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Abstract: In most of the IoT applications, exchange of data 

among various physical and virtual IoT devices having different 
data flows, energy and delay constraints is a challenging task in 
such environments. This imposes constraints in IoT applications 
at the node, network and application level, and to meet such 
constraints, we propose an adaptive IoT system that adapts to 
different data flows in IoT network having different time and 
energy constraints. The proposed scheme consists of two 
algorithms viz., coarse grain transmission path algorithm for 
low-deadline IoT applications, where time, traffic load and energy 
consumption are considered as the main parameters; and a 
fine-grain algorithm for high-deadline situations, where low 
latency and power constraints are the important performance 
parameters. Finally, the performance of proposed strategy is 
evaluated by simulation. The results of the proposed scheme in 
this paper outperform the existing algorithms in terms of energy, 
power, number of alive nodes and delay. The proposed scheme is 
used for data transmission optimization in delay-sensitive 
resource-constrained IoT applications. 
 

Keywords: Coarse-grain transmission, Data aggregation, 
Edge, Fine-grain transmission, Internet of Things. 

I. INTRODUCTION 

Over the years the Internet of Things (IoT) has gradually 
developed to cater many fields of applications.  IoT comprises 
of large number of nodes capable of sensing data, deployed in 
a large geographical area and edge devices that can 
communicate with the IoT nodes over wireless 
communication link. The IoT nodes are placed in number of 
ways in the network viz., single-hop, multi-hop or mesh or 
grid topology. There are constraints in the IoT ecosystem at 
the node, network and application level, but network lifetime 
is the main constraint in IoT networks.  In resource 
constrained IoT applications, once the network is deployed, it 
is undesirable to replace or recharge IoT nodes. In many 
applications, the replacement of batteries is impracticable. 
The solution for energy efficiency at energy techniques only 
offers a partial solution, therefore, attention has to be paid at 
protocol level as well, where data is considered as one of the 
main parameters that can be managed to conserve energy in 
such systems.  
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In IoT applications, more energy is consumed due to 
transmission of data as compared to the local processing of 
data, therefore the data to be transmitted needs to be 
minimized. To design an energy efficient IoT, the main 
emphasis should be on data aggregation techniques. In 
delay-sensitive energy-constrained IoT applications, in 
addition to power requirements, there are latency constraints 
that need to be met. We have identified scenarios in IoT 
applications based on power and delay constraints and these 
include: power and delay constraints, power constraint and no 
delay constraint, no power constraint and delay constraint, 
and no power and no delay constraints.  

In the low-deadline situations where time, traffic load and 
energy consumption are important design parameters, a 
coarse grain transmission path algorithm is used for meeting 
such constraints in IoT. In high-deadline situation lwhere we 
have low latency and power constraints, a fine-grain 
algorithm is used for meeting such requirements. In this 
paper, we have improved algorithms presented in [1] and 
proposed an adaptive routing mechanisms based on path 
difference degree so as to adapt the different data flows in IoT 
with different time and energy constraints. Comparative 
analysis of these algorithms shows that our proposed 
algorithm gives better results as compared to the algorithms 
proposed in [1]. The organization of paper is as follows, 
Section II discusses the literature survey, Section III presents 
the data flows in IoT data aggregation, Section IV illustrates 
the proposed system, Section V presents the mathematical 
proofs, Section VI presents the simulation results and Section 
VII presents the conclusions. 

II. LITERATURE SURVEY 

Internet of Things embodies a vision of merging 
heterogeneous objects to establish seamless interactions 
among various logical and physical devices. The logical and 
physical devices in IoT are resource constrained in terms of 
processing, storage and bandwidth. Such an environment 
poses additional challenges to the miniature and unattended 
IoT devices deployed in IoT applications. There are 
numerous constraints in resources which need to be taken care 
of both at the software and hardware level. In addition to the 
resource constraints, there are many limitations due to 
characteristics of an individual node as well, (e.g., limited 
energy), the behavior of the network (e.g., topology change) 
and constraints at the application level (e.g., latency).  

 Further, these IoT devices are typically battery operated; 
as such the one-time deployment can further impose 
constrains on IoT application especially in terms of energy.  
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The problem of energy consumption in IoT is a grave issue; 
therefore an efficient energy management is required. 

Most of the energy consumption in such resource 
constrained IoT devices occurs because of the RF 
trans-receivers and flash memory components [2]. The local 
processing consumes less energy, than transmitting the data 
for remote processing on edge or some other IoT node [3]. In 
IoT applications that are delay and energy sensitive, it 
becomes a challenge to transmit the data to the sink with low 
delay and energy savings. To address this, research has been 
carried out to address packet delivery ratio and delay[4][5], 
while others address energy and packet error rates [6],[7].  

There has been research in data gathering schemes to 
address the delay and lifetime of the sensor nodes in network. 
The data-centric approach has two main advantages i.e. 
minimum communication overhead and efficient in-network 
processing. In in-network processing, the content moving 
through the network is identifiable by intermediate nodes, 
resulting in increased resource consumption which can be 
managed by efficient data aggregation and compression 
techniques e.g., threshold-sensitive energy-efficient sensor 
network protocol (TEEN) [8]. Several researchers have 
studied the combination of information gathering in a WSN 
by combining routing with in-network compression [9]. The 
type of compression can only be application specific such as 
LEACH protocol [10], distributed source routing [11], 
routing and compression approaches used in prediction based 
monitoring [12] and distributed regression framework for 
model-based compression [13]. 

Predominant work has also been done on comparative 
analysis of data routing algorithms based on performance 
metrics such as network lifetime, robustness, security, delay, 
etc [14][15][16]. The growing research on Internet of things 
show that clustered network has advantages in terms of 
resource conservation. That is why the hierarchical structure 
is widely adopted in IoT that emphasize on real time 
application requirements. On the other hand, due to huge data 
sensing, the communication traffic of IoT applications are 
increasingly growing [17] [18]. 

Data transmission path plays an important role in IoT 
systems that determine how the data is to be communicated 
among the IoT devices. Optimizing transmission of data along 
the communication path provides an efficient way of data 
transmission in wide area IoT networks. Various optimization 
techniques have been adopted viz., Ant optimization [19], 
data transmission for high reliability in IoT environments 
[20], etc. Various Edge based IoT solutions have been 
adopted to provide fast computing on low-resource IoT 
devices. Authors in [21] presents an edge based solution to 
enhance energy conservation at IoT node level via optimal 
data transmission in IoT network. This paper presents 
coarse-grain and fine-grain data transmission algorithms for 
low-deadline and high-deadline situations in IoT. 

III. DATA FLOWS IN IOT DATA AGGREGATION  

Internet of Things is the network of physical devices which 
monito the physical world. Connectivity, sensing, and 
interactivity among devices are considered as the main 
features of the IoT. Due to the large-scale deployment of 
distributive and pervasive IoT nodes, there has been 

explosive development of redundant data in such 
applications. Further, the smaller sized IoT nodes are 
typically resource constrained, powered by limited batteries, 
storage, processing and communication capabilities. To 
optimize the use of limited resources in such IoT applications, 
various data aggregation mechanisms are used that aim to 
route the data via minimal resource consumption routes. 
Therefore, the purpose of data aggregation is to aggregate and 
collect the data packets in an effective manner in order to 
optimize the use of resources.  

As shown in Fig.1, for data aggregation in an IoT 
environment, deployed IoT nodes collect data by sensing the 
environment; the aggregated data is forwarded to the edge 
node. The sensed information is carried to the edge node 
either directly or in hops via intermediate IoT nodes. In data 
intensive IoT applications which require periodic monitoring 
of surrounding environment, it is possible that an intermediate 
node receives redundant data from its child IoT nodes. 
Populating such sensed information has an impact on 
consumption of resources especially energy. To avoid this, 
data aggregation mechanisms can be employed in which the 
intermediate IoT nodes can forward only appropriate data to 
the edge node rather than redundant values, therefore 
enhancing optimization of resource utilization in IoT 
applications. Data aggregation mechanism offers several 
benefits to resource constrained IoT applications such as: 
improving the efficiency and accuracy of information, 
eliminating the unnecessary redundant information, 
minimizing the traffic load, saving energy of the nodes, 
optimizing the storage utilization in memory constrained IoT 
nodes, optimizing the processor utilization in IoT nodes, etc.  

 

 
Fig.1. Data Aggregation mechanism 

 
In resource constrained IoT applications, nodes have limited 
energy. Therefore, devising the energy conserving solutions 
for such applications becomes necessary; clustering in data 
aggregation schemes provides the essential candidate 
solutions. To ensure resource efficiency in such networks, 
clustering has become an emerging mechanism for building 
robust and energy efficient IoT environment.  
 
 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 
ISSN: 2278-3075 (Online), Volume-9 Issue-2, December 2019 

1958 

Published By: 
Blue Eyes Intelligence Engineering     
& Sciences Publication  

Retrieval Number: B7859129219/2019©BEIESP 
DOI: 10.35940/ijitee.B7859.129219 
Journal Website: www.ijitee.org 

In clustering, the entire network is separated into various 
clusters; each cluster consists of IoT nodes wherein an 
aggregator IoT node forwards the aggregated data to the edge 
node.  
In such edge based clustering in IoT networks, edge nodes are 
placed at the network edge to bring the computing resources 
closer to the resource constrained IoT nodes, and data 
aggregation is performed in parallel at the edge nodes. To 
minimize the amount of aggregated data from the IoT nodes 
and push the burden from the resource-constrained IoT nodes, 
adaptive data aggregation approach can also be used as an 
efficient solution in such networks where resource 
consumption can occur at a higher speed.  

In edge based IoT applications, nodes are usually 
heterogeneous in hardware, there may be a node(s) capable of 
processing the data, such set of nodes whose resources are 
sufficient are referred to as high end nodes e.g., edge nodes. 
The number of edge nodes depends on the number of clusters 
formed and size of data processed. Typically, data 
aggregation approaches for cluster based edge-IoT networks 
can be classified into two: (a) aggregator node directly sends 
data to the edge node (Direct transmission), and (b) the 
aggregator node sends data to the edge node via other node in 
multiple hops (Indirect transmission) as shown in Fig. 2 and 
Fig. 3.  

In direct transmission, each aggregator sends the sensed 
data from its IoT nodes to the sink. As Fig. 2 shows, in 
clusters C1, C2 and C3, active IoT nodes I1, I2, I3, I4, and I5 

sends the sensed data to the respective aggregator nodes A1, 
A2 and A3 , which then sends the aggregated data to the edge 
node E1. We can see that there are five data flows of sensed 
data from the active IoT nodes. A1 aggregates three data flows 
into one. As a result, there are three data flows from the 
aggregator nodes to the edge node. This approach proves to 
be an inefficient data aggregation approach because of 
multiple redundant data transmissions.  

 
   Fig. 2.  Data aggregation via direct transmission 

 
Fig. 3. Data aggregation via indirect transmission 

 
While in indirect transmission, a hierarchical data 

aggregation model is used. According to this hierarchy, the 
data aggregated on an aggregator node will further be 
aggregated on another aggregator node at a higher level. 
Therefore, the data can be aggregated hop by hop through 
multiple intermediate nodes to the edge node. As Fig. 3 
shows, in clusters C1, C2 and C3, active IoT nodes I1, I2, I3, I4, 
and I5 sends the sensed data to the respective aggregator 
nodes A1, A2 and A3. A3 further aggregates the data flow from 
aggregator node A1 and IoT node I5 into one data flow to the 
edge node E1. Therefore, data aggregation via indirect 
transmission allows for reduction in redundant data 
transmissions, compared to data aggregation via direct 
transmission. Efficient data aggregation algorithms are 
required to accommodate different data flows in IoT 
environment.  

IV. PROPOSED SYSTEM 

The proposed system consists of aggregator nodes that 
collect the sensed data from IoT nodes and push the data to 
the corresponding cluster head. The nodes and cluster heads 
have a many to one relation. We assume the cluster heads 
have a higher configuration as compared to IoT nodes. After 
the data to be transmitted is collected by a cluster head, hop to 
hop delivery is started until data reaches the destination 
cluster head. The last cluster head then forwards the data to 
the sink. The entire network (lnter-cluster/Intra-cluster 
connections) is controlled by a SDN (software Defined 
Networks) controller which adjusts the network in real time.  
Edge computing is utilized by the cluster heads to reduce 
computational load on the SDN controller. Once a path has 
been set by the SDN controller, the path remains the same for 
the entire data transmission duration. For the next data 
transmission, the path is recalculated. Further storage 
optimizations is performed by storing all results in a hash 
table and using them when needed. 

A. Assumptions 

Following are the assumptions made. 
 Consider the network to be made up of nodes and 

edges similar to a graph.  
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 Let R the communication range of nodes in the case of 
low real-time performance. 

 Let C be the set of all cluster heads where Ci, Cj, Ck 

,…, Cn are its members. 
 A pair of cluster heads Ci, Cj are said to be connected 

if the distance between them is less than R. 
 Let TRcc be the rate of communication between cluster 

heads. 
 Let TRcn be the rate of communication between cluster 

heads and IoT nodes. 
 Each node is connected to the nearest cluster head. 
 Let TRij be the transmission rate between network 

members i and j. 
 Let Vi be the node of network 
 Let Ci  be the Cluster head of network 
 Let Path_ALLCH be the set of all possible paths 

between cluster heads 
 Let T be the time taken for transmission  
 Let Tc be the time constraint in which message needs 

to be sent 
 Let Pathij be the path that has already been selected  
 Let CP(vi, vj)be the pair of cluster heads closest to Vi 

and Vj 
 Let D(Ci, Cj)be the distance calculated between 

Cluster head i and cluster head j 
 Let Path_Cost be the sum of the weights of all the 

edges along a path 

B.  Definitions 

Following definitions are used in proposed algorithms: 
 Edge Weight: The connection between the network 

members is of two types: Cluster head to cluster head and 
Cluster head to aggregator node. The higher the weight of 
an edge, better the communication. 

 Loss_Probability: A running average of packet loss 
percentage is calculated using a sliding window approach 
i.e., percentage of last 100 transmission that were 
successful. This value is multiplied for every node along a 
path to get a path loss probability value. 

 Path_Energy: Path_Energy is defined as the ratio of the 
current available energy in all the nodes along a path to the 
initial available energy in all the nodes. 

 Power_Cost: As the algorithm decides to use a cluster 
head instead of a regular node for transmission, the total 
energy needed for transmission increases. Path energy 
cost is the difference between the final cost of the path 
with increased number of cluster heads and the initial cost.  

 Average Time Delay: The average time required for 
transmission of data source IoT node to the destination 
IoT node. 

 Path Difference Degree (PDD): It measures the balance 
of transmission path. The energy consumption and load 
are dependent on this performance metrics.  

C. Proposed Algorithms 

In this section, we have proposed two algorithms viz., 
coarse grain optimal path algorithm for low deadline situation 
and adaptive transmission algorithm for power optimization 
for high deadline situations. Comparison of these algorithms 
has been done with the algorithms outlined in [1]. The 

improved algorithm 1 and Algorithm 2 are shown in Table I 
(a) and (b). In Table I(a), the decision parameters α, β and ¥  
decides which path to use, and are set according to the 
application constraints. For IoT applications where the 
network doesn’t need load balancing, α is set low. For 
applications where the node to node packet loss is high, β is 
set low to reduce the likelihood of a packet drop. And for 
networks where the Path energy is low, ¥  is set low to reduce 
the likelihood of the path being selected. 
 

Table – I (a): Improved Algorithm 1: Pseudocode of 
coarse grain optimal path for delay optimization 

 

Require:   vi, vj, C, Path_AllCH, TC, TR, W  
Ensure: Path_selection V<vi,vj>,Pathij , 0 0 
From the set C, search the cluster head pair (Ci, Cj)  
Construct the communication over cluster head pairs 
corresponding CHPair< Ci,Cj> of vi and vj 
Select all paths of Pathij between cluster head Ci and Cj, from 
Path_AllCH, according with W 
For i = 0 to |Pathij| do 
Calculating every path time  
If the time taken for path, T is less than latency requirements, 
TC 
Add path to set of paths under consideration 
Endif 
Endfor 
For j = 0 to |PathSS| 
Calculate path difference degree W j  
Calculate Loss_Prob 
Calculate Path_Energy 
Calculate Wj * α + Loss_Prob* β + Path_Energy * ¥ 
Find the maximum value for path_Cost 
Endfor 
Return Max_Path 

 
Table – I (b) : Improved Algorithm 2: Pseudocode of 

adaptive transmission for power Optimization 
Require: vi, vj, Pathij, Tc, Tmin 
Ensure: Path_new     
For i = 0 to |Path_all | 
Construct the communication over all cluster head pair corresponding 
of vi and vj, stored in CP(vi,vj) from the head for Pathij 
For m=0 to |CP| 
Calculate distance of cluster head pair, d(cm,cm+1)=|cm,cm+1| 
If R < d(cm,cm+1) < Rmax 
Pt(cm) = P(d(cm,cm+1)) //increase the current transmission power 
TRm,m+1 =TRC // update the transmission rate  
End if    
Calculate the Tm 
If a new path, Ti TC Tmin meets the application requirement  
NewPathSet ← Path_all[m] 
Endif  
End or 
Endfor 
For k = 0 to |NewPathSet| 
Calculate a new power changed cost, Cpk 
Calculate Path_Loss,  Path_Energy, Path_Cost 
If α*CPK + β * Path_Loss+ ¥* Path_Eenrgy 
Path_new  NewpathSet[k]  
Endif     
Endfor 
Return Path_New  

In Table I (b), the decision parameters are set according to 
requirements, but here they serve a different purpose.  
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For IoT applications where the network has strict energy 
constraints, α  is set low, to reduce the likelihood of high 
Path_Cost, for networks where the node to node packet loss is 
high, , β is set low to reduce the likelihood of a packet drop 
and vice versa. And for networks where the Path_Energy is 
low, ¥ is set low to reduce the likelihood of the path being 
selected. 

V. MATHEMATICAL FORMULATION 

In aggregation of data from IoT nodes to aggregator to 
sink, we have improved on various parameters such as power, 
failure rate, packet loss and robustness in coarse grain 
algorithm stated in [1]. The improvements are discussed as 
under: 
 
 Power Improvement: Power is the ratio of total energy of 

path if all nodes were full and actual energy present in all 
nodes along the path. In calculation of time taken in 
simulation, multiplying the time by a calculated constant 
increases the likelihood of a path having more energy left 
in its cells being used. This helps with load balancing and 
increasing network lifetime. 

 Failure rate Improvement: Failure rate is inversely 
proportional to failure percentage of nodes along the path. 
Multiplying the time by a calculated constant increases the 
likelihood of a path having lesser failure rate along its 
nodes being used. This also ensures that shorter paths are 
selected, to improve network transmission times. 

The above improvements can be combined to give 
improved power consumption and failure rates. 

 Packet loss improvement: Since paths are calculated 
according to the time constraint which takes into account 
weight of edges, using Lemma 1 and Lemma 2, we can 
show that reweighing the edges favors paths with lesser 
packet loss.  
Lemma 1: The edges are reweighed to favor edges with 
lesser packet loss, given as:  
 

         
(1) 

Between a pair of nodes, the number of packets sent 
is a constant amount so the above equation reduces 
to: 

                          (2) 
The weight becomes inversely proportional to the 
packets received.  
QED  
Lemma 2: The path is made up of edges with lesser 
packet loss. While calculating all possible paths, 
paths with higher weights than a certain constraint 
are rejected. And if the weight of an edge is less, the 
path which includes this edge will have less total 
weight. QED  

The power is also improved and can be proved in a similar 
way as Lemma 2. These two reweighing schemes can be 
combined to give an algorithm with lesser packet loss and 
power improvement  

    Robustness: In addition to packet loss and power 
improvements, the proposed modified algorithm 1 
ensures robustness as supported by Lemma 3.  

Lemma3:  More the number of nodes / hops in path, more 
is the expected value of a failure occurring.  

According to the algorithm if message is sent along one 
path, then any node can be a source of single point of 
failure. Consider the set of all such nodes in the selected 
path, let that set be Si. We assume sending the message 
along multiple paths; therefore, single point of failure 
can only occur at nodes which are common to all paths. 
Let the set of common nodes to those paths be {S1} 
∩{S2}∩{S3}, ... , ∩ {Si}. It is clear that the size of the 
second set is bounded by the set with the least number of 
elements, which implies:   

                                                                    (3) 

Where Nfi is the number of sources of failure in improved 
algorithm and Nfo is the number of sources of failure in 
algorithm 1 in [1] .  

We have improved on parameters like power, failure rate, and 
time delay in algorithm 2 stated in [1]. Power and failure 
improvements can be stated and proven in the same way as for 
improved algorithm 1. However, the mathematical proof for 
improvement in time delay is stated in lemma 4: 

Lemma 4: An edge is included between cluster head 
pairs only if it improves the time constraints of the path. 
If the statement holds for every edge included in path, the 
path will always be better than a path that doesn’t 

include the intermediate cluster head pairs. Therefore 
the path is at least as good as a path chosen otherwise by 
algorithm 2 of [1]. 

VI. SIMULATION SETUP AND RESULT ANALYSIS 

The proposed graph structure are programmed and 
simulated in C++. The simulations are run using omnet++. 
The simulation parameters are set as shown in Table II. 

A. Performance Metrics 

Following is the performance metrics used: 
    Network area versus rounds: It is assumed that every 

node contributes area equal to PI * R*R overlap of node 
areas is counted twice. It is calculated three different times 
for three different location schemes. 

    Energy per round: Total energy is calculated and divided 
by number of rounds. 

    Packet delivery ratio: It is assumed that every cluster 
head has a failure rate between 0% and 20%. It is assumed 
that every node has a failure rate between 0% and 30%. 
Any packet which has < 60 % failure rate is considered as 
failed. 

    Rounds versus Alive Nodes: Every node is given 20j, one 
transmission costs 1j. 
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B. Result Analysis 
The performance of improved algorithm 1 is evaluated in 

terms of round number versus number of alive nodes, network 
area versus number of rounds, power/time versus number of 
rounds and rounds versus energy/alive node. 

Table-II :Simulation Parameters                                                             
Parameters Value 
Simulation Area 150 * 150 square 

meter 
Data aggregators 50 
Cluster Heads 10 
Maximum time threshold 500 seconds 
Cluster to cluster transmission 
of unit data 

1 second 

Cluster to data aggregator 
transmission of unit data 

100 seconds 

1 transmission of data cost 1 joule  
Initial Node Energy 20 joules 

Fig. 4 shows energy left per node versus number of rounds. It 
is evident from the graph that the energy of a node is more in 
improved algorithm 1 as compared to algorithm 1 stated in 
[1]. Fig 5 shows power per node versus number of rounds. It is 
evident from the graph that the power of a node is more in 
improved algorithm 1 as compared to algorithm 1 stated in 
[1]. Fig. 6 shows the nodes in improved algorithm 1 lasts for a 
longer time as compared to algorithm 1 stated in [1], but dies 
at approximately same time of simulation. Fig. 7 shows 
average energy of a node across simulations. With different 
initial energy taken for different simulations, the energy of a 
node is analyzed after 20 rounds, and it is evident that the 
energy of a node in algorithm 1 of [1] is less than the energy of 
a node in our improved algorithm 1. Fig. 8 shows average 
power of a node across simulations. With different initial 
power taken for different simulations, the power of a node is 
analyzed after 20 rounds. it is evident that the power of a node 
in algorithm 1 of [1] is less than the power of a node in our 
improved algorithm 1. 

 
Fig. 4. Energy left per node versus Number of Rounds 

 
Fig. 5.  Power per unit time versus Round number 

 
Fig 6. Number of alive nodes versus Number of Round 

 
Fig 7. Average energy per node across simulations 

 
Fig 6. Number of alive nodes versus Number of Round 
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Fig 7. Average energy per node across simulations 

 
 

Fig 8. Power per unit time across simulations 
 
The improved algorithm 2 is only designed for fast network 
transmission times; we have considered two different types of 
graphs - dense graphs and sparse graphs, each with power 
constraint and no power constraint. Results are shown in 
Table III to Table VI. 
 

Table - III: Dense graph, with no power 
Simulation Time taken in 

improved 
algorithm 2 

Time taken in  
algorithm 2 of [1] 

Cluster Head 
time in 
improved 
algorithm 2 

Cluster head time 
in algorithm 2 of 
[1] 

Cluster heads 
in path in 
improved 
algorithm 2 

Cluster heads in 
algorithm 2 of [1] 

0 1.91842E+06 1.93076E+06 29907 42254 20417 32764 

1 1.91766E+06 1.93294E+06 30141 45423 20656 35938 

2 1.92286E+06 1.93464E+06 29971 41747 20459 32235 

3 1.9205E+06 1.93297E+06 31398 43862 21905 34369 

4 1.92504E+06 1.93914E+06 30754 44859 21235 35340 

5 1.91816E+06 1.93159E+06 31636 45071 22156 35591 

6 1.92219E+06 1.93634E+06 30890 45040 21386 35536 

7 1.91845E+06 1.93012E+06 29742 41409 20251 31918 

8 1.91968E+06 1.93326E+06 27988 41568 18482 32062 

9 1.92355E+06 1.93688E+06 28271 41609 18747 32085 

10 1.91829E+06 1.93313E+06 29778 44619 20288 35129 

 
Table- IV: Dense graph, with power constraint 

Simulation Time taken in 
improved 
algorithm 2 

Time taken in 
algorithm 2 of [1] 

Cluster Head 
time in improved 
algorithm 2 

Cluster head time 
in algorithm 2 of 
[1] 

Cluster heads in 
path in improved 
algorithm 2 

Cluster heads 
in algorithm 
2 of [1] 

0 1.0742E+06 1.08105E+06 17311 24165 12000 18854 
1 1.14256E+06 1.15169E+06 17608 26740 11955 21087 
2 1.1155E+06 1.12216E+06 18816 25468 13305 19957 
3 1.05648E+06 1.06458E+06 16706 24802 11481 19577 
4 1.0704E+06 1.07902E+06 16494 25117 11198 19821 
5 1.05659E+06 1.06397E+06 17014 24396 11790 19172 
6 1.19939E+06 1.20807E+06 19516 28200 13587 22271 
7 1.1163E+06 1.12326E+06 18416 25376 12899 19859 
8 1.23671E+06 1.24622E+06 19028 28540 12909 22421 
9 1.19807E+06 1.20707E+06 18595 27595 12668 21668 

10 1.12638E+06 1.13528E+06 17352 26251 11779 20678 
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Table – V: Sparse graph, with no power constraint 
Simulation Time taken in 

improved 
algorithm 2 

Time taken in 
algorithm 2 of 
[1] 

Cluster Head 
time in 
improved 
algorithm 2 

Cluster head 
time in 
algorithm 2 of 
[1] 

Cluster heads in 
path in 
improved 
algorithm 2 

Cluster heads in 
algorithm 2 of 
[1] 

0 1.60234E+06 1.6086E+06 30642 36894 22744 28996 
1 935848 941409 16667 22228 12048 17609 
2 1.58618E+06 1.59169E+06 31789 37299 23978 29488 
3 1.35081E+06 1.35702E+06 26071 32281 19414 25624 
4 1.22757E+06 1.23326E+06 23425 29110 17374 23059 
5 1.0499E+06 1.05393E+06 20670 24698 15498 19526 
6 1.73318E+06 1.73885E+06 35709 41377 27179 32847 
7 1.69251E+06 1.69802E+06 33045 38564 24706 30225 
8 1.73953E+06 1.74622E+06 33898 40596 25327 32025 
9 1.63861E+06 1.64508E+06 32480 38949 24409 30878 

10 1.39216E+06 1.39794E+06 27417 33197 20559 26339 
 

Table – VI: Sparse graph, with power constraint 
Simulation Time taken in 

improved 
algorithm 2 

Time taken in 
algorithm 2 of 
[1] 

Cluster Head 
time in 
improved 
algorithm 2 

Cluster head 
time in 
algorithm 2 of 
[1] 

Cluster heads in 
path in 
improved 
algorithm 2 

Cluster heads in 
algorithm 2 of 
[1] 

0 740817 743904 13074 16161 9417 12504 

1 857995 862569 15429 20003 11195 15769 

2 782055 784592 14910 17447 11055 13592 

3 762371 766088 13534 17251 9771 13488 

4 823862 827930 14330 18398 10262 14330 

5 728802 731089 13795 16082 10202 12489 

6 869430 871382 17511 19463 13230 15182 

7 848171 851797 15754 19380 11571 15197 

8 938366 941436 18190 21260 13566 16636 

9 804449 807325 15414 18290 11449 14325 

10 809693 812900 14688 17895 10693 13900 

 
VII. CONCLUSIONS 

In IoT applications, the communication among the IoT 
nodes is an important aspect in determining the network 
topology. Clustered topology are considered as manageable 
structures for IoT. But these frameworks are constrained in 
terms of latency, bandwidth, coverage, and unbalanced 
deployment of computing resources. In order to manage these 
issues, Software Defined Networks and Edge computing are 
integrated into IoT to constitute our proposed framework. The 
IoT system should provide an effective connectivity and 
control among various physical and virtual IoT devices. An 
efficient data transmission scheme is a need of the hour for 
most of the IoT systems that are energy constrained. The 
different delay constraints in data flows is a challenging issue 

 in such systems. To optimize the performance of data 
transmission, we propose an adaptive IoT system that adapts 
different data flows in IoT meeting various application 
requirements. The proposed work consists of coarse grain  

 

 
transmission path algorithm and a fine-grain algorithm for 

low-deadline and high-deadline IoT applications.  
The proposed work is validated by simulations. The 

simulation results are supported by mathematical proof of the 
proposed algorithms used in the work. The proposed scheme 
provides improved solution for different data transmissions in 
Edge-IoT applications with delay constraint or no delay 
constraint and with power constraint or no power constraint 
scenarios. 
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