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Abstract: Inpainting is a task undertaken to fill in damaged or missing parts of an image or video frame, with 

believable content. The aim of this operation is to realistically complete images or frames of videos for a variety of 

applications such as conservation and restoration of art, editing images and videos for aesthetic purposes, but might 

cause malpractices such as evidence tampering. From the image and video editing perspective, inpainting is used 

mainly in the context of generating content to fill the gaps left after removing a particular object from the image or the 

video. Video Inpainting, an extension of Image Inpainting, is a much more challenging task due to the constraint added 

by the time dimension. Several techniques do exist that achieve the task of removing an object from a given video, but 

they are still in a nascent stage. The major objective of this paper is to study the available approaches of inpainting and 

propose a solution to the limitations of existing inpainting techniques. After studying existing inpainting techniques, we 

realized that most of them make use of a ground truth frame to generate plausible results. A 'ground truth' frame is an 

image without the target object or in other words, an image that provides maximum information about the background, 

which is then used to fill spaces after object removal. In this paper, we propose an approach where there is no 

requirement of a 'ground truth' frame, provided that the video has enough contexts available about the background that 

is to be recreated. We would be using frames from the video in hand, to gather context for the background. As the 

position of the target object to be removed will vary from one frame to the next, each subsequent frame will reveal the 

region that was initially behind the object, and provide more information about the background as a whole. Later, we 

have also discussed the potential limitations of our approach and some workarounds for the same, while showing the 

direction for further research.  

 

Index Terms: Object Removal, Image Inpainting, Video Inpainting, Background Regeneration, Autoencoders. 
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1. Introduction 

Video editing is crucial in many walks of life today. From educational videos for toddlers to tampering criminal 

evidence, the applications of removing objects from videos are wide. Often, while preparing tutorial videos, or videos of 

presentations, there are disturbances in the frame which distract the viewer. Something as simple as a water bottle may 

cause the focus to shift from the presenter. In making a video summary or documenting work on a project in the form of 

a video, it may so happen that while shooting, the camera captures some unwanted or unrelated objects. Also, some 

universities ask their prospective students to send in their applications along with a video just as many companies 

schedule video interviews for employees. In such a make or break situation the video mustn't contain any objectionable 

material.  

For the millennial generation, photo and video editing go hand-in-hand with having a good online presence. If 

someone participates in adventure sports and would like to show it off using a video, they wouldn't want anything else 

to capture the viewers' attention. Thus, there are instances of people removing unwanted objects from photos and videos 

of their vacations. Such an application also has the potential to tamper crucial criminal evidence or CCTV footage. 

Hence, this technology too has applications falling in the darker side and can be misused if it falls in bad hands. 

This major objective of this paper is to develop an architecture that will successfully remove a target object from a 

given video and regenerate the background of the removed object while maintaining consistency with the rest of the 

video. To study the available systems, existing solutions and their limitations; through research is carried out in the 

literature survey section. In our unique contribution, we will be training an Autoencoder network to detect the object in 

the frames of the video, remove the object, and inpaint the missing region in the frame. Our approach to achieve this 

will require a set of reference images of the object to be removed, and a video which contains the object. The encoders 

are used for learning the features and representations of the inputs. In this case, we will have two sets of inputs; an input 

video and a set of reference images of the target object. The encoder will be tasked with learning the features of the 

background and the target object from the input video frames and reference images respectively. The decoder will then 

locate the object in the video frame, fade out its presence, and recreate the background by varying multiple loss 

functions. The output will be a video from which the target object has been successfully removed and no signs of 

editing or tampering are obvious to the viewer. Such an implementation will not only have a variety of applications but 

will also be a major contribution to the video inpainting domain which is still nascent. Additionally, our novel approach 

to the task of removing objects from a video will work even if a ground truth frame is not available. For a given video, a 

‘ground truth’ frame is a frame where the object that is to be removed is absent, thereby containing the maximum 

possible information about the background.  

The remaining sections of the paper are organized as follows: the existing techniques to achieve the same goal are 

discussed in the following section. Later, we elaborate on our proposed methodology and some of its potential 

limitations. Prospective countermeasures to overcome said limitations are described and a pathway to further 

exploration is shown.  

2. Literature Review 

Inpainting is an operation done to realistically complete images or video frames and restore corrupted parts if any. 

Consequently, it is frequently used for restoring ancient photographs. Keeping in mind the objective of this paper – 

removing objects from a video and regenerating the background, inpainting can be used to recreate the background after 

the object has been removed from the video frames. Video Inpainting is an extension of Image Inpainting and has an 

added time dimension.  

DeepFakes are a relatively modern phenomenon in which a person present in a photo or video is replaced by other 

using Deep Learning techniques. In the process of creating DeepFakes, a set of images of faces of the people in the 

video, both source and target, are learned by the model in order to implement the swap. The model learns the facial 

features to detect the person and then modify the features of the source image. The proposed architecture extends the 

idea of learning features similar to the ones used for DeepFake creation. Thus, to have a profound understanding of 

existing inpainting techniques, both for images and videos, as well as the best models of DeepFake creation, we 

conducted a three-fold literature survey to determine a base model for our paper. The table 1 provides an overview of 

various research papers, the techniques used for Image inpainting. For the illustration purpose the benefits of each 

method over other techniques, and their limitations is discussed in detailed. 
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Table 1. A comparison of existing Image Inpainting techniques. 

[1] Context Encoders: 
Feature Learning by 

Inpainting 

Objectives  A context encoder is used, instead of a traditional encoder architecture, that combines 
semantics of the visual structures along with the appearance 

 Given a mask as an input that indicates the missing region, the context information of the 

features is encoded 

 The decoder uses the feature representation to predict missing content 

Benefits  Fills in missing regions where it can get hints from the nearby pixels 

 Semantic inpainting and feature learning enable filling missing regions, even if the ground 
truth is not known to the model. This, however, results in blurry output 

Limitations  Does not work for irregular holes because encoder considers the structure of the hole only 
during training, not inference 

 Results in blurry, distorted images as the CNN does not learn information from regions at a 
spatial distance from the hole in the image 

[2] Semantic Image 
Inpainting with Deep 

Generative Models 

Objectives  Model is trained to learn from a large number of surrounding pixels and derive context 

 Missing content is predicted using context and prior losses 

Benefits  Works well for large or arbitrary regions without retraining the model as is the case with 

context encoders 

 Can fill the missing region even in the absence of input masks for the missing region 

 The inference is drawn regardless of the structure of the missing region 

Limitations  Fails if there is no information about the region to be reconstructed 

 The model works well for simple structures such as faces but isn’t dense enough for complex 
scenes 

[3] Generative Face 

Completion 

Objectives  Employs a generator and two discriminators to complete the facial features 

 The generator predicts an output which is then passed to the set of discriminators 

 One of them checks if it is consistent with the face, whereas the other checks for compatibility 

with the rest of the image 

Benefits  Successfully regenerate semantically coherent and visually consistent facial parts from noise 

 Works well even with varying inputs of the masks 

Limitations  The network doesn't recognize the orientation and locality of the faces in the image 

 Cannot deal with randomly cropped faces and unaligned faces 

 Does not fully comprehend the spatial correlations between adjacent pixels and details such as 

lip color 

[4] General Deep 

Image Completion 

with Lightweight 
Conditional 

Generative 

Adversarial Networks 

Objectives  The training strategy generates four representative types of corruptions to enhance learning 

generalization that can complete various types of corrupted images 

Benefits  Overcomes the unstable training problem of GAN where the training time of generator and 

discriminator is different 

Limitations  Not generalized enough 

[5] Patch-Based 
Image Inpainting with 

Generative 

Adversarial Networks 

Objectives  The generator of the GAN is trained to reconstruct the missing regions 

 The generator is modified to accommodate both local continuity and holistic features 

 Adversarial loss is optimized to obtain realistic outputs 

 Searches for best fitting patch 

Benefits  Overcomes undesired artifacts and noise 

 Ensures local and global consistency 

Limitations  Training of the generator and discriminator requires different hyperparameters 

 No visual semantics 

 Limited to available image statistics 

[6] Generative Image 

Inpainting with 
Contextual Attention 

Objectives  First roughly estimates the missing content using a convolutional network with a 
reconstruction loss 

 Then uses contextual attention layers to process patches using known features 

 Contextual attention also boosts spatial coherence 

Benefits  Works well for novel structures 

 Ensures both local and global consistency 

Limitations  For very different test images, similar attention maps are returned which shows that the model 
may suffer from an optimization problem such as being stuck in a local minima 

 The reconstruction loss results in a blurry image, but cannot be ignored as it is essential in 
regularizing the GAN 

 Works for rectangular holes only 
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[7] Image Inpainting 

for Irregular Holes 
Using Partial 

Convolutions 

Objectives  Uses a Partial Convolutional Layer, comprising a masked and re-normalized convolution 
operation followed by a mask-update step  

 A binary mask is received as input and result depends only on the filled region 

 Masks are auto-updated after each step and after going through sufficient layers and updates, 
masked regions diminish 

Benefits  Works for irregular masks while overcoming color discrepancies and blurriness 

 Fills missing regions that need not be in the center of the image 

Limitations  Fails for sparsely structured images 

[8] Structural 

inpainting 

Objectives  Combines PatchGAN and Context Encoder, which requires half the input than the traditional 
encoder-decoder. The decoder takes input from a bottleneck at the end of the encoder 

producing the half-sized output  

 Model is trained to reconstruct the half-sized square central part of a square natural-color 

image, that is the part being greyed out in the network's input 

 The loss is a combination of spatial pixel distance and feature space 

Benefits  Overcomes blurriness 

 Gives better results by combining PatchGANs and Context Encoders 

Limitations  

[9] Probabilistic 

Semantic Inpainting 
with Pixel 

Constrained CNNs 

Objectives  Focuses not only on creating a diverse number of plausible inpaintings but also match pixel 
constraints and pick the most likely outcome 

 Model is based on sampling each pixel in an image conditioned on all the previously sampled 
pixels 

 Inputs are the whole image and a masked version of the image 

Benefits  Able to generate multiple samples as a single task 

 Exhibits high sample diversity 

 Details such as facial symmetry and eye color are maintained 

Limitations  Computationally intensive training and sampling 

 Slow to train thus limiting application to large scale images 

 Requires as many forward passes as there are pixels in the image which is much more than 

convention 

[10] Deep Inception 

Generative Network 

for Cognitive Image 
Inpainting 

Objectives  Adopts a network-in-network approach 

 Utilize more complex structures to abstract the data within diverse receptive fields and explore 
enough cognitive understanding 

 The model has to decide based on broken artifacts what the target image is. Human vision can 

do it, computer vision not always 

Benefits  Inpainting is no longer restricted to regular shape masks and rectangular regions 

 Robust for arbitrary completion including custom draw-in masks 

 Improves computer vision cognition 

[11] Progressive 

Image Inpainting with 

Full-Resolution 
Residual Network 

Objectives  The strategy is that intermediate restorations should be of high quality to restrict error 
propagation 

 Consists of a full resolution residual (FRR) network, an N blocks 1 dilation strategy for mask 
updating and step losses 

 FRR Blocks maintains a full resolution branch for feature integration, and texture prediction  

 Assigning more FRR Blocks in a single mask updating step improves results 

 Step loss accounts for intermediate restoration 

Benefits  Extends progressive inpainting strategy to irregular holes, and enables full utilization of prior 
information about data distribution 

 Proven to avoid vanishing gradient problem 

[12] High-Resolution 

Image Inpainting 

Using Multi-Scale 

Neural Patch 

Synthesis 

Objectives  Joint optimization of global image content and local textures which predicts recurring details 
by matching and adjusting patches 

 Features extracted from middle convolution layers used to recreate missing content 

 Consists of a content network that takes an input image with the central region removed, a 
texture network that produces neural patches similar to neighbors, and a joint loss function  

Benefits  Introduction of the texture network drives the generation of high-frequency details while the 
content network maintains global consistency 

 Can also be used for denoising, superresolution, retargeting, and so on 

Limitations  Takes a long time to achieve desired results 

 Sometimes introduces discontinuities or artifacts 
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[13] Free-Form Image 

Inpainting With Gated 
Convolution 

Objectives  Introduces a new patch-based spectral normalization GAN loss that is formulated by applying 
the discriminator on image patches, trains faster and more stable 

 Gated convolutions used instead of vanilla convolutions to avoid ambiguity during training due 
to valid and invalid pixels in masked regions 

Benefits  Provides a learnable dynamic feature selection framework for each channel at the spatial 
location instead of treating all input pixels as valid like vanilla convolutions 

 Generates higher quality, more flexible outputs 

Limitations  Gated convolutions require additional parameters and model needs to be slimmed 

[14] Foreground-

Aware Image 

Inpainting 

Objectives  Learns foreground first, then inpaints. Foreground contour is detected, completed and then the 

whole image is completed 

 Completed contour, along with the input image then guides to fill other holes 

 Multiple loss functions such as focal loss to rank the pixels by their importance, SN-GAN loss 

to obtain sharper results, content loss, and adversarial loss. However, content and adversarial 
losses are not applied simultaneously and curriculum training is used 

Benefits  Uses contour prediction to guide inpainting as other learning-based methods may not predict 
the areas where holes overlap or touch foreground objects as they are trained to fill random 

masks 

[15] EdgeConnect: 

Generative Image 
Inpainting with 

Adversarial Edge 
Learning 

Objectives  Generates edges first, then image completion. Separate networks for each task, both of an 
adversarial framework, first to predict edges and then adjust RGB pixel intensities accordingly 

 Edge generator follows a GAN architecture where the generator uses dilated convolutions and 
discriminators are PatchGAN 

 The image completion network utilizes the edge map and the incomplete input image to deduce 
the missing regions by combining the original background and predicted edges, and uses a 
perceptual loss with style loss 

Benefits  Maximizing patch similarity or propagating background data sometimes fails to reconstruct 
complex details or leave blurry object outlines. In such cases, the edge generation approach 

works best 

Limitations  When edge maps are provided by multiple images, the output tends to share characteristics of 
both images 

 Edge generation fails in highly textured areas or in cases of large arbitrary holes 

 

We discussed the various techniques of Image Inpainting in table 1 along with their advantages and disadvantages. 

It was observed that most of these methods used generative models or generative adversarial networks, to recreate the 

missing parts of an image. The difference between these methods is in the implementation of the generative networks – 

patch-based GANs, different loss functions to optimize, novel architectures, and so on. Moreover, they all have a 

common advantage of successfully recreating the missing parts of an image even when the damaged areas are of a 

shape that has not been encountered before. The other techniques discussed are semantic in nature and include encoders 

in the form of CNNs, inception networks, and the like, which work well for irregular patches but are computationally 

intensive. 

Another vertical for our literature survey is to explore the video inpainting techniques. Video inpainting is an 

extension of image inpainting with larger search space and temporally consistent constraints. These additional 

constraints make video inpainting a much more difficult task compared to conventional image inpainting. As a result, 

the video inpainting algorithms available at present are few in number and relatively nascent. Owing to these added 

aspects specific to video inpainting, table 1 discuss the various techniques used for video inpainting, the benefits of 

those methods over others, and their limitations. 

Table 2. A comparison of existing Video Inpainting techniques. 

[16] Video inpainting 

under constrained camera 

motion 

Objectives  Holes in frames are filled by prior information from other important frames and then the 

leftover portion is filled 

 The moving objects are restored first independent of the background 

 The background is later filled in by directly copying information from other existing frames or 

by extending texture synthesis techniques to the spatiotemporal domain 

Benefits  The technique combines motion-based and spatial inpainting to produce three image mosaics 

that deal with motion as well as speed up the overall process 

Limitations  Since the background is dynamic the simple segmentation video did not replicate the current 

boundaries for moving objects in the video 

 A simple segmentation video was not able to replicate the background when the background 

was dynamic 
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[17] VORNet: Spatio-

temporally Consistent 
Video Inpainting for 

Object Removal 

Objectives  Combines the information from previous frames and generates results in the current frame. 
Prior information is collected by using the optical flow to capture background motion and 

recover the removed foreground part by warping the previous background accordingly. For the 
constantly occluded region, existing image-based inpainting models could generate plausible 

results.  

 A refinement network is designed to select and refine these candidates to derive a spatially and 
temporally consistent result.  

 Training is done using reconstruction loss, perceptual loss and two designed GAN losses to 
evaluate the quality of videos with mean square error, a learned perceptual metric and visual 
results  

Benefits  Generate visually plausible and temporally coherent results online, without post-processing 

 It generates clear videos even for diverse datasets. 

Limitations  Uses optical flow to get information from the previous frames, which results in extra execution 
time and parameters 

 Still unable to capture the object motions in detail and there is an unavoidable occlusion 
problem, which makes the warped frames blurry. 

[18] Deep Blind Video 
Decaptioning by 

Temporal Aggregation 

and Recurrence 

Objectives  A neural network model is used where the encoder takes input in the form of source frames to 

extract visible pixels. These are then fed to the decoder as input 

 Model is improved with recurrent feedback that achieves temporal coherence and provides 
knowledge about missing pixels 

Benefits  Video frames are successfully recreated even when there is a lot of activity in the video 

 Minute intricacies and textures are regenerated even if there is frequent change in lighting 

 Most effective to remove text from video 

Limitations  In case of images with solid shadows, results are blurry 

[19] Deep Flow-Guided 
Video Inpainting 

Objectives  A spatial and temporal coherent optical flow field is generated using a deep flow completion 
network. 

 Missing pixels can then be passed on and warped from available data and then small pixels can 
be filled using predictions 

Benefits  In comparison to other methods, the runtime speed is fast and no assumptions are required for 
missing regions and movement of the video content. 

Limitations  The flow of video inpainting is inaccurate on the edge of a car and similarly for other irregular 
geometrical objects 

[20] Deep Video 
Inpainting 

Objectives  Built on a model using a feed-forward deep network, a network is designed to gather and fine-
tune information from adjacent frames and recreate missing areas. 

 The output is made to be temporally coherent by a recurrent feedback and memory module 

Benefits  If sufficient memory is available, the video produces excellent results as the temporal 
consistency is improved. 

Limitations  Where there is a large occlusion in a video, the color saturates irregularly. The discrepancy 
error leads to inaccurate warping. Also, there will be cases where memory would be 

insufficient and, in such cases, results would be elusive 

[21] Frame-Recurrent 
Video Inpainting by 

Robust Optical Flow 

Inference   

Objectives  The proposed model combines ConvLSTM and motion for creating the spatio-temporal 
coherency in the input video 

 Computation is optimized by dealing with larger frame videos by streaming in real-time 

Benefits  There is no problem with video length, produces results in real-time streaming, and can deal 
with large motions. Also, the framework can produce inpainted video frames with spatial 

details and temporal coherence where the advantage lies in the strong capability of ConvLSTM 
and it can also fix up holes if the given set of input is proper which has to be fed with two 

sources of flow. 

[22] Free-form Video 

Inpainting with 3D Gated 
Convolution and 

Temporal PatchGAN 

Objectives  The generator uses a 3D convolutional layer to service the masked video by learning the 
difference between unmasked, filled, and masked areas. 

 The discriminator is a temporal Patch GAN discriminator that penalizes high-frequency 

spatial-temporal features and improves coherency by combining various losses 

Benefits  Improved on preexisting two-stage adversarial models (EdgeConnect) and patch-based 
methods of free form inpainting that had very high computation times and were limited to 

repetitive patterns. This method overcomes these limitations by modeling the distribution of 
real videos and generating realistic results only by forward inference, without searching. 

Limitations  Does not work when the video is far from training data or masked area is too thick 
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[23] Recurrent Temporal 

Aggregation Framework 
for Deep Video Inpainting 

Objectives  A deep feed-forward network with temporal aggregation and a timely propagation of useful 
information from previous reference frames in sequence 

 Video decaptioning network automatically detects and inpaints over text by residual learning 
and loss functions. Residual learning deals only with the corrupted pixels in the frames. 

Multiple frames are taken as input by the encoder, but only the middle frame is reconstructed 
to form the memory layer. Missing pixels are deduced by temporal pooling 

 The video inpainting network learns to align references onto target frames instead of following 
3D convolutions. Visible patches are then aggregated to predict missing content 

Benefits  To overcome intensive computation and dependence on previously computed motion, a 3D 
encoder-2D decoder is used so that features are traced from the video itself. 

 Video inpainting network works better than existing methods for large, arbitrary masks by 
handling dynamic content with temporal aggregation and recurrence. 

Limitations  Results are blurry in case of solid shadows 

 Where there is a large occlusion in a video, the color saturates irregularly 

 Regions not in the time frame also end up being blurry 

[24] Copy-and-Paste 
Networks for Deep Video 

Inpainting 

Objectives  The network copies pixels from reference frames and pastes them in the target frames 

 The network focuses on alignment and context matching to combine frames based on similarity 

 A self-supervised alignment network that can accommodate images with large missing areas 

 Frame by frame processing of the video wherein target frames are aligned with the references, 
pixels are copied from the reference to the copy-network, outputs of copy-network are used to 

fill missing regions, and the completed frame may be used as a reference 

Benefits  Uses affine matrix instead of optical flow so that it works for large occlusions or near-static 
objects 

 It also works for extracting pixels from temporally distant frames. 

[25] An Internal Learning 

Approach to Video 
Inpainting 

Objectives  The network follows a consistency-aware training strategy that captures motion consistency 
and traverses it across various time frames thereby handling overall consistency 

 Input is the video and mask representing known regions. A combination of the two is used to 
generate the target from a noise frame by the generator 

 Once the generator, which is an encoder-decoder network is trained, it can be used to generate 
all frames 

Benefits  Internal learning for using the recurrence of visual patterns in images. Knowledge of images is 
encoded 

 Does not require dataset hence overcomes the difference between video data and image data 

Limitations  Long processing time 

 May fail for large holes or object is mostly static with respect to the background 

 

After reviewing various video inpainting approaches in table 2, we observed that most of these techniques require 

a particular frame, called a ‘ground truth’ frame, in their dataset that already has the content which is to be recreated in 

the frames where there is damage or missing areas. The way this particular frame is used differs from one approach to 

another. Some methods use this frame for training or to learn features from it, whereas some others directly use data 

from this frame to complete the damaged frames. This frame is also used by some networks to propagate data over a 

series of subsequent frames. Thus, methods that use a ground truth frame are known to achieve good spatial as well as 

temporal consistency in their output. That being said, the presence of such a frame in every input video or dataset 

cannot be guaranteed, which creates the need for a method that doesn’t depend on such ground truth frames. 

DeepFake videos are a result of applying Deep Learning techniques to generate faces swapped videos. They do not 

require a ground truth frame for successfully producing face-swapped outputs. Thus, in our pursuit to develop a 

technique of video inpainting that bypasses the requirement of a ground truth frame, table 3 discuss the techniques used 

for DeepFake creation and detection, the benefits of those methods over other techniques, and their limitations. 

Table 3. An overview of popular DeepFake creation and detection techniques. 

[26] Deep Learning for 

Deepfakes Creation and 

Detection 

Objectives  A two encoder-decoder network is used to swap faces. Each pair trains on an image set and the 
encoder’s features are shared between the pair. Thus, the encoder learns the similarity between 

the two sets and is now able to reconstruct faces or even swap them 

 Later versions also accommodate adversarial and perpetual losses 

Benefits  Weakness cannot be exploited easily as training is much more generalized than detection 
techniques 

Limitations  Can be detected by a variety of methods if the method of creation is known to the detector 
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[27] Media Forensics and 

DeepFakes: an overview 

Objectives  The object can be spliced from a different or same image and pasted 

 Fake content can also be generated with segmentation maps, text descriptions or even sketches 
by using style transfer GANs and autoencoders 

Benefits  Some methods hide traces in the Fourier domain 

 Sometimes noise is injected in the target image. Such noise designed to fool a particular 

architecture of detectors is not transferable and lives in the crux of images 

Limitations  Can easily be detected by blind methods, one-class classifiers, and supervised methods 

 Deep learning detectors used facial asymmetry, spatio-temporal modifications in videos, 
variation in color of faces dues to blood flow for detection 

[28] Everybody Dance 
Now 

Objectives  The first method to enable motion transfer between two videos or targets by image-to-image 
translation 

 Pose detection is done and stick figures are learned, global pose normalization is done to learn 

the differences between source and target bodies, locations, and motions 

 In the generator, the mappings from localized stick figures are learned and applied to target 

with adversarial training 

 A discriminator is then used to classify the output as real or fake  

Benefits  Create novel frames instead of altering existing ones 

 Uses motion transfer among 2D subjects to mitigate the retargeting problem 

 Able to distinguish movement from appearance and transfer facial expressions 

Limitations  Fails in case of missing or noisy locations from the pose detection phase which transfer the 

errors in later stages 

 If motion speed is different in input video and videos used for training. Results in jittery 
outputs 

 Scaling does not account for the difference in length of limbs or body 

[29] A Style-Based 

Generator Architecture 

for Generative 
Adversarial Networks 

Objectives  Instead of giving the features to the generator via an input layer, a learned constant is passed 

 The input is then normalized and mapped to obtain an intermediate output  

 Instances of this intermediate output guide the generator as learned affine transforms which 
then undergo a number of convolutions and style transfer operations with noise introduced to it 

after each step in the generator 

 This noise is generated stochastically and the noise image is finally broadcasted to all feature 

maps after appropriate scaling and added to the output of each convolution 

[30] On Hallucinating 

Context and Background 

Pixels from a Face Mask 
using Multi-scale GANs 

Objectives  The proposed cascade GAN model is used to generate context and background pixels from a 

face mask only 

 The outputs are produced at multiple resolutions by taking the weighted sum of the various loss 
functions used in training 

 The model takes face mask inputs during training and sets its weights such that they are 
parameterized by the ground truth. 

Benefits  Requires only a few training images instead of images with each attribute such as age, gender, 
pose, hairstyle, and so on 

 The model generates own training data by introducing variations in gender, ethnicity, 
backgrounds. Also capable of generating stock images 

[31] Deepfake Video 

Detection Using 
Recurrent Neural 

Networks 

Objectives  Two training image sets are used: Set of original faces, and a set of extracted faces from videos 

 Two autoencoders are trained separately and a latent representation learned from the face 
extracted from the input video to the decoder network to train on the target face to be inserted 

in the video 

Limitations  Scene inconsistency due to insufficient information 

 The output is not temporally consistent since the video is processed frame-by-frame and lacks 
previous frame data 

 

To summarize, in table 1 gives brief overview about the image inpainting techniques, table 2 discuss about the 

video inpainting techniques while table 3 discuss the techniques available for deepfake creation. After reviewing the 

existing literature on Image and Video Inpainting (discussed in table 1, 2 and 3), we can infer that there are various 

existing models designed in recent years to recreate missing parts of images and subsequently videos. Our observation 

is that the majority of these techniques rely on the presence of a frame in the input video which does not contain the 

object at all, that is a ground truth image. This frame is then used as a point of reference when the target object is 

removed and the background needs to be regenerated. Therefore, in this paper, we come up with a model that would 

work without any such constraint on the video which is discussed in the section 3. 
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3. Proposed Methodology and Discussion 

As we observed from the literature survey, most of the existing methods for image and video inpainting rely on a 

ground truth frame to successfully inpaint the missing regions. However, such systems may be fallible in cases of novel 

scenes, or the absence of ground truth frames. Thus, there is a need for a method that is not dependent on such ground 

truth frames. To achieve this first logical step would be learning the background of the video. We can understand that as 

the object moves through the frames of the video, more portion of the background is revealed, and more contexts can be 

derived. As a result, enough contexts can be gathered from the input video frames, which are then used to recreate the 

background, once the target object is removed. Broadly, the entire process can be divided into three modules-  

 

 Learning the context or background from the input video,  

 Learning the features of the object so that they can be used to detect the object,  

 Object removal and background reconstruction. 

 

As proof of concept, we developed a model that only takes a video containing the target object as its input. There is 

no restriction on the video in terms of availability of the ground truth frame, that is, a video with no ground truth frame, 

works just as well with this implementation. In predicting the background, the information is gathered about the 

background while the object moves and doesn’t stay in one place for too long. The limitation with approach is obvious 

that if the object doesn’t move to provide enough contexts for the background, the prediction may not be accurate. For 

the demonstration purpose, we have considered the video of a horse running across a field. From that video, a frame 

shown in fig 1a is extracted and feed as an input to system. The system is now supposed to learn the background of this 

image so the other frames in the same video sequence are extracted and processed so that all the details should be 

considered while generating the background. Finally, the median of all extracted frames is taken and an estimate of the 

background was produced as seen in Fig 1b. Alternatively, taking the mode of all frames also produces plausible results.  

Now this background can be used to mask any image in the frame. 

 

                

Fig. 1a. Input video Frame to learn background                                            Fig. 1b. Predicted background for upcoming frames 

After background prediction, each frame is individually processed using the pre-trained YOLO object detection 

model to locate the target object in the frames. The YOLO model returns the coordinates of a bounding box that 

contains the object. Once the object is located, all pixels of the box are set to zero, that is, the object is removed and 

then taking the predicted background from the previous step, the pixels are filled and the frame is completed. In the 

sample shown in fig 1a, the object is the horse. Using YOLLO model boundaries for horse is detected and later it is 

inpainted using the background detected in fig 1b and as a result frame in fig 2 is generated. 

 

 

Fig 2. Background recreated and frame completed 
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The output frames are then put in the correct sequence and stitched to make the output video. Alternatively, one 

can also use a pre-trained Mask-RCNN instead of the YOLO model. Even though this program gives plausible results 

and validates our approach, we observed that it isn’t infallible either and has limitations such as the constraint on the 

target object to be in motion throughout its presence in the video, slight change in color observed on the edges of the 

target object bounding box (as seen in Fig 3), and masking of the objects behind the target object in some cases (Fig 4). 

The following result was produced using the Mask-RCNN model. 

 

 

Fig 3. Mask-RCNN input frame 

 

Fig 4. Mask-RCNN output 

To check the feasibility of our method, we implement a python program that would take an input video, extract 

frames from it, detect the target object in it using a pre-trained object detection model - YOLO or Mask-RCNN, and 

remove the object. The background is predicted using the input frames, and finally used to fill the missing spaces. This 

implementation is successful in giving plausible results with an accuracy of 93% with the YOLO model and 65% with 

the Mask-RCNN model, even though Mask-RCNN provides a more visually appealing result. 

Thus, we infer that with this approach the limitation on the technique, that is the requirement of ground truth 

frame, is overcome. However, since there are some visible shortcomings as discussed in the previous paragraph, this 

approach needs to be refined to meet our objective.  

3.1 Proposed Approach 

On studying the process of creating DeepFakes and learning about the various state of the art neural network 

architectures, we deduce that an Autoencoder architecture will be an appropriate option to reach our goal. An 

Autoencoder is characterized by one or more encoders and decoders. Its objective is to learn the representation of the 

data provided as input. It does so by reducing the input to an encoding of a smaller dimension and then tries to generate 

an output as close to the original input, from the encoding obtained. In this case, we will have two sets of inputs; an 

input video and reference images of the target object, and the two encoders will be tasked with learning the features of 

the background and the target object from the respective inputs. The decoder then fades out the target object from the 

frame and recreates the background by optimizing multiple loss functions. Thus, with this approach, we intend on 

treating video inpainting as analogous to a DeepFake creation task. 

The proposed model takes an input video and a set of reference images of the target object, to learn the features of 

the background and the target object. Frames are then extracted from the input video and the encoder-decoder pair trains 

to learn the background from the video. Another encoder-decoder pair is simultaneously trained to learn the features of 

the target object from the set of reference images. Since object removal and background reconstruction requires 

representations learned by both of these, we suggest using a single decoder among both these pairs. 
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The autoencoder to be used here will have two encoders, corresponding to the two inputs, and a single decoder 

producing three outputs. With this approach, the task of removing the object and recreating the background can be done 

by optimizing three interdependent loss functions. The network successfully learns the representation of the background 

(from the extracted frames of the video) and the target object by optimizing two losses – frame reconstruction loss and 

object reconstruction loss respectively (𝐿𝑎 , 𝐿𝑏) . The third custom loss function, object removal loss ( 𝐿𝑐 ) can be 

computed such that it minimizes the frame reconstruction loss, but maximizes the object reconstruction loss, thereby 

gradually removing the object and recreating the background in the frame. Such a function can be defined as:  

 

𝐿𝑐  =  − ( (𝐿𝑎  ×  log(𝐿𝑎))  −  ((1 − 𝐿𝑏)  ×  log(1 −  𝐿𝑏)) )                                        (1) 

 

 

Fig 5. Initially proposed architecture 

3.2 Limitations Of Proposed Architecture 

A potential problem with the architecture shown in Fig 5 is the impact of the third loss function 𝐿𝑐 , on the learning 

capability of the encoders. In optimizing all loss functions simultaneously, the model could fail to learn the individual 

representations of the input frames and the target object. Thus, the three loss functions may need to be optimized 

independently.  

To achieve that, instead of having a single model do all the work, one could try splitting the tasks as shown in Fig 

6. By using two encoder-decoder pairs and a third decoder, the effect of 𝐿𝑐  on the other encoders can be eliminated. The 

encoders each learn the representation of the input frames of the video and the target object. The two encoder-decoder 

pairs should be trained simultaneously using a custom training loop. The encodings of the input frame obtained from the 

encoder are used by the third decoder to construct the output image according to the optimized loss function. In the 

same training loop, losses of each of the two networks (𝐿𝑎 , 𝐿𝑏) will be used to compute the removal loss (𝐿𝑐) at each 

iteration. Thus, all three losses can now be optimized simultaneously, but now independent of each other.  

 

 

Fig 6. Modified architecture 

Another potential limitation could be the loss tending to zero due to logarithmic computation in the custom loss 

function. Such a value results in a black output. One way to overcome this limitation could be to define the function 

such that as the reconstruction loss decreases, the removal loss should increase. Hence, a decreasing function in the 

range of the reconstruction loss could be a suitable alternative. One such function is the negative log function. We also 

suggest adding a loss which is a combination of two competing losses, one of which is used in removal and the other in 

reconstructing the background, to the function. This new loss can be computed as the mean absolute error between the 

output produced (C) and the input frame (A). Thus, the new object removal loss is computed as:  
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𝐿𝑐  =  0.5 × (𝑚𝑒𝑎𝑛𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑟𝑟𝑜𝑟(𝐶, 𝐴))  −  0.5 ×  log(𝐿𝑏)                                       (2) 

 

Since this is a firsthand approach for video inpainting, there is scope for further assessment of the same. We 
have come to observe that the removal loss function plays a very crucial role in determining the output of the 
model as a whole, and are confident that with the correct function, the desired output can be obtained. Thus, a 
significant improvement in the concerned loss functions and if required, the existing autoencoder model could 
give promising results.   

4. Conclusion 

Video inpainting is an upcoming research area with deep learning techniques being the latest technology to be used 

for the task. On reviewing recently published works in the domain, we have observed that most of the techniques make 

use of a ground truth frame for a variety of purposes in the entire inpainting process. 

Our proposed method aims at overcoming this dependency on ground truth frames and employs neural networks 

for learning and inpainting the video frames. The neural network architecture we have proposed is that of an 

autoencoder. The inspiration for such an architecture stems from neural network models used for DeepFake creation. 

An autoencoder is generally characterized by a combination of encoders and decoders. It learns the representations of its 

inputs by downsampling them and has the capability of fabricating desired outputs by varying the parameters with 

which the learned encodings are upsampled.  

We intend to utilize this property of autoencoders to learn representations of input video frames and reference 

images of the target object. The target object can then be detected in the video frames, and by optimizing a combination 

of loss functions, we propose to remove the object and simultaneously complete the background. However, in modeling 

video inpainting as a DeepFake creation task, there are a couple of potential limitations with the architecture and the 

loss functions that we have pointed out which could pave the way for further study. 
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