those that were not 

genome-wide significant for any of the 4 phenotypes individually, or that had not been 

associated with antithrombin, PC, PS free or total in a previous GWAS for antithrombin, PC, PS 

free or total. Lead variants for each phenotype found in the discovery (Table 1) were queried 

using the HaploR R package v4.0.6 to extract functional annotations and biological information 
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(Table 1 and Supplementary Table S3). Further details are reported in Supplementary 

Methods. 

 

Characterization and Prioritization of Candidate Loci 

Fine-Mapping and Colocalization 

To prioritize causal genes among those residing at associated locus, we performed fine-

mapping and colocalization. Detailed methods for fine-mapping and colocalization can be found 

in the Supplementary Methods. 

 

In vitro Functional Validation 

Functional validation of prioritized candidates was performed by in vitro silencing of candidate 

genes in a liver-derived hepatoblastoma cell (HepG2) expression system. Briefly, HepG2 cells 

were reverse transfected with small interfering RNA (siRNA) against candidate genes. Cells 

were counted, and target proteins and genes were characterized by immunoblot of cell 

supernatants and RT-qPCR, respectively. Normalized, log transformed data were compared 

using one-way ANOVA with Dunnett’s multiple comparisons test. Details on cell culture, 

transfection, RNA extraction, RT-qPCR, and immunoblotting methods can be found in 

Supplementary Methods. 

 

 

Mendelian Randomization 

Two-sample summary statistics-based MR was used to assess the association of genetically 

determined levels of antithrombin and PC with the risk of thrombotic outcomes, VTE41,42, 

peripheral artery disease (PAD) (31,307 cases and 211,753 controls )43, coronary artery disease 

(CAD) (60,801 cases and 123,504 controls)44, and ischemic stroke (IS) (60,341 cases and 

454,450 controls)45. Given the small proportion of variance explained by the identified PS 



10 
 

variants we did not investigate PS (PSfree and PStotal) in MR analyses because of insufficient 

number of genetic instruments. 

 

All analyses were performed using the ‘TwoSampleMR’ v0.4.26 and ‘MRPRESSO’ v1.0 R 

packages. Further details are reported in the Supplementary Methods. 

 

RESULTS 

Antithrombin activity (% or IU/mL*100, n = 26,999) or antigen (IU/mL*100; n = 932)  was 

measured in 9 cohorts, PC activity (% or IU/mL*100; n = 6,734) or antigen (μg/mL; n = 12,551) 

was measured in 8 cohorts, PS Total (PStotal) activity (% or IU/mL*100 or IU/mL; n = 5,045 ) or 

antigen (IU/mL or μg/dL; n = 1,363) was measured in 7 cohorts, and PS Free (PSfree) activity 

(μg/dL or %; n = 1,998) or antigen (IU/mL*100; n = 2,115) was measured in 6 cohorts. See 

Supplementary Table S4.  

 

Antithrombin 

GWAS: The antithrombin meta-analysis include 25,243 EA and 2,688 AA participants. After 

quality control and filtering, 80,168,840 variants remained in the meta-analysis. All λGC for 

individual GWAS were 1.04 or below for all chromosomes. Additional details about quality 

control are provided in Supplementary Table S5 and Supplementary Material. Manhattan 

plots for the overall cross-ancestry meta-analyses are shown in Figure 2. A quantile-to-quantile 

plot (QQ plot) of p-values for these variants is presented in Supplementary Figure S1 and 

Manhattan plots for the EA and AA population specific analyses are available at 

Supplementary Figure S2.  
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In total, 402 variants in 4 loci, exceeded the established genome-wide significance level in the 

cross-ancestry analysis, 394 (2 loci) in the EA-specific analysis and 57 (1 locus) in the AA-

specific analysis. Forest plots for significant variants can be found in Supplementary Figure S3. 

Loci at SNX17-GCKR-NRBP1 (2p23.3), MLXIPL-BAZ1B-BCL7B (7q11.23) and HP-TXNL4B 

(16q22.2) were new associations. The association at HP-TXNL4B (16q22.2) was only found in 

the AA population. Lead variants in the cross-ancestry meta-analysis in each region are listed in 

Table 1 along with the meta-analysis p-value, ancestry specific p-value, effect allele frequency 

(EAF), beta estimates, and closest gene. 

 

Conditional analyses using the population specific meta-analyses (Supplementary Table S6), 

identified no additional independent variants on SNX17-GCKR-NRBP1 and HP-TXNL4B 

surrounding regions. On chromosome 1 locus (SERPINC1), we found 1 variant (rs182221508, 

MAF = 0.0017) intronic to RABGAP1L gene (600 kb upstream the lead variant), that was 

independent from the lead missense variant rs2227624 on SERPINC1 gene. 

 

Supplementary Table S7 shows the lead variants with the strongest associations in the EA and 

AA meta-analyses. There was 1 significant locus in the AA population specific analysis at 

chromosomal position 16q22.2 (HP-TXNL4B), which also appeared in cross-ancestry analysis. 

In the EA-specific population analysis, the results reflected cross-ancestry findings at 1q25.1 

(SERPINC1) and 2p23.3 (SNX17-GCKR-NRBP1), with a different lead variant on chromosome 

2: rs4665972, located in an intronic region of SNX17, was the lead variant in the cross-ancestry 

analysis, while rs11127048,150 kb upstream rs4665972 and located in an intergenic region 

between SNX17 and GCKR genes was the lead variant in the EA-specific analysis. We did not 

find significant signals at 7q11.23 in the EA-specific analysis. The proportion of variance 

explained by the independent lead variants was 1.4% in EA and 4.3% in AA, of the total 

antithrombin variance. 
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All lead variants from GWAS were replicated in the deCODE summary results derived from 

SOMAscan measures of these anticoagulants, except for the lead variant of the chromosome 

16 locus, that was specific for the AA population and was not present in the DeCODE data 

(Table 1 and Supplementary Table S8). 

 

TWAS: TWAS analyses identified associated genes in 4 different loci (Figure 2A). Associations 

on chromosomes 1 (SERPINC1), 2 (GKCR) and 7 (MLXIPL), identified by the strongest 

associated gene in the TWAS, matched associated loci found in the GWAS. Additionally, the 

FCGRT gene represented a new association on chromosome 19. The smallest GWAS p-value 

for this region approached significance and was for a rare intronic variant (rs111981233) in 

FCGRT gene (Figure 2 and Supplementary Table S9) that was replicated in the DeCODE 

cohort (Table 1 and Supplementary Table S8). 

 

Fine Mapping: EA-specific fine-mapping results prioritized the SERPINC1 gene on chromosome 

1 and the NRBP1 gene on chromosome 2. Given that FOCUS only prioritizes GWAS hits at 

TWAS risk loci, loci on chromosomes 16 (only GWAS) or 19 (only TWAS) could not be further 

explored for gene prioritization. In addition, after correcting for LD and pleiotropic effects, none 

of genes in chromosome 7 locus was included in the credible set, suggesting a regulation 

mechanism that does not involve gene expression (Supplementary Table S10). 

 

Colocalization: We obtained 2 significant colocalizations in lead variants located in the new 

antithrombin loci (CPC > 0.8) and gene expression of nearby genes. On chromosome 2, 

GTF3C2-AS2 (at SNX17-GCKR-NRBP1 locus) gene expression in artery tibial tissue 

colocalized with antithrombin plasma levels and on chromosome 16 locus, HP gene expression 
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in liver and whole blood also colocalized with antithrombin plasma regulation (Supplementary 

Table S11). 

 

Functional Validation: We selected 1-3 genes per locus for functional analysis (5 genes total): 

SNX17, GCKR, NRBP1 (Chr 2), and HP (Chr 16). LCMT2 (Chr 15) was also included for its 

association in the multi-phenotype analysis at MAP1A locus. We transfected HepG2 cells with 

siRNA against each candidate gene and confirmed that target genes were knocked down more 

than 60% using RT-qPCR (data not shown). We then characterized effects of the gene 

knockdowns on cell count. Finally, we quantified antithrombin expression by immunoblot of cell 

supernatants and SERPINC1 expression by RT-qPCR. As expected, control experiments 

showed that treatment of HepG2 cells with lipofectamine (alone) or siRNA against PROC did 

not significantly alter antithrombin (protein) or SERPINC1 (gene) expression, whereas silencing 

SERPINC1 significantly suppressed antithrombin and SERPINC1 expression (Figure 4A-B). 

Quantification of immunoblots revealed that silencing GCKR enhanced, whereas silencing 

SNX17 and HP suppressed, antithrombin protein production (Figure 4A). The GCKR-

dependent increase in antithrombin was associated with a significant increase in SERPINC1 

expression, suggesting GCKR negatively regulates antithrombin gene expression (Figure 4B). 

The SNX17-dependent loss of antithrombin was associated with a significant decrease in 

SERPINC1 expression, suggesting SNX17 positively regulates antithrombin gene expression 

(Figure 4B). Interestingly, HP-dependent loss of antithrombin was not accompanied by a 

significant decrease in SERPINC1 expression (Figure 4B) suggesting that HP modifies 

antithrombin production in a post-transcriptional manner. 

 

MR analysis: We used 4 genetic instruments (Supplementary Table S12) to investigate the 

association between antithrombin levels and VTE and PAD, and 3 to investigate its association 

with CAD and IS. We detected a significant deleterious effect of genetically determined low 
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antithrombin levels and risk of VTE (IVW OR 0.84 [0.72-0.97], P-value: 0.015; Figure 3A). 

Sensitivity analyses showed consistent effect in size and direction with MR Egger, MR weighted 

median, and MR weighted mode (Supplementary Table S13 and Supplementary Figure S4). 

Leave-one-out sensitivity analyses showed homogeneity of effects among the instruments. No 

significant results were found for the association of genetically determined antithrombin levels 

with IS, CAD or PAD (Figure 3A and Supplementary Figure S4). 

 

Protein C 

GWAS: The PC meta-analysis included 16,597 EA and 2,688 AA participants. After quality 

control, 72,929,079 variants were included. All λGC for individual GWAS were 1.04 or below for 

autosomal chromosomes (1.18 for X chromosome). Additional details about quality control are 

provided in Supplementary Table S5 and Supplementary Material. 

 

Manhattan and QQ-plots showing the cross-ancestry meta-analysis results are presented in 

Figure 2 and Supplementary Figure S1, respectively. Briefly, 2,198 variants exceeded the 

genome-wide significance level in the main analysis, identifying 5 regions associated with PC 

levels. All loci, located near CELSR2-PRSC1 (1p13.3), PROC (2q14.3), SNX17-GCKR-NRBP1 

(2p23.3), MLXIPL-TBL2 (7q11.23), and PROCR (20q11.22) genes, have been previously 

reported to be associated with PC. Coefficients, p-values, ancestry stratified EAF and p-values, 

and closest genes are listed in Table 1. Forest plots of significant signals found in the GWAS 

analysis can be found at Supplementary Figure S5.  

  

In the conditional analysis at 1p13.3 (CELSR2-PRSC1), 2p23.3 (SNX17-GCKR-NRBP1), and 

7q11.23 (MLXIPL-TBL2) loci in the EA population, no additional independent variants were 

identified (Supplementary Table S6). Within the PROC locus on chromosome 2, an additional 

independent variant (rs74392719, MAF = 0.01, 300 bases upstream of the lead variant) was 
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identified in the EA population, located within the PROC gene. Finally, an additional 

independent variant (rs6060300, MAF = 0.2, 13 kb upstream of the lead variant) was found in 

the EA population, intronic to PROCR. 

 

No significant heterogeneity was found in the direction or magnitude of beta coefficients for any 

of the lead variants associated with PC, within or between ancestries. AA and EA population-

specific results are shown in Supplementary Table S7 and Supplementary Figure S2. The 

AA population analysis had findings at 2q14.3 (PROC) and 20q11.22 (PROCR); the EA 

population analysis recapitulated all the candidate loci found in cross-ancestry analysis. The 

proportion of variance explained by the identified independent variants was 12.7 % in EA and 

7.4% in AA. The lead variants at the PROCR locus (rs11907011 and rs867186) alone explain 

9.5% and 9% of the total variance in the EA and AA meta-analyses, respectively. All lead 

variants from GWAS were replicated in the DeCODE data (Table 1 and Supplementary Table 

S8). 

 

TWAS: For PC levels, TWAS (Figure 2B) identified associated genes at 6 loci, matching all loci 

found in the cross-ancestry and EA GWAS, of which, the most significant based on TWAS z-

score values were PSRC1 (chromosome 1, CELSR2-PRSC1 locus), GCKR (chromosome 2, 

SNX17-GCKR-NRBP1 locus), PROC (chromosome 2), MLXIPL (chromosome 7, MLXIPL-TBL2 

locus) and PROCR (chromosome 20). Additionally, 3 new associations with PC were found in 1 

locus on chromosome 15 for GOLM2, LCMT2 and CATSPER2 genes (Supplementary Table 

S9) (Table 1 and Supplementary Table S9). 

 

Fine Mapping: Fine-mapping results for PC prioritized the PSRC1 gene on chromosome 1, 

NRBP1 and PROC on chromosome 2 (SNX17-GCKR-NRBP1 and CELSR2-PRSC1 locus, 
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respectively), MLXIPL and TBL2 on chromosome 7 (MLXIPL-TBL2 locus), and PROCR on 

chromosome 20. (Supplementary Table S10). 

 

MR analysis: For PC, 4 variants were initially selected as genetic instruments. After examination 

of pleiotropic effects, the variant at the PROCR gene (rs1799809) was excluded to avoid 

violations of MR assumptions. Moreover, additional evidence indicates that this variant is 

strongly associated with several hemostasis and thrombosis phenotypes and has opposite 

effect directions for venous and arterial thrombosis reflecting distinct pleiotropic biological 

mechanisms18,46,47. Details of selected genetic instruments can be found in Supplementary 

Table S12. There was a significant deleterious effect of genetically determined lower PC levels 

on VTE and CAD risk (VTE IVW OR:0.83 (0.76-0.92), P-value: < 0.001; CAD IVW OR: 0.92 

(0.84-0.99), P-value: 0.031; Figure 3B). Sensitivity analyses showed consistent significant 

associations (Supplementary Table S13 and Supplementary Figure S4). No significant 

associations were found between genetically determined PC with PAD or IS (Figure 3B and 

Supplementary Figure S4). 

 

Protein S 

GWAS: The PS meta-analysis included 4,113 EA individuals in PSfree analyses and 6,408 EA 

individuals in PStotal analyses. A total of 19,791,246 variants were investigated in the analysis of 

PSfree and 25,365,467 in the analysis of PStotal. All λGC for individual GWAS were 1.04 or below 

for autosomal chromosomes (1.19 for X chromosome). Additional details about quality control 

are provided in Supplementary Table S5 and Supplementary Material. Manhattan and QQ-

plots describing the main results are shown in Figures 2C/D and Supplementary Figure S1 for 

PSfree and PStotal, and main associated variants are listed in Table 1. Forest plots of significant 

signals for PSfree and PStotal can be found in Supplementary Figure S8. 
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We identified 1 novel genome-wide significant locus associated with PSfree and PStotal near 

ORM1 and ORM2 genes (9q32) and a known association located near PROS1 gene (3q11.1) 

for PSfree. The lead variant at PROS1 locus (rs121918472, EA P-value = 2.04 x 10-16, PSfree EAF 

(G) = 0.0108) was a missense variant located in the protein S coding gene PROS1. In our 

analysis, this variant was associated with PSfree level, but genome-wide significance was not 

observed in PStotal (PStotal P-value = 2 x 10-4) although there was a consistent direction of effect. 

 

Nominally significant heterogeneity p-values were detected in the ORM1/ORM2 locus lead 

variant (PStotal Heterogeneity P-value = 0.03), indicating minor differences between the 2 

measurement methods. No additional independent variants were found with conditional 

analyses (Supplementary Table S6). The variance explained by the identified variants in PSfree 

is 6% of the total variance of PSfree while the variance explained by the unique identified variant 

in PStotal is 1% of the phenotypic variance for PStotal. 

 

Variants at both loci replicated in the DeCODE data (Table 1 and Supplementary Table S8).  

 

TWAS: PSfree TWAS results recapitulated the 2 significant GWAS associations at chromosomes 

3 (PROS1) and 9 (ORM2) and additionally revealed a new association at MYL7 gene on 

chromosome 7 (Figure 2 and Supplementary Table S9). 

Fine Mapping:  Fine-mapping results did not prioritize any genes for PSfree or PStotal. 

 

Colocalization: There was a significant colocalization for both PS phenotypes and ORM2 gene 

expression in liver (Supplementary Table S11). 

 

MR analysis: Given the small proportion of variance explained by the limited number of genetic 

instruments (< 3), we did not investigate PS (PSfree and PStotal) in MR analyses.  
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Antithrombin, Protein C and S Multi-phenotype Analysis  

Multi-phenotype analyses between antithrombin, PC, PSfree and PStotal revealed 1 additional 

novel GWAS association close to the MAP1A gene48, on chromosome 15 (Table 1), found in 

the PC TWAS (GOLM2-LCMT2-CATSPER2 locus in PC). The lead variant is a missense 

variant on the MAP1A gene (rs55707100, P-value = 1.64 x 10-13, EAF EA [T] = 0.03, EAF AA [T] 

= 0.0042) that was nominally associated in the GWAS for antithrombin and PC individually 

(antithrombin P-value = 1.04 x 10-6, PC P-value = 4.76 x 10-8) and was not significantly 

associated to either of the PS phenotypes (PStotal P-value = 0.2717, PSfree P-value = 0.9937). 

The colocalization results were significant (CPC > 0.8) between antithrombin and PC, 

suggesting the existence of a common variant as regulator of both phenotypes. 

 

DISCUSSION 

In this study, we performed GWAS for 4 natural anticoagulant hemostasis phenotypes 

(antithrombin, PC, PStotal, PSfree) using larger sample sizes and better imputation panels than 

previously reported and detected 4 novel associations: 3 loci for antithrombin (SNX17-GCKR-

NRBP1, MLXIPL-BAZ1B-BCL7B, and HP-TXNL4B) and 1 locus for PS (ORM1-ORM2). For 3 

genes within the newly associated loci with antithrombin (SNX17, GCKR, and HP), in vitro gene 

silencing in liver cell experiments provided functional evidence. Using TWAS methods, we 

detected 3 more novel associations that did not reach significance in individual GWAS: FCGRT 

for antithrombin; GOLM2 for PC; and MYL7 for PS. Using MR, we also identified a causal 

relationship of antithrombin and PC levels with VTE, and of PC levels with CAD. This 

investigation elucidated genetic regulation of the anticoagulant pathway and provides new 

information that could identify therapeutic targets in VTE prevention or treatment. 
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Additionally, we replicated 7 known loci. These loci are SERPINC1 for antithrombin6; CELSR2-

PRSC116, PROC14,16,17, SNX17-GCKR-NRBP114,16, MLXIPL-TBL214,16  and PROCR14,16-18 for PC; 

and PROS1 for PS8. Two of the PC loci, SNX17-GCKR-NRBP1 and MLXIPL-BAZ1B-BCL7B-

TBL2, also had novel associations with antithrombin, demonstrating some genetic overlap 

between different anticoagulant proteins. This was also reflected in the multi-phenotype analysis 

results where MAP1A was identified. 

 

Characterization of Novel Loci 

Antithrombin-associated Loci 

More than 45 rare variants within the SERPINC1 gene have already been described using non-

GWAS approaches49. Our lead variant, rs2227624, is a known missense variant causing a Val 

to Glu amino-acid substitution that leads to antithrombin deficiency50-52  and increases risk of 

VTE53. We identified a second independent variant at this locus at RAPBGAP1L and believe this 

rare variant is likely in LD with a SERPINC1 variant but we were unable to demonstrate this due 

to the limitation of the CGTA conditional analyses.  

 

On chromosome 2, lead variants in locus SNX17-GCKR-NRBP1 differed by ancestry. In the 

cross-ancestry analysis, rs4665972 was in an intronic region of SNX17 whereas, in the EA-

specific analysis, the lead variant (rs11127048) was located in an intergenic region between the 

SNX17 and GCKR genes. Neither rs4665972 nor rs11127048 were significant in AA population 

suggesting that these variants are tagging an association within a large LD block in EA 

population. Consistent with this observation, conditional results indicate that the lead variant 

(rs4665972) is the only independent variant on this locus. Given limited power in the AA-specific 

analysis, we could not refine the region with AA data (Supplementary Figure S10). 
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Functional validation in liver-derived cells suggest that SNX17 positively, and GCKR negatively, 

alters plasma antithrombin levels via effects on SERPINC1 expression. In contrast, HP appears 

to suppress antithrombin levels through an as-yet unidentified post-transcriptional mechanism. 

 

SNX17 is a regulator of low density lipoprotein (LDL) receptors54 and has not been previously 

associated to antithrombin levels but has been associated with CAD55,56. GCKR is a highly 

pleiotropic gene, that has been found significantly associated to PC15,16, Factor VII (FVII)57, 

Factor XI (FXI)58 and C-reactive protein (CRP)59,60 in previous GWAS meta-analyses. In 

previous candidate gene studies61-63, variant rs1260326 in GCKR was found to be related to 

multiple cardiometabolic traits, including total and LDL cholesterol, fasting plasma glucose, liver 

fat content and metabolic syndrome, suggesting that GCKR might act as a broad regulator of 

hepatocyte function. 

 

On chromosome 7, the lead variant (rs13244268) was located in an intronic region of BAZ1B 

gene and was only significant in the EA population. This gene has been previously associated 

with PC15,16 and in our PC meta-analysis, but not with antithrombin. rs13244268 was also found 

significant in bivariate and univariate GWAS of CRP and high-density lipoprotein64. TWAS 

results confirmed an association between BCL7B and MLXIPL genes and antithrombin levels. 

Given the differences in LD blocks observed for this region in different populations, we sought to 

confirm the most plausible candidate genes in this locus with in vitro silencing studies in liver 

cells. Within the 3 closest genes in the region (BAZ1B, MLXIPL and BCL7B), BAZ1B and 

BCL7B are involved in chromatin remodeling and DNA repair and were not prioritized for 

functional validation. MLXIPL is a highly expressed transcription factor in liver that activates 

triglyceride synthesis in response to carbohydrates. However, this gene is substantially 

downregulated in HepG2 cells, and we therefore excluded it from further validation. As such, we 

did not have a good candidate for the functional work. 



21 
 

 

The lead variant on HP-TXNL4B locus (rs5471) was in an intronic region of the TXNL4B gene 

and 5’ UTR of the HP gene and was only significant in the AA population. Colocalization results 

performed using cross-ancestry data suggested the existence of a common regulatory variant 

between HP gene expression and antithrombin levels in liver and whole blood, and suggested 

that higher expression of HP in liver and blood were associated with higher levels of 

antithrombin in plasma. In the same direction, functional validation in HepG2 cells suggested a 

significant reduction of antithrombin levels upon HP silencing. HP codes for haptoglobin (Hp), 

which serves as a binding protein of hemoglobin, and affects the release of hemoglobin from 

red blood cells65. Its phenotype Hp2-2 was identified as a potential regulator of inflammation and 

reverse cholesterol transportation and has been suggested to have higher prevalence in VTE 

patients66-68. Binding of Hp to hemoglobin could prevent the generation of oxidized LDL69 from 

the activation pathway of free hemoglobin. Oxidized LDL could increase prothrombinase activity 

in vivo70, and affect the level of factors VII, IX and XI71. Overall, previous evidence suggests a 

potential role of Hp in the inflammation-induced thrombosis, and our results suggest HP is a 

potentially direct regulator of antithrombin production. 

 

Finally, TWAS results suggested a novel locus associated to antithrombin levels on the FCGRT 

gene. Colocalization results suggested the existence of a common regulatory variant between 

antithrombin levels and the expression of FCGRT, RPS11 and RCN3 in the aorta, tibial artery, 

and whole blood. In GWAS analysis, rs111981233 (intronic to FCGRT) nearly reached genome-

wide significance levels. FCGRT encodes a receptor that binds immunoglobulin G and transfers 

immunoglobulin G antibodies from mother to fetus across the placenta72 and previous studies 

demonstrate that FCGRT is also expressed in the liver73,74. Additional work is needed to further 

elucidate the role of this gene in antithrombin regulation. 
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Protein C-associated Loci 

We found 5 loci associated with PC in the present GWAS meta-analysis, all of which had been 

previously described. In addition, 3 genes (GOLM2, LCMT2, and CATSPER2 ) were associated 

in a novel locus on chromosome 15 in the TWAS analysis. GOLM2 encodes for a 

transmembrane protein predicted to colocalize in the Golgi apparatus with no known function; 

LCMT2 acts as a checkpoint regulator in the cell cycle; and CATSPER2 codes for a protein 

crucial for correct function of sperm cells. Interestingly, a variant near this locus was significant 

when in a multi-phenotype GWAS analysis, and colocalization results suggested the existence 

of a common variant between antithrombin and PC. The lead variant in the multi-phenotype 

analysis is a missense variant located on MAP1A gene that has been associated with lipid 

metabolism75,76  and platelet count77. MAP1A had low expression in hepatocytes and could not 

be included for further functional analyses78.  

 

Protein S-associated Loci 

For PS, genome-wide associations found at the ORM1-ORM2 locus represented novel findings 

for both PS phenotypes, and colocalization analysis suggests the existence of a common 

regulatory variant between PSfree and PStotal levels and ORM2 expression in liver. ORM1 is 

responsible for encoding acute phase plasma protein orosomucoid (ORM, also known as α1-

acid-glycoprotein, AGP), which is increased with acute inflammation79. Previous genetic results 

suggested that ORM1 was associated with thrombin generation potential80  and the discovery 

was further confirmed with in vitro experiments. ORM1 has also been associated with cell-free 

DNA levels in plasma, a surrogate marker of neutrophil extracellular traps that contribute to 

immunothrombosis81. Moreover, AGPs encoded by the ORM1 and ORM2 genes strongly bind 

to the vitamin K antagonist warfarin that reaches circulation, suggesting that these genes could 

be relevant in regulating the response to oral anticoagulation82. Supporting this hypothesis, 

ORM1, ORM2 and PROC were nominally associated with warfarin dose requirement in a study 
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of candidate gene analysis with 201 patients83. This is interesting, since it is widely known that 

one of the challenges in oral anticoagulation is the wide variation in response among patients84. 

Confirming novel genomic regulators of anticoagulant response could help explain the 

mechanisms of action of these drugs and move towards a personalized treatment based on 

genomic background. Our results suggest an involvement of ORM genes in PS regulation. 

 

MYL7, associated with PS levels in TWAS analyses, is the coding gene for myosin light chain 7, 

and is related to calcium ion binding activity85,86. Variants in this gene have been associated with 

fasting glucose levels and type II diabetes87,88  probably for their proximity to the glucokinase 

(GCK) gene, which lies 1.9 kb upstream of MYL7, and is essential for producing glucose-6-

phosphate. Variants at GCK have been associated with multiple types of diabetes and 

hemoglobin A1c measurement. 

 

Implication with for disease outcomes: 

The present MR results confirm a causal relationship between genetically determined plasma 

levels of antithrombin and PC with VTE events, and for PC with CAD outcomes. Specifically, we 

observed a 19% VTE risk increase per 1 SD decrease in antithrombin plasma levels, a 20% 

VTE risk increase per 1 SD decrease of PC plasma levels, and a 9% CAD risk increase per 1 

SD decrease in PC plasma levels. Our findings of a causal relationship of antithrombin and PC 

with VTE agree with previous epidemiological studies that report an increased VTE risk in 

individuals with deficiencies of these anticoagulants5,89,90. The causal relationship between PC 

and CAD was also reported in previous epidemiological and MR studies.91,92 Overall, these 

results support previous data suggesting that AT and PC are relevant proteins that regulate the 

risk of VTE, confirmed the causal association between PC levels and CAD, and corroborated 

that intervention in the anticoagulant system could be considered for VTE or CAD prevention93,94. 
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Strengths and limitations: 

A major strength of this study is in the modestly large sample size, including around 30,000 

individuals, compared with more limited studies in the previous discovery efforts. Additionally, 

the TOPMed imputation panel, provides better imputation quality for low-frequency variants 

compared with previous panels, which increases our power to detect rare variation. However, 

the present study was not designed to provide a detailed evaluation of rare variation within 

coding genes, and some rare variants within these genes were excluded from the analyses if 

they were presented in less than 2 cohorts. Larger studies combined with whole genome 

sequencing data will help identify novel rare (familial) associations for these phenotypes and 

may provide better instruments that will improve the power for MR studies.  

 

Inclusion of AA ancestry individuals has allowed the identification of novel associated loci for 

antithrombin in this population. There is a recent debate 95-97 on transferability of results from 

GWAS studies to non-European populations, given the overwhelming majority of GWAS results 

in EA populations for most phenotypes. Although our sample was predominantly of EA, we were 

able to observe differences in LD blocks between EA and AA ancestry groups, which allowed us 

to detect novel associations in variants with lower frequency in the EA population, and to refine 

loci where the linkage blocks differed between ancestries. However, some of the follow-up 

methods (TWAS, approximate conditional analyses) depend on population reference panels 

and were limited to the EA population.  

 

Finally, to reduce the risk of false positives, we used a stringent significance threshold (5 x 10-9), 

sought replication of the main findings in an external proteomics cohort, and provided additional 

post-GWAS evidence for our novel findings. We included functional validation using in vitro 

silencing to provide evidence for causality of candidate genes and help understand the 

biological mechanism. We believe this strengthens the credibility of our results. However, liver 
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cell-derived expression system is only able to assess effects of candidate genes on synthetic 

mechanisms (e.g., transcription, translation), and is not able to assess potential effects on 

protein stability and/or clearance. Thus, genes that did not demonstrate an effect, as well as 

genes that were not selected for testing in this system, could regulate circulating anticoagulant 

protein expression via synthesis-independent mechanisms. 

 

Summary: 

Using cross-ancestry GWAS and TWAS methods, we report 7 novel associations for 

antithrombin, PC, and PS plasma levels: 4 novel loci regulating antithrombin plasma levels, 2 

novel loci regulating PS plasma levels, and 1 novel locus regulating PC plasma levels. Post-

GWAS analyses and functional work suggest both SNX17 and GCKR are regulators of 

antithrombin on the chromosome 2 locus and validate an AA-specific HP gene locus. MR 

analyses provided evidence implicating low antithrombin levels in VTE risk and low PC levels in 

VTE and CAD risk. Overall, our findings identified novel pathways regulating the main 

anticoagulant proteins in hemostasis and strengthen their implication on disease outcomes. 
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Table 1.  GWAS and post-GWAS evidence of candidate genes 

 
A1: Effect Allele; A2: Other Allele; AA: African ancestry; EA: European ancestry; IV: Intronic Variant; MV: missense variant; 3’UTR: 3 Prime Untranslated Region; 5’UTR: 5 Prime 
Untranslated Region; PST: protein S total; PSF: protein S free. 

GWAS Evidence Status Post-GWAS Evidence 

Chr:Pos:A1:A2 rsID EAF Beta (Std Err) N P-value Consequence  TWAS Fine mapping Colocalization 
Functional 

work 
Antithrombin 

1:173914872:A:T rs2227624 
0.9940 
0.9940 EA 
0.9994 AA 

8.13 (0.2) 
24414 EA 
2688 AA 

5.31 x 10-19 
3.33 x 10-19 EA 
0.6572 AA 

MV to SERPINC1 Known association 

SERPINC1 
ZBTB3 DARS2 

RABGAP1L 
TNN 

SERPINC1 TNN - SERPINC1 

2:27375230:T:C rs4665972 
0.4433 
0.4471 EA 
0.0858 AA 

0.98 (0.1) 
25242 EA 
2688 AA 

6.74 x 10-16 
7.87 x 10-16 EA 
0.5485 AA 

IV to SNX17 
Novel GWAS Association with replication 

(3.16 x 10-6) 
GCKR NRBP1 GTF3C2-AS2 SNX17 GCKR 

7:73497513:T:C rs13244268 
0.8911 
0.8899 EA 
0.9568 AA 

1.14 (0.2) 
25095 EA 
2688 AA 

3.91 x 10-9 
5.88 x 10-9 EA 
0.3644 AA 

IV to BAZ1B 
Novel GWAS Association with replication 

(0.0017) 
MLXIPL 
BCL7B 

- - - 

16:72054562:A:C rs5471 
0.8744 
0.9929 EA 
0.8659 AA 

9.82 (0.92) 
12774 EA 
2688 AA 

1.72 x 10-26 
0.0031 EA 
1.37 x 10-24 AA 

IV to TXNL4B ; 5’ UTR to HP Novel GWAS association - - HP HP 

19:49513222:T:G rs111981233 
0.9917 
0.9162 EA 
0.9611 AA 

-1.12 (0.22) 
25095 EA 
2688 AA 

3.23 x 10-7 
3.28 x 10-7 
0.7230 AA 

IV to FCGRT Novel TWAS association FCGRT - FCGRT RCN3 RPS11 - 

Protein C 

1:109274968:T:G rs12740374 
0.2256 
0.2198 EA 
0.2585 AA 

-0.09 (0.01) 
15556 EA 
2688 AA 

1.52 x 10-13 
1.09 x 10-10 EA 
2.07 x 10-4 AA 

3’ UTR to CELSR2 Known association 
PSRC1 
PSMA5 

PSRC1 - - 

2:127418299:A:G rs1799809 
0.5400 
0.5689 EA 
0.6802 AA 

0.20 (0.01) 
16597 EA 
2688 AA 

1.71 x 10-90 
5.10 x 10-83 EA 
1.11 x 10-8 AA 

0.1 KB 5’ to PROC Known association PROC PROC - - 

2:27375230:T:C rs4665972 
0.4055 
0.4202 EA 
0.0858 AA 

0.11 (0.01) 
16597 EA 
2688 AA 

7.10 x 10-24 
1.78 x 10-23 EA 
0.1361 AA 

IV to SNX17 Known association 

GCKR PPM1G 
NRBP1 

KRTCAP3 
SLC4A1AP 

C2org16 

NRBP1 - - 

7:73625076:C:G rs35493868 
0.8104 
0.8049 EA 
0.8547 AA 

0.08 (0.01) 
16597 EA 
2688 AA 

5.87 x 10-10 
8.64 x 10-10 EA 
0.2170 AA 

2KB 5’ to MLXIPL Known association MLXIPL 
MLXIPL 

TBL2 
- - 

15:42980693:T:C rs529330569 
0.0059 
0.006 EA 
0.0004 AA 

0.46 (0.08) 
15341 EA 
2688 AA 

1.2 x 10-8 
5.31 x 10-9 EA 
0.4336 AA 

IV to UBR1 Novel TWAS association 
GOLM2 
LCMT2 

CATSPER2 
LCMT2 - - 

20:35179967:T:C rs11907011 
0.0912 
0.0941 EA 
0.0635 AA 

0.74 (0.02) 
16597 EA 
2688 AA 

4.72 x 10-395 
6.99 x 10-362 EA 
1.23 x 10-33 AA 

IV to PROCR Known association PROCR PROCR - - 

Protein S 
3:93868695:T:C rs528128538 0.0108 -27.92 (3.4) 4006 2.04 x 10-16 1KB 5’ to PROS1 Known association PROS1 - - No Model 

7:444568571:T:C rs141292869 0.0031 22.13 (5.26) 3718 2.54 x 10-5 IV to DDX56 Novel TWAS association MYL7 - - No Model 

9:114321523:A:C rs150611042 0.0883 -8.12 (0.89) 4006 9.24 x 10-20 2KB 5’ to ORM1 
Novel GWAS association with replication 

(7.53 x 10-102) 
ORM2 - - No Model 

7:45231101:A:T rs59569024 0.0015 -57.92 (13.4) 1975 1.54 x 10-5 380KB 5’ to MYL7 Novel TWAS association  - - No Model 

9:114321523:A:C rs150611042 0.0808 -6.14 (0.76) 6257 7.65 x 10-16 2KB 5’ to ORM1 
Novel GWAS association with replication 

(7.53 x 10-102) 
- - - No Model 

Multiphenotype 

15:43528519:T:C rs55707100 
0.0339 
0.0344 EA 
0.0034 AA 

- 
51955 EA 
5376 AA 

1.64 x 10-13 MV to MAP1A Novel Multi-phenotype association - - - - 
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Figure 1. Schematic view of the analysis’s workflow
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Figure 2. Manhattan plots for discovery meta-analyses of GWAS (up) and TWAS (down) results (A) Antithrombin (B) Protein C (C) Protein S Free 
(D) Protein S Total. Dots represent all allelic variants (GWAS) or genes (TWAS) sorted by chromosome and position throughout the X-axis. 
Y-axis report inverse log transformed p-value for the associations.
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Figure 3. Forest plot showing inverse variance weighted mendelian randomization results for multiple 
outcomes using antithrombin (A) and protein C (B) as exposure. Squares indicate OR (95% CI). 
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Figure 4. Knockdown of GCKR, SNX17, and HP alter antithrombin production in HepG2 cells. A) 
Antithrombin secreted into the culture supernatant was detected by immunoblot (upper) and quantified by 
densitometry (lower). B) SERPINC1 expression was measured by RT-qPCR. Bars and error bars indicate 
mean and standard error of the mean; Numbers indicate biological replicates; *P-value < 0.05; ***P-value 
< 0.0005; ****P-value < 0.0001 


