
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-9 Issue-2, July 2020

782

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org



Abstract: Still in its early years, containers are increasingly
being used in production environments. Containers offer a
streamlined approach, easy deployment, and secure method of
implementing infrastructure requirements also provide a
much-improved alternative to virtual machines. A load balancer is
required to distribute traffic across clusters. And now, with
multiple container environments becoming widespread, load
balancers are becoming a necessity to distribute traffic and reduce
server load. Different load balancing algorithms provide a
solution to this with varying efficiency. This paper presents a study
on the latest methods which are being implemented to perform
effective load balancing on containers. Docker Swarm and
Kubernetes are the most widely used systems for deploying and
managing a cluster of containers in an environment. The paper
further demonstrates how Docker Swarm and Kubernetes can be
used to minimize load traffic through load balancing techniques.
We have introduced load balancing and different algorithms.
Also, we have shown the implementations of load balancing
algorithms in Docker and Kubernetes and finally compared the
results. The paper finally concludes why Kubernetes is often
preferred over Docker Swarm for load balancing.

Keywords: Docker, Docker Swarm, Kubernetes, Ingress, Load
balancing, NodePort, LoadBalancer, Nginx.

I. INTRODUCTION

Containers have changed the way we develop, distribute,

and run the software. Developers can freely develop software,
containerize them and distribute them as they wish – be it a
co-worker, an entire department, or some random person on a
network. Before running a container, the user will know
exactly how it will proceed- the process of running a container
is simple, formulaic, immutable and repeatable. Developers

Manuscript received on May 25, 2020.
Revised Manuscript received on June 29, 2020.
Manuscript published on July 30, 2020.
* Correspondence Author

Prajval Mohan*, School of Computer Science and Engineering, Vellore
Institute of Technology, Vellore, Tamil Nadu, India.

Email: prajval.mohan23@gmail.com
Tejas Jambhale, School of Computer Science and Engineering, Vellore

Institute of Technology, Vellore, Tamil Nadu, India.
Email: tejas.jambhale98@gmail.com
Lakshya Sharma, School of Computer Science and Engineering Vellore

Institute of Technology, Vellore, Tamil Nadu, India.
Email: lakshya99sh@gmail.com
Simran Koul, School of Computer Science and Engineering, Vellore

Institute of Technology, Vellore, Tamil Nadu, India.
Email: simran.koul@yahoo.com
Simriti Koul, School of Computer Science and Engineering, Vellore

Institute of Technology, Vellore, Tamil Nadu, India.
Email: simriti.koul@yahoo.com

 © The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

can spend more time developing the code rather than waste
time setting up the environment. Earlier, the process of
application deployment was manual, time-consuming and
utilized a lot of company resources. With the emergence of
containerization tools like Docker and Kubernetes, there has
been a significant improvement in the deployment,
management and scaling of the software applications. The
entire process has now become more efficient, faster and
systematized. Docker is an open-source tool developed to
make the process of creation, deployment and running of
applications in different platforms much more accessible.
Docker uses standard containers to package an application
along with all its dependencies and modules. These containers
are gaining a massive stronghold in the market as it is
simplifying and improving the efficiency of the entire
development process. More often than not, micro-services
and cloud web services require us to run multiple containers
across numerous machines, but Docker containers do not
provide a scalable solution. Kubernetes, which is developed
and maintained by Google, is the main compartment
coordination motor in the area of containerization. It makes
use of pictures made by Docker. Compared with other virtual
machines, Kubernetes provides more accessible, more
efficient and faster to convey administrations and
applications. We have to start the containers at the
appropriate time, find out how the containers communicate
with each other and store them appropriately. Kubernetes
solves this problem efficiently. At the first look, Docker and
Kubernetes may seem like similar technologies aiming to
containerize applications, but on closer inspection, it becomes
pellucid that both these tools function at different layers in an
operating system stack and that they can be used together as
well. In this growing era of cloud computing, modern cloud
architectures often demand a specific understanding of
Docker and Kubernetes applications. Some of the main
reasons why Kubernetes is widely used rather than the Docker
cluster are scalability, portability and self-healing. A
website may be accessed by more than a thousand users at a
time. Managing this load becomes an arduous task and puts
immense pressure on the host server. This sometimes also
results in a system crash. Load balancing is a process used in
cloud computing to manage the traffic load by distributing
resources and workload units among different servers, hard
drives, etc., which results in more utilization and improved
system response time. Containers are changing the way we
develop and ship code. They have become an integral part of
the development process. With the increasingly widespread
use of these containers, multiple container environments have
become common.

Load Balancing using Docker and Kubernetes: A
Comparative Study

Prajval Mohan, Tejas Jambhale, Lakshya Sharma, Simran Koul, Simriti Koul

mailto:prajval.mohan23@gmail.com
mailto:tejas.jambhale98@gmail.com
mailto:lakshya99sh@gmail.com
mailto:simran.koul@yahoo.com
mailto:simriti.koul@yahoo.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.B3938.079220&domain=www.ijrte.org

Load Balancing using Docker and Kubernetes: A Comparative Study

783

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org

This leads to significant constraints on servers. Therefore,
load balancing these containers can help improve not only the
utilization of server resources but also enhance the efficiency
of the entire development process.

The main components of a Kubernetes cluster include
Pods, Flat Networking Space, Labels, Replication Controllers
and Services.

Load Balancing in Docker
The extended Docker API provides effective methods to

create and scale administrations, health checks, load
balancing, traffic distribution, etc. Administrations are a
collection of holders which are quite similar to Docker
compose, however, with a lot more highlights.

Docker Swarm Load Balancing Topology
Docker Swarm is a Layer 4 TCP load balancer. For this

paper, we have created three Swarm hubs, which include two
specialist hubs and one ace hub. The swarm directions are
being run in the ace hub. The Swarm takes care of load
adjusting and distribution, scaling and DNS administration
booking and revelation.

The Docker Swarm LB executes on all the hubs and can
process equalization requests over either of the holder/hosts
in the hub. In the absence of NGINX or NGINX Plus, the
Docker Swarm Lb. takes care of the incoming customer
demands in the swarm organization.

Advanced Load Balancing Using NGINX Plus
A scope of cutting edge includes in NGINX Plus make it a

perfect load balancer before ranches of upstream servers:
 Load adjusting and session determination – Better

burden adjusting crosswise over specialist procedures
and session industriousness techniques to distinguish
and respect application sessions

 HTTP wellbeing checking and server moderate
beginning – Asynchronous' engineered exchanges to
test the right activity of each upstream server, and
agile 'moderate beginning' reintroduction of servers
when they recuperate

 Live movement observing – Immediate report of action
and execution

 Dynamically designed upstream server gatherings –
Tool to encourage some regular upstream
administration undertakings, for example, the
protected and brief evacuation of a server

II. RELATED WORK

Docker and Kubernetes are open-source tools developed to
make the process of creation, deployment and running of
applications in different platforms much easier. They are
increasingly being utilized for microservices and cloud-based
services. They find their application in almost all the domains
of information technology. One of the major purposes of
using docker swarm and Kubernetes is utilizing their load
balancing capabilities. Most of the research work in this
domain has been focused on exploring and analyzing various
scheduling strategies for container management and
improving docker security. Some papers also talk about the

different load balancing techniques and how they can be
utilized for cloud services. Many recent research papers
introduce improved methods for dynamic load balancing in
cloud platforms. Most of the industries today are unaware of
all the different load balancing functionalities provided by
docker swarm and Kubernetes and the most efficient use cases
for these different techniques. Our research paper provides a
thorough analysis of different dynamic load balancing
techniques afforded by Docker and Kubernetes. We also
discuss the ideal scenarios for using each of these techniques
and compare them with other methods

 In-State machine replication in containers managed by
Kubernetes [1], they have proposed the integration of
coordination services Kubernetes (k8s), seeking to control the
containers' size and to allow automatic state replication. For
this purpose, they have presented a new protocol named
DORADO (Dering Over Shared Memory) for the integration
of coordination services in Kubernetes and to perform state
machine replication in the containers. In the first three
sections, they have explained the concepts about containers
and Kubernetes, coordination and state replication protocol in
Kubernetes. The fourth section of this research paper talks
about the evaluation of DORADO on a number of preliminary
tests. They have mentioned in detail about the execution
environment and the experiments that they conducted to
evaluate their protocol. Finally, they conclude the research
paper by mentioning the challenges and future scope of their
protocol. In a decentralized system for load balancing of
containerized microservices in the Cloud [2], they have
proposed a decentralized orchestration system for load
balancing of containerized microservices and web services.
They explained the internal working of virtualization
containers and analyzed it, mentioning the shortcomings and
limitations of containers for load balancing of microservices.
They explain how a decentralized system for this purpose can
yield increased throughputs, lower response time and better
scalability of the services. Further, they introduce their
swarm-like algorithm for container migration. This research
paper also includes some preliminary experimental results of
their proposed algorithm for decentralized systems. Finally,
they conclude the paper with a brief summary and remarks.

 Load Balancing and its Algorithms in Cloud Computing:
A Survey [3] discusses the concept of load balancing and its
ever-increasing importance in this era of cloud computing.
They have prepared a literature survey on the different load
balancing techniques available considering the following
measurement parameters: fairness, throughput, fault
tolerance, overhead, performance, and response time and
resource utilization. They have analyzed two different
categories of load balancing techniques (1) Static algorithms,
which include Load Balancing Min-Min Algorithm, Load
Balancing Min-Max Algorithm and Round Robin Load
Balancing Algorithm. (2)

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-9 Issue-2, July 2020

784

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org

Dynamic algorithms, which include Throttled Load
Balancing Algorithm, ESCE (Equally Spread Current
Execution) Load Balancing Algorithm, Ant Colony Load
Balancing Algorithm, Biased Random Sampling Load
Balancing Algorithm, Modified Throttled Load Balancing
Algorithm and Honeybee Foraging Behavior Load Balancing
Algorithm. Finally, they conclude the paper with a brief
summary and remarks. Using Docker Containers to
Improve Reproducibility in Software and Web Engineering
Research [4] discusses the importance and applications of
Docker containers in this age of virtualization and how they
can be utilized to aid the reproducibility of research artifacts
in software and web engineering.

This research paper also throws some light on the
challenges in the current web engineering researches and how
the Docker containers can provide a promising solution to the
same. They have provided a comprehensive tutorial on
Docker containers, which also includes a discussion on the
advantages, limitations and challenges of the containers. The
tutorial also covers the Docker container basics, which walk
through the basic commands, running Docker images,
building custom images, deployment and production of web
apps. They conclude the paper with a brief summary and
remarks. In A New Docker Swarm Scheduling Strategy [5],
they have presented a new economical scheduling strategy
implementation for Docker swarm. Their strategy's novelty
lies in the use of user's SLA classes (Long service, Short
service and microservice) to schedule the containers and the
dynamic allocation of CPU cores to execute the selected
container. This model is loosely based on the observation that
hosting solutions do not allow manufacturers or cloud
providers to offer to their customers a fair or accurate invoice.
They have explained their scheduling algorithm in great detail
along with the code and compared it with the existing
scheduling strategy in Docker swarm. Finally, they have
included the results of the test conducted on their strategy by
emulation and demonstrated the scope of their approach for
further development. A Scheduling Strategy on Load
Balancing of Virtual Machine Resources in Cloud Computing
Environment [6] introduces a new scheduling strategy on load
balancing of VM resources based on a genetic algorithm. This
strategy computes beforehand the influence it will have on the
system after the deployment of the needed VM resources and
then selects the least effective solution, through which it
achieves the best load balancing and reduces or avoids
dynamic migration [6]. In the end, an analysis of the method is
made and an experiment and summary are also conducted.
 Research on Kubernetes' Resource Scheduling Scheme [7]
presented a better scheduling algorithm than the original
algorithm used in Kubernetes for resource scheduling. The
proposed algorithm is a combination of an improved ant
colony algorithm (ACA) and an adaptive particle swarm
optimization algorithm (PSO). In the later sections of the
paper, they have demonstrated each of the algorithms
individually in great detail. Further, they presented their
improved versions of ACA and PSO, followed by the
combination of these algorithms. In the final section of the
research paper, they have included the experimental results,
which show that the proposed algorithm is suggestively better
than the original Kube-scheduler model, which can

effectively reduce the resource consumption cost and reduce
the maximum load of the node. Finally, they have mentioned
about the future scope of improvements in their algorithm to
obtain even better use effect and lower usage cost. The need
for virtualization has increased remarkably over the last few
years. Container-based virtualization, like Docker, is one of
the leading products used in this field. In the Analysis of
Docker security [8], they have analyzed the security features
of Docker containers. They have focused on two areas: (1) the
internal security of Docker and (2) how does Docker works
with the security features of the Linux kernel, such as
SELinux and AppArmor, in order to secure the host system.
Section 2 of this paper gives an introduction about the two
types of main types of virtualization technology solutions in
the market, i.e., Container-based virtualization and
hypervisor-based virtualization. Section 3 discusses Docker
and its underlying technologies. In section 4, they have
presented their analysis of Docker security, and then finally,
in Section 5, they discuss the security level of Docker and
what could be done to increase its level of security. The paper
winds up with a summary and brief remarks in Section 6.
 Genomic pipelines include various pieces of third-party
software and are prone to frequent changes and updates,
which lead to a number of deployment and reproducibility
issues. Docker containers are one of the most promising
solutions for many of these problems as they allow the
packaging of pipelines in a self-contained manner. But this
might compromise with the performance of these pipelines.
The impact of Docker containers on the performance of
genomic pipelines [9], they have analyzed the effect of
Docker containers on the genomic pipelines. In order to
measure the impact of containers on the execution
performance of bioinformatics tools, they have benchmarked
three different genomic pipelines. The results show that
Docker containerization has a negligible impact on the
execution performance of common genomic pipelines, where
tasks are generally very time-consuming. The paper winds up
with a summary and brief remarks. In Slacker: Fast
distribution with lazy Docker containers [10], they have
introduced a new container benchmark, HelloBench, to
measure the startup times of 57 different containerized
applications. They have utilized HelloBench to analyses
workloads in detail, studying the block I/O patterns produced
during startup and the compressibility of container images.
Their study shows that pulling packages accounts for 76% of
the container start time, but only 6.4% of that data is read.
They have used this and other results to design Slacker, a new
Docker storage driver optimized for fast container startup.
Slacker is based on centralized storage that is shared between
all Docker workers and registries. In the later sections of the
paper, they have demonstrated various benchmark tests used
to evaluate Slacker's performance and also included the
results of these tests, which revealed that Slacker speeds up
the median container development cycle by 20 times and
deployment cycle by five times. They have ended the paper
with a summary and acknowledgments.

Load Balancing using Docker and Kubernetes: A Comparative Study

785

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org

In Applying computational intelligence for enhancing the
dependability of multi-cloud systems using Docker swarm
[11], they have introduced a Computer Intelligence based
solution for enhancing the dependability of a multi-cloud
system using Docker swarm. At the present Docker swarm
makes use of RAFT consensus algorithm which has few major
design problems. The proposed method in this paper, which is
based on a fuzzy interference system, provides a promising
solution to this. Section 2 of this paper discusses Docker
Containers, Docker Swarm, Docker Hub, fuzzy logic, and
coding in R software. Section 3 explains the architecture and
theoretical background of a multi-cloud system using Docker
Swarm. Section 4 of this paper includes a simulation of a
multi-cloud system using Docker Swarm.

Section 5 presents an experimental evaluation of
dependability. Section 6 talks about the proposed
Computational Intelligence based strategy for improving the
dependability of a multi-cloud system using Docker Swarm.
Lastly, the paper winds up with a brief summary and the future
scope of improvement.

 MPI is a widely used technology used in the field of the
high-performance computing environment. However, setting
up an MPI cluster can be challenging and time-consuming.
Distributed MPI cluster with Docker swarm mode [12]
provides a solution for this issue by using modern
containerization technology like Docker and Docker Swarm
to automate the MPI cluster setup and deployment. In Section
2 they have discussed the background technologies used in the
paper. Section 3 involves the project overview that includes
software specifications. In Section 4 and 5, they have
discussed the reason for system design and showed how to use
the proposed solution to develop the MPI program and to
deploy a fully connected MPI cluster as Docker containers
operating in Docker Swarm mode that runs on multiple
machines. Lastly, the paper winds up with a brief summary
and the future scope of improvement.

 In the Evaluation of Docker as an edge computing
platform [13], they have assessed Docker as a platform for
Edge Computing. They evaluated Docker based on four
parameters: deployment and termination, resource & service
management, fault tolerance, and caching. Based on the
results of their evaluation and experiment, it showed that
Docker provides rapid and efficient deployment, low
overhead and good performance, which makes it one of the
best technologies for edge computing platform.

 Load Balancing in cloud computing [14] introduces the
vast field of cloud computing and given a brief introduction
on the load balancing implementation in cloud platforms.
They discuss the concept of load balancing, its needs and
goals, types and comparison between traditional computing
environment and cloud computing environment. A list of
policies for implementation is given to help in the analysis
process. They list out the advantages and disadvantages of
various algorithms and give metrics for them. They have
concluded by mentioning the current status of load balancing
in cloud computing and future prospects. THE efficient
VM load balancing algorithm for a cloud computing
environment [15] introduces an efficient mechanism to
implement load balancing in cloud environments. They
concentrate on cloud computing as Iaas. They talk about how

load balancing is important to utilize full resources of parallel
and distributed systems. The first modeling of VM allocation
is done to provide and configure hardware resources. They
call it VM policy allocation and VM scheduling. Here they
use CloudSim to provision this. They go on mentioning
different algorithms and then introduce their own algorithms
Weighted Active Monitoring Load Balancer. They have used
this novel algorithm to get results and compared them with
traditional algorithms. The VM assigns a varying amount of
the available processing power to the individual application
services. They have optimized different parameters and
showed why this new method outperforms others.

 In the Dynamic load balancing strategy for grid
computing [16], they have introduced a load balancing
technique specifically for grid computing. They mention how
traditional algorithms, though, are widely used and efficient
enough. They are not suitable for grid computing
environments as they must address main new issues, namely:
heterogeneity, scalability and adaptability. They propose a
layered algorithm that achieves dynamic load balancing in
grid computing, which is totally independent of the
architecture of the grid. They compare static and dynamic
algorithms and show how suitable dynamic algorithms is
suitable for the current scenario. The proposed algorithms
follow a tree-based balancing model specific for grid
computing. The generic model is a non-cyclic connected
graph with four levels. They list out three policies for the new
proposed algorithm, and the results of the new algorithms are
measured. They conclude by saying that the proposed
algorithms perform well enough for the application of grid
computing. But this new model raises new challenges for
future researchers and admits that though results are good for
particular environments, it needs testing in different grid
environments. In Data storage and load balancing in cloud
computing using container clustering [17], they talk about the
importance of containers in real-world applications and how
their performance can be improved using load balancing
techniques. They aim to compare Docker swarm and
Kubernetes load balancing techniques and show how
Kubernetes can be used to overcome Docker limitations.
They look to explain Kubernetes and how it can be
implemented for load balancing. They explain theoretically
without giving practical proof of various Kubernetes
techniques and compare results. They write on how
Kubernetes has the capability of improving load balancing
over Docker swarm. In A dynamic load balancing strategy
for cloud computing platforms based on exponential
smoothing forecast [18], they write about the importance of
why load balancing is essential. They say as cloud computing
increases, the need for load balancing techniques will
increase. They introduce a method to calculate the current
load. They propose an exponential smoothing forecast
method, which is a type of dynamic balancing method. They
choose a physical server for deployment for Paas and server
clusters for Iaas. They use graphical analysis to show how
their algorithm performs over time.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-9 Issue-2, July 2020

786

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org

Exponential Smoothing Forecast-Based on Weighted
Least-Connection (ESBWLC) optimizes the number of
connections to actual load service capability and shows
real-life applications. In the improvement of container
scheduling for Docker using ant colony optimization [19],
they propose a method to improve Docker performability by
introducing a new algorithm called ant colony optimization.
They look to bring a new algorithm to the Docker swarm kit
scheduler to improve performance. The main contribution is
an ACO-based algorithm that distributes application
containers over Docker hosts to offer better balance in
resource usages and leads to the performance improvements
of applications as compared to the current greedy scheduler.

They say that their proposed algorithms perform better than
the current greedy approach by 15%. They have initially
discussed the limitations of current schedulers and then shown
how their algorithm overcomes them. They explained the
architecture behind the proposed algorithm and proposed a
formula to compute resource utilization at each node. They
show how their algorithm performs better with an
improvement of nearly 15%.

 In research and implementation of Docker performance
service in distributed platform [20], they write about the
current status of Docker. They write about how Docker
cluster environment can be improved. They mention Docker
module design and architecture behind it. They conduct
experimental tests for cluster building and cluster
performance monitoring. They create a log file to maintain
their results and make different performance tests. They look
for improvement in Docker deployment.

 In An introduction to Docker and analysis of its
performance [21], they talk about the impact Docker has had
on the market. They review the technology and analyses its
performance. They analyze Docker client and servers, images
and registries. They undertake a comprehensive comparison
of Docker and KVM and explain why Docker is the future.
They then use different performance parameters for reviewing
like speed, portability, scalability, rapid delivery, density.
They talk about their disadvantages and their competitor.
They compare boot time, CPU calculation, time to compute 1
and 1000 SQL queries. Finally, they compare with VM and
mention how Docker is the future.

 In Resilience enhancement of container-based cloud
load balancing service [22], they talk about web traffic is
unpredictable and sometimes lead to high load on servers.
Load balancers play an important role in reducing this and
mitigating the effect of high web traffic. They chose Nginx to
show the effect load balancers have and look to make servers
and containers services more resilient to handle server load.
NGINX plus allows the user to configure dynamic
weight-based on certain metrics. They propose a flexible,
pluggable, cloud-agnostic, and metric-agnostic dynamic
algorithm for any cloud load balancer services. They model
the resources in a server as a multidimensional vector, based
on which they convert the relative resource availability of all
backend servers to the weights assigned to them dynamically.
They use an agent-based modeling service as its architecture
that can collect various types of metric data of the backend
servers. With CPU load-based load balancer policy, the
average RTT is 0.0072 seconds. Without any policy, the

average RTT is 0.0658 seconds. They conclude by saying
their algorithm can easily be integrated with Docker,
Kubernetes and AWS.

 In the Value-Based Allocation of Docker Containers
[23], the main objective was to figure out the main objective
of docker containers. A rapid increase in the number of public
cloud vendors has led to the addition of containers as a
Service (CaaS) to their portfolio. This is the reason, the
popularity of Docker, a software that allows Linux containers
to run independently on the host of an isolated environment.
Depending on the software, the orchestration and allocation
approaches must vary. The key objective of this paper was to
see how this execution varies with time. Here, two dynamic
allocation algorithms were deployed and compared with the
default docker algorithm. The efficiencies of these algorithms
are based on the weight of the workload and scales with the
growing number of nodes in the Cloud.

 According to a Portable Load Balancer for Kubernetes
Cluster [24], Linux containers have gained popularity due to
their lightweight and portable nature. Nowadays, many web
services are being deployed as clusters of containers. Here, in
this paper, the authors have concentrated on Kubernetes
Clusters. But Kubernetes relies on load balancing supplied by
cloud providers. The authors proposed a portable load
balancer that was usable in any environment, and hence
facilitated web services migration. This was implemented
using the Linux kernel's Internet Protocol Virtual Server
(IPVS). The product resulted in an improved portable web
service without compromising performance.

 Distributed computing gives clients close to moment
access to apparently boundless assets, and gives specialist
organizations the chance to send complex data innovation
framework, as an administration, to their clients. Suppliers'
profit by economies of scale and multiplexing increases
managed by sharing of assets through virtualization of the
basic physical foundation. In any case, the scale and
exceptionally dynamic nature of cloud stages force huge new
difficulties to cloud specialist co-ops. Specifically,
acknowledging refined cloud administrations requires a cloud
control structure that can coordinate cloud asset provisioning,
design, use and decommissioning over an appropriated set of
physical assets. In Cloud Resource Orchestration: A
Data-Centric Approach [25], they advocate an
information-driven way to deal with the cloud organization.
Following this methodology, cloud assets are demonstrated as
organized information that can be questioned by an
explanatory language and refreshed with well-characterized
value-based semantics. They look at the possibility,
advantages and difficulties of the methodology, furthermore,
present our plan and model execution of the
Information-Driven Management Framework (DMF) as an
answer, with information models, question dialects and
semantics that are explicitly intended for cloud asset
arrangement. In Cloud Computing Networking: Challenges
and Opportunities for Innovations [26], distributed
computing appears the vision of utility figuring.

Load Balancing using Docker and Kubernetes: A Comparative Study

787

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org

 Inhabitants can profit by on-request provisioning of
processing, stockpiling, and organizing assets as indicated by
compensation for each utilization plan of action. Inhabitants
have just constrained permeability and power over system
assets. The proprietors of distributed computing offices are
likewise confronting difficulties in different parts of giving
what's more, productively overseeing IaaS offices. In this
work, they present the systems administration issues in IaaS.
What's more, league difficulties that are as of now tended to
with existing innovations. They moreover present creative
programming characterized organizing proposition, which is
connected to a portion of the challenges and could be utilized
in future organizations as productive arrangements.
 Distributed cloud computing has conveyed uncommon
processability to NASA missions at moderate rates. Missions
like the Mars Investigation Rovers (MER) and Mars Science
Lab (MSL) are getting a charge out of the versatility that
empowers them to use hundreds, if not thousands, or
machines for brief spans without making any equipment
obtainments. In Polyphony: A Workflow Orchestration
Framework for Cloud Computing [27], they depict
Polyphony, a flexible, adaptable, and measured structure that
proficiently uses an enormous arrangement of processing
assets to perform parallel calculations. Polyphony can utilize
assets on the Cloud, overabundance limit on nearby machines,
just as extra assets on the supercomputing focus, and it
empowers these assets to work in show to achieve a shared
objective. Polyphony is flexible to hub disappointments,
regardless of whether they happen in an exchange. They will
close with an assessment of a generation prepared application
manufactured over Polyphony to perform picture handling
activities of pictures from around the nearby planetary group,
including Mars, Saturn, and Titan. SDN orchestration
architectures and their integration with Cloud Computing
application [28] explain that developing cloud-based
applications, running in geologically disseminated Data
Centers (DCs), produces new unique traffic designs that
guarantee for an increasingly effective administration of the
traffic streams. Topographically appropriated DCs
interconnection requires programmed and progressively
unique provisioning and cancellation of end to end (E2E)
network administrations, through heterogeneous system
areas. Each system space may utilize various information
transport innovation yet, in addition, an alternate control/the
board framework. The quick advancement of Software
Defined Networking (SDN) and the interworking with current
control plane innovations, for example, Generalized
Multi-convention Label Switching (GMPLS), request
coordination over the heterogeneous control examples to give
consistent E2E network administrations to outer applications

 In an in-depth analysis and study of Load balancing
techniques in the cloud computing environment [29],
distributed cloud computing worldview, load adjusting is one
of the difficulties, With Tremendous increment in the clients
and their request of various administrations on the distributed
computing stage, productive or proficient use of assets in the
cloud condition turned into a basic concern. Burden adjusting
is assuming a crucial job in keeping up the beat of Cloud
registering. The exhibition measurements of burden adjusting
calculations in the Cloud are reaction time and holding
uptime. In this paper, they fundamentally center around two

burden adjusting calculations in cloud, Min-Min and
Max-Min algorithm.

 In Dynamic Balance Strategy of High Concurrent Web
Cluster Based on Docker Container [30], they propose
improvements to the existing Round-Robin and Weighted
Round-Robin algorithms. They look to make load balancing a
dynamic technique depending on the traffic. They first
compare Docker and Kubernetes architecture and then
explain the drawbacks of the existing NIGEX strategy of load
balancing. It does not consider the dynamic change of server
performance during t system running processes and the
number of backend servers can't be adjusted according to the
requested amount. [31] The strategy defines performance
quotas of the quantized Pod service and the weight of relative
performance quotas. They then calculate real-time
performance weight ratios of the cluster by the weight sum
algorithm.

III. DESIGN AND IMPLEMENTATION OF LOAD

BALANCING

A. Load Balancing using Docker

1. Architecture and Design

Figure 1. Load balancing of the client and

service-to-service requests in a Swarm cluster without
NGINX or NGINX Plus

Figure 2. The Docker Swarm load balancer forwards

client requests to NGINX Plus for load balancing among
service instances

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-9 Issue-2, July 2020

788

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org

Nginx
Nginx, a web server used as a reverse proxy, HTTP cache

and load balancer. It is built to high concurrency and low
memory using an asynchronous approach in which requests
executed by single thread, rather than creation of a new
process for each web request. With Nginx, multiple worker
processes are controlled by one master process. The master
maintains worker processes, while workers do the actual
processing of the server. Nginx is asynchronous, meaning
each request received can be executed by the worker
concurrently without blocking all other requests. Two load
balancers are Open source NGINX and NGINX Plus that
provide application critical features that are missing from the
native Swarm load balancer. (Figure. 1. and Figure. 2.)

2. Experimental Setup
The configuration file for load balancing using Nginx is

as follows:
http {
 upstream myapp {
 server srv1.sample.com;
 server srv2.sample.com;
 server srv3.sample.com;
 }
 server {
 listen 80;
 location / {
 proxy_pass http://myapp1;
 }
 }
}
We created 3 instances of an application running on

server1- server 3. The default load balancing method used
here is round-robin. All requests are provided as proxy to
the server pool myapp1, and Nginx enforces HTTP load
balancing to decimates the requests.

Reverse proxy implementation in Nginx consists of
load balancing for HTTP, HTTPS, FastCGI, USWGI, SCGI
and GRPC.

Least connected load balancing
A least-connected load balancing algorithm is used

when some of the requests take too much time to
complete. In such situations, the least connected ensures
that the load on the application is controlled more fairly.

With the least-connected load balancing, Nginx will
avoid overloading an already occupied application server
with additional requests. Instead, it will distribute the new
requests to the server, which is less busy.

To activate Least-connected load balancing in Nginx
we have used least_conn directive as part of the server
group configuration:

 upstream myapp {
 least_conn;
 server srv1.sample.com;
 server srv2.sample.com;
 server srv3.sample.com;
 }
Session persistence
In round-robin or least-connected load balancing, all

clients' request is distributed to a different server. There is
no assurance that the same client will be directed to the
same server.

If a client needs to be tied to the same server, which

means that if we have to make a client's session persistent
in terms of always selecting the same server, we use the
IP-hash load balancing mechanism.

In the IP-hash algorithm, the client's IP address is used
as a hashing key to deciding which server in a server pool
should be selected for the client's requests. This algorithm
makes sure that the requests from the same client will
always be focused on an identical server except when this
server is inaccessible.

In the configuration file for IP-hash load balancing, we
add the IP-hash directive to the server group
configuration:

upstream myapp {
 ip_hash;
 server srv1.sample.com;
 server srv2.sample.com;
 server srv3.sample.com;
}
Weighted load balancing
We have another possibility to influence Nginx load

balancing algorithms even further by using server
weights. In the previous two methods for load balancing,
we have not configured the server weights. This means
that for a specific load balancing system, all specified
servers are treated as equally eligible. When the
server-weight parameter is defined for a specific server,
the weight is considered as part of the load-balancing
decision.

 upstream myapp {
 server srv1.sample.com weight=3;
 server srv2.sample.com;
 server srv3.sample.com;
 }
With this conformation, every five new requests will be

distributed across the application instances in the
following manner: Three requests will be directed to
server1, one request will go to server2, and the other
request will be directed to server 3.

In the recently updated versions of Nginx, it is also
possible to use weights with the least-connected and
IP-hash load balancing.

Health checks
In Nginx, the implementation of a reverse proxy

algorithm involves in-band health checks of the server.
Nginx will flag a server as being 'failed' if the response
that it received from that particular server fails with an
error.

The max_fails command sets the quantity of continuous
failed attempts to interact with the server that ought to occur
during fail_timeout. max_fails is set to 1 as a default value. At
the point when it is set to 0, health checks are deactivated for
this server. The fail_timeout parameter likewise characterizes
to what extent the server will be set apart as failed. After
fail_timeout interim after the server failure, Nginx will begin
to effortlessly test the server with the live customer's
solicitations. In the event that the tests have been fruitful, the
server is set apart as a live one.

Load Balancing using Docker and Kubernetes: A Comparative Study

789

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org

3. Implementation
Steps to create a Simple Load Balancer using Nginx
1) Creating Our Node.js Application
First, we make a basic Node.js application, which will

fill in as a static HTML document. After making this
node.js document, we containerize it and run it twice.
Toward the end, we will arrange a dockerized NGINX
case to send requests to the two instances of our
application.

After this, we will have the option to arrive at
http://loacalhost:8080 on our machine, which will get the
outcomes from some occurrence. It will use the
round-robin approach to choose which instance will
recognize for every new request.

To make this node.js application, we initially make a
directory for this application, which incorporates an
index.js document that will react to HTTP demands.

2) Dockerizing Our Node.js Application
We will first make a file called 'Dockerfile' in our main

directory so as to dockerize our Node.js application.
The content of Dockerfile looks as follows:
 FROM node
 RUN mkdir -p /user/scr/app1
 COPY index.js /user/scr/app1
 EXPOSE 8080
 CMD [“node”, “/user/scr/app1/index”]

 After that, we have to make an image, from this Dockerfile,
which should be possible through the command given below:
 Docker build -t load-balanced-app1

Then we run both instances of the application with the
following instructions:

 Docker run -e “MESSAGE=Instance one” -p
8081:8080 -d load-balanced-app

 Docker run -e “MESSAGE=Instance two” -p
8081:8080 -d load-balanced-app

Subsequent to running the two commands, we will
have the option to open the two instances on the browser
by going to http://localhost:8081 and
http://localhost:8082. The main URL will show a message
saying, "First case," the subsequent URL will show a
message saying, "The second example."

3) Load Balancing using a Dockerized NGINX
Instance

The two instances of our application running on
various Docker containers and on different ports on our
host machine, we configure an instance of NGINX to load
balance demands between them. First, we will begin by
making another directory called Nginx-docker.

In this directory, we have created a configuration file
called nginx.conf with the following code:

 Upstream my-app1{
 server 172,17.0.1;8081 wieght=1;
 server 172.17.0.1:8082 weigth=2;
 }
 Server{
 Location/ {
 Proxy_pass http://my-app1 }
 }
This will be utilized to configure NGINX. On it we

create an upstream collection of servers containing the
two URLs that react for the instances of our application.

By not characterizing a specific algorithm to load balance
requests, we are utilizing round robin approach, which is
the default on NGINX.

From that point onward, we configure a server
property that allows NGINX to pass HTTP solicitations to
http://my-application, which is dealt with by the
upstream created previously.

After this, we will make the Dockerfile that will be
utilized to dockerize NGINX with this setup. This
document will contain the accompanying code:

 FROM nginx
 RUN rm/etc/nginx/conf.d/default.conf
 COPY nginx.conf/etc/nginx/conf.d/default.conf
After successfully creating both the files, we will now

build and then run NGINX container on Docker. To do
that we run the following command:

 docker build –t load-balance-nginx
 docker run –p 8080:80 –d load balance-nginx
After the above configurations, we can simply open our

web browser and access http://localhost:8080. In the case of
everything went well, we will see a website page with one of
the two messages: 'First instance' or 'Second instance.' In the
event that we hit reload on our internet browser a couple of
times, we will have understood that every now and then, the
message showed switches between 'First instance' and
'Second instance.' Here the round-robin algorithm is being
used in real-time.

B. Load Balancing using Kubernetes

1. Architecture and Design

Figure 3. Flow chart of load balancing implementations

using Kubernetes

Kubernetes permits two kinds of load balancing, i.e.,
Internal and External. Aside from these two, we have
another technique, Ingress; it sits before various
administrations and serves as a router into your cluster.
(Figure. 3.)

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-9 Issue-2, July 2020

790

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org

Internal – otherwise known as "service" is load
balancing crosswise over compartments of a similar kind
utilizing a label. These administrations, by and large,
reveal an internal cluster IP and port(s) that can be
referenced inside as an environment variable to each unit.
A service can load offset between these holders with a
solitary endpoint. It takes into account container failures
and even node failures inside the cluster while preserving
the availability of the application.

External – Services can likewise go about as outer load
balancers whenever wanted that is through a NodePort or
LoadBalancer or Ingress type.

NodePort
NodePort opens a significant level port remotely on

each node in the cluster. Naturally, somewhere close to
30000-32767. When scaling this up to at least 100 hubs, it
turns out to be a little faulty. (Figure 4.)

There are numerous drawbacks to this strategy:
1. Has just one service for each port.
2. Only 30000–32767 can be utilized.
3. If your Node/VM IP addresses changes, appropriate

changes will have to be made.

Figure 4. Traffic Control of NodePort

 LoadBalancer
 LoadBalancer helps by creating an external load
balancer for you if your running Kubernetes in GCE,
AWS, or another supported cloud provider. The pods get
exposed to a high range external port and the load
balancer routes directly to the pods. This bypasses the
concept of service in Kubernetes, still requires high range
ports to be exposed, allows for no-no segregation of
duties, mandates all nodes in the cluster to be externally
routable (at minimum) and will result in triggering real
issues if you have more than X number of applications to
expose where X is the range created for this task. The
downside is that each service that is exposed to the
LoadBalancer will get its own IP address, and one will
have to pay for a LoadBalancer per exposed service.
(Figure 5.)

Figure 5. Traffic control of LoadBalancer

Ingress
Ingress serves as a kind of a smart router for your

cluster that sits in front of multiple services. The inbuilt
GKE ingress controller will spin up an HTTP(S) Load
Balancer for the user. Ingress is perhaps the most powerful
way to expose services, but can also be rather complicated.
There are different types of Ingress controllers, which
include Google Cloud Load Balancer (GCLB), Nginx,
Contour, etc. (Figure 6.).

Figure 6. Traffic control of Ingress

2. Experimental Setup
1) Setting up the Dockerfile for worker node
 FROM node:alpine
 WORKDIR "/app"
 COPY ./package.json ./
 RUN npm install
 COPY . .
 CMD ["npm", "run", "start"]
 2) Dockerfile for server node
 FROM node:alpine
 WORKDIR "/app"
 COPY ./package.json ./
 RUN npm install
 COPY . .
 CMD ["npm", "run", "start"]

Load Balancing using Docker and Kubernetes: A Comparative Study

791

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org

 3) Dockerfile for client node
 FROM node:alpine as builder
 WORKDIR '/app'
 COPY ./package.json ./
 RUN npm install
 COPY . .
 RUN npm run build
 FROM nginx
 EXPOSE 3000
 COPY./nginx/default.conf/etc/nginx/conf.d/default.conf
 COPY--from=builder/app/build /usr/share/nginx/html
 4) Configuration file for Ingress
 server {
 listen 3000;
 location / {
 root /usr/share/ingress/html;
 index index.html index.htm;
 }
 }

3. Implementation
1) client-cluster-ip-service.yaml file
apiVersion: v1
kind: Service
metadata:
 name: client-cluster-ip-service
spec:
 type: ClusterIP
 selector:
 component: web
ports:
 -port: 3000
 targetPort: 3000

2) client-deployment.yaml file
apiVersion : apps/v1
kind: Deployment
metadata:
 name: client-deployment
spec:
 replicas: 3
selector:
 matchLabels:
 component: web
template:
 metadata:
label:
 component: web
 spec:
 containers:
 -name: client
 Image: Virtualization/multi-client
 ports:
 -containerPort: 3000

IV. CONCLUSION

 Before container technologies, deploying an application
normally took a long time. Deployment was done manually,
which cost the company time and resources. When container
technologies became popular with Docker and Kubernetes, the
entire process became more streamlined and standardized.
Currently, in the field, load balancing for containerized
applications exists in multiple forms for different use cases, but

they remain unexplored with each having their own advantages
and disadvantages
 The capacity to scale and finds benefits in Docker is currently
simpler than at any other time. With the administration
revelation and burden adjusting highlights incorporated with
Docker, designers can invest less energy making these sorts of
supporting capacities all alone and additional time concentrating
on their applications. Rather than making API calls to set DNS
for administration disclosure, Docker consequently handles it
for you. In the event that an application should be scaled, Docker
deals with adding it to the heap balancer pool. By utilizing these
highlights, associations can convey exceptionally accessible and
flexible applications in a shorter measure of time.
 The problems with existing methods are that they are not
efficient enough, and the new algorithms being designed are not
scalable to be widely used. With the increasing use of containers,
load balancing will become a necessity, and further research is
needed on efficient implementations.

 Research Challenges
 One observation we can see through this research on the
different load balancing techniques is that there is no clear
understanding of why specific algorithms are better and how
each can be improved. Researchers have tried implementing
their own algorithms or enhance the current algorithms but have
not been able to completely change load balancing in container
environments. Containers are still a developing field, and much
research remains to be done, and as we move forward, load
balancing becomes increasingly essential. Load balancing will
improve system performance and reduce carbon emissions. We
look to show which algorithms can be used for different
purposes and seek to implement the techniques comparing their
performance.
 Currently, there is a universal acceptance that with respect to
container orchestration, Kubernetes performs much better than
Docker Swarm. One of the reasons Kubernetes is widely used
instead of the native Docker cluster, Docker Swarm, is its
scalability, portability and self-healing attributes. Kubernetes
has been around longer than Docker Swarm and therefore has
much more documentation. We look to study why Kubernetes is
more famous for implementing load balancing.

REFERENCES

1. Netto, Hylson V., et al. "State machine replication in containers
managed by Kubernetes." Journal of Systems Architecture 73 (2017):
53-59.

2. Rusek, Marian, Grzegorz Dwornicki, and Arkadiusz Orłowski. "A

decentralized system for load balancing of containerized microservices
in the cloud." International Conference on Systems Science. Springer,
Cham, 2016.

3. Sajjan, Rajani. (2017). Load Balancing and its Algorithms in Cloud
Computing: A Survey.

4. Cito, Jürgen & Ferme, Vincenzo & C. Gall, Harald. (2016). Using
Docker Containers to Improve Reproducibility in Software and Web
Engineering Research. 609-612. 10.1007/978-3-319-38791-8_58.

5. C. Cérin, T. Menouer, W. Saad and W. B. Abdallah, "A New Docker
Swarm Scheduling Strategy," 2017 IEEE 7th International Symposium
on Cloud and Service Computing (SC2), Kanazawa, 2017, pp.
112-117. doi: 10.1109/SC2.2017.24

6. A Scheduling Strategy on Load Balancing of Virtual Machine
Resources in Cloud Computing Environment.

7. Wei-guo, Zhang & Xi-lin, Ma & Jin-zhong, Zhang. (2018). Research
on Kubernetes' Resource Scheduling Scheme. 144-148.
10.1145/3290480.3290507.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-9 Issue-2, July 2020

792

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3938079220/2020©BEIESP
DOI:10.35940/ijrte.B3938.079220
Journal Website: www.ijrte.org

8. Bui, Thanh. "Analysis of Docker security." arXiv preprint
arXiv:1501.02967 (2015).

9. Di Tommaso, Paolo, et al. "The impact of Docker containers on the
performance of genomic pipelines." PeerJ 3 (2015): e1273.

10. Harter, Tyler, et al. "Slacker: Fast distribution with lazy Docker
containers." 14th {USENIX} Conference on File and Storage
Technologies ({FAST} 16). 2016.

11. Naik, Nitin. "Applying computational intelligence for enhancing the
dependability of multi-cloud systems using Docker swarm." 2016
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
2016.

12. Nguyen, Nikyle, and Doina Bein. "Distributed mpi cluster with Docker
swarm mode." 2017 ieee 7th annual computing and communication
workshop and conference (ccwc). IEEE, 2017

13. Ismail, Bukhary Ikhwan, et al. "Evaluation of Docker as edge
computing platform." 2015 IEEE Conference on Open Systems
(ICOS). IEEE, 2015.

14. Kherani, Foram F. "Prof. Jignesh Vania, "Load Balancing in cloud
computing"." International Journal of Engineering Development and
Research 2.1 (2014).

15. James, Jasmin, and Bhupendra Verma. "Efficient VM load balancing
algorithm for a cloud computing environment." International Journal
on Computer Science and Engineering 4.9 (2012): 1658.

16. Yagoubi, Belabbas, and Yahya Slimani. "Dynamic load balancing
strategy for grid computing." Transactions on Engineering, Computing
and Technology 13.2006 (2006): 260-265.

17. Data storage and load Balancing in cloud computing using container
18. clustering Trapti Gupta & Abhishek Dwivedi
19. Ren, Xiaona, Rongheng Lin, and Hua Zou. "A dynamic load balancing

strategy for cloud computing platform based on exponential smoothing
forecast." 2011 IEEE International Conference on Cloud Computing
and Intelligence Systems. IEEE, 2011.

20. Kaewkasi, Chanwit, and Kornrathak Chuenmuneewong.
"Improvement of container scheduling for Docker using ant colony
optimization." 2017 9th international conference on knowledge and
smart technology (KST). IEEE, 2017.

21. Research and implementation of Docker performance service in
distributed platform Liu Lijuan

22. Rad, Babak Bashari, Harrison John Bhatti, and Mohammad Ahmadi.
"An introduction to Docker and analysis of its performance."
International Journal of Computer Science and Network Security
(IJCSNS) 17.3 (2017): 228.

23. Zhang, Dongsheng. Resilience enhancement of container-based cloud
load balancing service. No. e26875v1. PeerJ Preprints, 2018

24. Value-Based Allocation of Docker Containers by Piotr Dziurzanski,
and Leandro Soares Indrusiak

25. Takahashi, K., Aida, K., Tanjo, T., & Sun, J. (2018). A Portable Load
Balancer for Kubernetes Cluster. Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region -
HPC Asia 2018. doi:10.1145/3149457.3149473

26. Cloud Resource Orchestration: A Data-Centric Approach By
Changbin Liu, Yun Mao, Jacobus E. Van der Merwe, Mary F.
Fernández

27. Prajval Mohan, Adiksha Sood, Lakshya Sharma, Simran Koul, Simriti
Koul. ‘PC-SWT: A Hybrid Image Fusion Algorithm of Stationary
Wavelet Transform and Principal Component Analysis.’ International
Journal of Engineering and Advanced Technology (IJEAT). ISSN:
2249-8958 (Online), Volume-9 Issue-5, June 2020, Page No.700-705.

28. Polyphony: A Workflow Orchestration Framework for Cloud
Computing Khawaja S Shams, Dr. Mark W. Powell., Tom M.
Crockett, Dr. Jeffrey S. Norris, Ryan Rossi, Tom Soderstrom

29. SDN orchestration architectures and their integration with Cloud
Computing applications By Arturo Mayoral, Ricard Vilalta, Raul
Muñoz, Ramon Casellas, Ricardo Martínez

30. An in-depth analysis and study of Load balancing techniques in the
cloud computing environment. By Geethu Gopinath P P, Shriram K
Vasudevan

31. Dynamic Balance Strategy of High Concurrent Web Cluster Based on
Docker Container. Weizheng Ren et al 2018 IOP Conf. Ser.: Mater.
Sci. Eng. 466 012011

32. Prajval Mohan, Pranav Narayan, Lakshya Sharma, Tejas Jambhale,
Simran Koul, "Iterative SARSA: The Modified SARSA Algorithm for
Finding the Optimal Path". International Journal of Recent Technology
and Engineering (IJRTE). ISSN: 2277-3878, Volume-8 Issue-6, March
2020

AUTHORS PROFILE

Prajval Mohan was born in Hyderabad, India on

23rd October, 1998. He completed his Senior High
School from FIITJEE Junior College, Hyderabad,
graduated with 96.1 percent and received the
Honorary Certificate of Merit in the year 2016.
Prajval is currently pursuing his B. Tech in
Computer Science and Engineering from Vellore

Institute of Technology, Vellore, India. His areas of interest include
Robotics, Machine Learning, Artificial Intelligence and Cloud Computing.
He has advanced working knowledge of Robotics and Database handling
which were strengthened by completing various projects and internships in
the respective fields. He also has ongoing research in the field of Deep
Learning and Parallel Distributed Computing.

Tejas Jambhale was born in Maharashtra, India

on 17th November, 1998. He is a student of Vellore
Institute Technology, Vellore currently pursuing
Computer Science Engineering. He has skills in
domains including machine learning, web
development and deep learning. He has completed
research in cyber security and deep learning and likes

building different projects to explore his skills.

Lakshya Sharma was born in Jaipur, India on 25th
January, 1999. He was raised in Delhi, India and
completed his Senior high school from D.A.V Public
School. He is currently pursuing B. Tech in Computer
Science Engineering from Vellore Institute of
Technology, Vellore. His research interests include
Deep learning, artificial intelligence, autonomous

object avoiding and path planning robots. He has worked on several machine
learning, deep learning projects and has an ongoing research in offline
signature recognition using Siamese networks.

Simran Koul was born in Jammu, India on 10th

November, 1998. She completed her senior high
school in Indian School Ahmadi, Kuwait. She is
currently pursuing her Bachelor's Degree in
Computer Science Engineering in VIT, Vellore,
India. She is currently working on projects which
involve concepts of Robotics and Artificial

intelligence and Natural Language Processing.

Simriti Koul was born in Jammu, India, on 10th
November 1998. She completed her senior high
school in FAIPS DPS, Ahmadi, Kuwait. She is
currently pursuing her Bachelor's Degree in
Computer Science Engineering at Vellore Institute
of Technology, Vellore, India. She is currently
working on projects which involve concepts of

Artificial intelligence, Data Analytics and Natural Language Processing.

