
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

3146

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9746109119/2019©BEIESP

DOI: 10.35940/ijeat.A9746.109119



 Abstract: Software vulnerability is most common issues in

software engineering, many applications has suffering

vulnerability, information leakage, and data hijacking such kind

of problems facing since couple of years. Sometimes developers

should be making some mistakes during code making which

generate vulnerability issues for entire application. In this

research work, we carried out an approach to software

vulnerability detection using deep learning approach behalf of

metadata processing. The system carried software vulnerability

detection based on the Deep Neural Network (DNN). a new

dynamic vulnerability classification approach has suggested. The

model basic build based on TF-IDF as well density based feature

selection approach for DNN. basically TF-IDF has used to

measured the frequency and weight of specific word of

vulnerability description; the Vector Space Model (VSM) is used

for feature selection to achieve an finest set of feature term, and;

the DNN neural network model is used to built an dynamic

weakness classifier to achieve effectiveness into the bug detection.

The overall system has categorized into four phases in first phase

we detect the code clone to eliminate the data redundancy and

execution time complexity, in second we apply Vector Space

Model (VSM) recommend the re-factor possibility in entire code

while in third section we build DNN module for software

vulnerability detection and finally recommend the vulnerability

for entire code. The system partial implementation has evaluated

in java environment which provide satisfactory results for

heterogeneous code modules .

 Keywords: Deep neural networks, computer security, data

mining, machine learning.

I. INTRODUCTION

 Software bug classification is very essential due to

the software security during the beta testing. Basically

the Quality Assurance (QA) validation phase insure the

respective software is a bug free or it does not contain

any vulnerability. It is hard to detect various kind of

defects of software in real time environment because of

different kind of new attacks. The two kind of

techniques already introduced in existing authors like a

static analysis and dynamic analysis, basically static

analysis is the technique where QA analyze for identify

the vulnerability based on open background knowledge

while dynamic analysis is works like supervised

learning approach. In such techniques introduces

various machine learning based classification which

first train the system and identify the bug during the

data testing.

Revised Manuscript Received on October 05, 2019
 Markad Ashok Vitthalrao, Research Scholar, Department of

Computer Science & Engineering, School of Engineering & Technology,

Suresh Gyan Vihar University, Jagatpura, Jaipur.

 Dr. Mukesh Kumar Gupta, Principle, Department of Computer

Science & Engineering, School of Engineering & Technology, Suresh Gyan

Vihar University, Jagatpura, Jaipur.

The quality of software has measure based on (size of code,

number of dependencies, code cloning etc), if the software

code generate user log files based on current activity, it gives

less possibility to external attacker for data piracy. Some

authentication, authorization as well as security techniques

also boost security parameters of software. The database

connection and runtime port open/close is also generate the

vulnerability of software during the education. In this research

we introduce automated software bug classification using

natural language processing and deep learning approaches.

The DNN has used to classify the bug and finally measure the

accuracy of proposed system which is explore and validate

with existing research works.

II. RELATED WORK

To develop a secure software it is hard in today's environment

for software developers, still it is too much hard to identifying

the vulnerability of existing software’s. It is much important

to identify the effectiveness of software vulnerability and

eliminate search bugs during the software development life

cycle (SDLC). Various automatic software has been

introduces in last couple of years which automatically identify

the software work. Many testing systems already introduced

by multiple researchers like a code clone detection, software

triage classification etc. According to consideration of

OWAPS best software air and service attacks it is much

important to boost our current software to defense such

attacks. There are different level of bugs in a developed

software which is identify is after the effective classification.

In the first level we determine the access control level issues

where someone an authenticated access our application

information with specific network attacks. Many times

developers open the connection port but did not close after the

process execution which enhances data leakage issue into the

software. In second level the access control has been

categorized into the three different phases, such violations

basically related with Role Base Access Control (RBAC) like

process level, communication level and sensitive data

disclosure etc. Such vulnerability should we harm sensitive

information of application as well as generate a data leakage

issue. Third Level bugs should be categorized on security,

authentication and authorization while fourth level bugs

considered as security session management, bypass

authentication, session hijacking and unauthorized access of

entire system. During the development of specific software to

understand the importance of security and taste the system

with penetration testing phase which provides drastic

supervision to the system.

III. LITERATURE SURVEY

Guoyan Huang, et. al. [1], proposed a new unthinking

vulnerability categorization model based on TFI-DNN. The

model is made upon term

frequency- inverse document

frequency (TF-IDF), info gain

Software Vulnerability Classification Based

On Deep Neural Network

Markad Ashok Vitthalrao , Mukesh Kumar Gupta

Software Vulnerability Classification Based On Deep Neural Network

3147

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9746109119/2019©BEIESP

DOI: 10.35940/ijeat.A9746.109119

(IG) associate degreed deep neural network (DNN): the

TF-IDF is employed to calculate the frequency associate

degreed weight of every word from vulnerability description;

the human gamma globulin is employed for feature choice to

get an optimum set of feature word; and also the DNN neural

network model is employed to construct an automatic

vulnerability classifier to realize effective vulnerability

classification. Basically National Vulnerability Dataset of the

US Government has been wont to validate the effectiveness of

the planned model.

According to Marian Gawron et. al. [2], there is an automatic

different to the manual classification, as a result of the number

of known vulnerabilities per day can't be processed manually

any longer. They enforced totally different approaches that

area unit able to mechanically classify vulnerabilities

supported the vulnerability description. They evaluated our

approaches that use Neural Networks and therefore the Naive

mathematician strategies severally, on the bottom of in public

known vulnerabilities.

Andrei Quiroz, ET. al. [3], proposes a Support Vector

Machine (SVM) classification model mistreatment Twitter

posts (tweets) as a supply for filtering relevant info associated

with software system vulnerabilities. During this paper,

tweets thought-about relevant are going to be those alerting

concerning new susceptibilities in software system (being

misused or not), furthermore as posts warning software

system users concerning security patches and informs. The

non relevant info are going to be thought-about as those that

haven't any warning characteristic, i.e.: tweets concerning

opinion, general voice communication and topics that haven't

any sense of prepared. The projected model achieved

associate grade accuracy of ninety four by mistreatment

straightforward options like the frequency of words (unigram

and bigram). Affordable rates of recall and preciseness into

the fascinating category values were recorded as, sixty eight

and forty sixth severally for similar straightforward options.

This experiment opens a path for future studies concerning

the link between however alerts and discoveries in laptop

security are expressed by the security community on social

media posts.

Jacob A. Harer, ET. al. [4], presented an approach automatic

bug detection using machine learning, this system basically

introduces in three different layers first it deals with data

preprocessing which describe data acquisition, misclassified

instances removal, data normalization etc. The preprocessing

face gives surety to eliminate such instances which is

completely irrelevant with appropriate features. After that

system deals with feature extraction and the feature selection

phase execute parallel. According to the selected features the

train model has build to generate the Background Knowledge

(BK) and this BK has used during the classification of

vulnerability assessment. This paper also produces using this

approach system can achieve around 90% heterogeneous

dataset..

Jeesoo Jurn, ET. al. [5], introduced a trend of systems and

tools associated with machine-driven vulnerability detection

and correction. we tend to propose an automatic vulnerability

detection technique supported binary complexness analysis to

stop a zero-day attack. They conjointly introduce AN

unthinking patch generation technique through PLT/GOT

table modification to reply to zero-day vulnerabilities.

According to Zhen Li et al [6], the finding of software

susceptibilities (or vulnerabilities for short) are a vital

downside that has notwithstanding to be tackled, as

recognized by multiple bugs according to a routine. This

incorporate machine learning ways that to automatic

vulnerability detection. Deep learning is attractive for this

purpose as a result of it does not want human consultants to

manually define choices. The experiments analysis has done

of system with four computer code merchandise demonstrate

the utility of the framework: we tend to notice fifteen

vulnerabilities that aren't according within the National

Vulnerability info. Among these fifteen vulnerabilities, seven

are unknown and are according to the vendors, and therefore

the alternative eight are “silently” patched by the vendors’

once emotional newer versions of the products.

According to Antonino Sabetta, ET. al. [7], a method that uses

machine-learning to investigate ASCII text file repositories

and to mechanically determine commits that area unit

security-relevant (i.e., that area unit probably to mend

vulnerability). They treat the ASCII text file changes

introduced by commits as documents written in language,

classifying them victimization commonplace document

classification strategies. By combining freelance classifiers

that use info from completely different sides of commits, our

methodology will yield high preciseness (80%) whereas

guaranteeing acceptable recall (43%). the utilization of data

extracted from the ASCII text file changes yields a

considerable improvement over the most effective identified

approach within the state of the art, whereas requiring a

considerably smaller quantity of coaching knowledge and

using a simpler architecture.

Tamas Abraham, ET. al. [8], find that the first focus isn't

solely on discovering new approaches, however on serving to

Foreign Intelligence Service practitioners by simplifying and

automating their processes. Considering the variability of

applications already obvious, we have a tendency to

believe mil can still offer help to Foreign Intelligence

Service within the future as new area unitas of use are

explored and improved algorithms to boost existing

functionality become available.

HoaKhanh Dam, et. al. [9], described a new approach,

built upon the powerful deep learning Long Short Term

Memory model, to mechanically learn each linguistics

and syntactical options of code. Our analysis on

eighteen humanoid applications and therefore the

Firefox application demonstrates that the prediction

power obtained from our learned options is best than

what's achieved by state of the art vulnerability

prediction models, for each within-project prediction

and cross-project prediction.According to Rebecca L.

Russell et. al. [10], growing numbers of software

package vulnerabilities unit of measurement invent

every year whether or not the unit of measurement

reportable widely or describes inside in detected code.

These susceptibilities can

cause danger of exploit and

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

3148

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9746109119/2019©BEIESP

DOI: 10.35940/ijeat.A9746.109119

finish in system compromise, data leaks, or denial of

service. we tend to leverage the wealth of C and C++

ASCII computer file code accessible to develop

oversized scale function-level condition detection

system victimization machine learning. To addition

vacant labeled exposure datasets, they compiled a huge

dataset of uncountable ASCII computer file role

different classification methods has used to generate

the test labels of system. Victimization of these

datasets, they developed a fast and ascendible

vulnerability detection tool supported deep feature

illustration learning that directly interprets flexed

ASCII computer files. we tend to gauge our tool on

code from every real package packages and thus the

agency soaks up four benchmark dataset. The outcome

has demonstrate proposed learning phase learning on

ASCII text file could be a promising approach for

automated software vulnerability detection.

Jiadong Ren, ET. al. [11], proposed a package buffer

overflow vulnerability prediction methodology by

exploitation software metrics including an alternative

tree formula. First, the software metrics were far from

the software ASCII document, associate degreed data

from the dynamic data stream at the helpful level was

extracted by a data mining technique. Second, a model

supported an alternative tree formula that was created

to measure multiple varieties of buffer overflow

vulnerabilities at a helpful level. Finally, the

experimental results showed that our technique ran in

less time than SVM, Bayes, AdaBoost, and random

forest algorithms and earned eighty 2.53% and 87.51%

accuracy in a pair of fully completely different data

sets. The technique given during this paper earned the

impact of accurately predicting package buffer

overflow susceptibilities in C/C++ and Java programs.

IV. SYSTEM ARCHITECTURE

The proposed system deals with software that detect the

software code clones, with or without alteration.

System grows a self-Learning machine that categorizes

similar and dissimilar code wreckages, the algorithm

for Code mining and Code retrieval. Proposed Hybrid

Model for Software Code Clone Detection by

unverified learning, discount techniques, and code

resemblance comparator and fins the semantic or useful

similar codes. After complete execution of this phase it

will produces the code snippet which contains the bugs.

Finally describe non-functional methods using

reduction that reduces comparison, recuperates system

presentation, decreases complexity, and upsurges

system maintainability

Figure 1: Proposed System Overview

Data Reduction:

 Reducing the Data Scale – Sometime input data

should be contains some redundant information

or features, in reduction we need to eliminate

such features or misclassified instances, in this

section we reduce the actual data scale.

 The processed called normalized data should be

balanced, it is easy to handle for moderately

than the imaginative data set.

Train data and Preprocessing:

 In this phase we construct the dynamic

Background Rules called BK as a desired input

dataset.

 System extract the metadata from given input

object and apply preprocessing and

normalization etc.

 Then tokenization, porter’s stemmer and

filtration will execute.

 Finally, TF-IDF will provide the accessibility of

present vector and accumulate it into feature

database.

 Once train execution has done, it dynamically

generate the feature set for each object.

Testing phase with Preprocessing and TF-IDF:

 Need to upload the data object which does not

have existing labels for desired class item.

 It also work like

train module, based

Software Vulnerability Classification Based On Deep Neural Network

3149

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9746109119/2019©BEIESP

DOI: 10.35940/ijeat.A9746.109119

on density of each terms.

 Then features have been extracted & DNN will

determine the relationship vector with

extracted training set.

Feature Selection:

 This section contains two different techniques

features extraction as well as features selection.

 In features extraction we extract numerous

unique features using extraction technique.

TF-IDF, Co-relation coefficient techniques has

used for extract the features.

 Select the features using binary feature selection

technique.

Clone Detection:

 First detect the multiple clones

 Find the re-factor possibility of all clones

Bug Triage:

 Find the different type exception which

generates at runtime environment.

 Create the bug report for system and notify to

developer.

 Design and develop an approach for NLP as well

as data reduction, train module TF-IDF.

 Implementation of DCNN training phase which

generates the rules and simultaneously

generate VSM.

 Implement the testing phase of DCNN and find

the bugs of given input module as well as

system

 Validation of the developed system as compared

to existing system through extensive

experiments.

V. RESULTS AND DISCUSSION

In this work briefly we explained the how to detect

software code v with respect to its different types at

class level single file. Within single java file we

detected vulnerability of code which will be show

complexity of software. Package level code clone

detection and Refactoring of code clone will be also

possible by applying syntactic and semantic rules as per

methodology of Statement Mapping, Preconditions

Examination and Abstract Syntax Tree mechanism. In

this mechanism we will apply in future scope using

same methods.

Table 1 : System performance with accuracy

RNN ANALYSS

ACCURACY 90.60

PRECISION 89.40

RECALL 88.70

F1 SCORE 87.50

The above table 1 shows classification accuracy of

RNN with extracted features of code respectively.

Basically around 3000 account initial input data has

given for classification, execute the train and test

module respectively. It provides average accuracy

90.60 for proposed research.

VI. CONCLUSION

Basically system presented a framework for software

vulnerability detection based on deep learning to

improve the detection of bugs in source code. The

system provided an overview of the static analysis tools

and techniques and subsequently detailed the proposed

vulnerability detection based on the deep neural

network. It will much helpful in checking the small

scale software applications, rather than high

configuration software’s. It also focus on to identify

code clone as well as bug triage with assessment sheet,

it is much essential for software developer to trace the

actual bug place in large scale application for real time

environments. Initial findings suggest that DNN is an

effective tool for bug detection in large Java

applications.

REFERENCES

1. Huang, Guoyan, Yazhou Li, Qian Wang, Jiadong Ren, Yongqiang

Cheng, and Xiaolin Zhao. "Automatic classification method for

software vulnerability based on deep neural network.", IEEE Access

(2019).

2. Gawron, Marian, Feng Cheng, and Christoph Meinel. "Automatic

vulnerability classification using machine learning." In International

Conference on Risks and Security of Internet and Systems, pp. 3-17.

Springer, Cham, 2017.

3. Queiroz, Andrei, Brian Keegan, and Fredrick Mtenzi. "Predicting

Software Vulnerability Using Security Discussion in Social Media."

(2017).

4. Harer, Jacob A., Louis Y. Kim, Rebecca L. Russell, Onur Ozdemir,

Leonard R. Kosta, Akshay Rangamani, Lei H. Hamilton et al.

"Automated software vulnerability detection with machine learning."

arXiv preprint arXiv:1803.04497 (2018).

5. Jurn, Jeesoo, Taeeun Kim, and Hwankuk Kim. "An Automated

Vulnerability Detection and Remediation Method for Software

Security." Sustainability 10, no. 5 (2018): 1652.

6. Li, Zhen, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan

Chen, Sujuan Wang, and Jialai Wang. "SySeVR: A Framework for

Using Deep Learning to Detect Software Vulnerabilities." arXiv

preprint arXiv:1807.06756 (2018).

7. Sabetta, Antonino, and Michele Bezzi. "A Practical Approach to the

Automatic Classification of Security-Relevant Commits." In 2018

IEEE International Conference on Software Maintenance and

Evolution (ICSME), pp. 579-582. IEEE, 2018.

8. Han, Yi, Benjamin IP Rubinstein, Tamas Abraham, Tansu Alpcan,

Olivier De Vel, Sarah Erfani, David Hubczenko, Christopher Leckie,

and Paul Montaguea. "Reinforcement learning for autonomous

defence in software-defined networking." In International Conference

on Decision and Game Theory for Security, pp. 145-165. Springer,

Cham, 2018.

9. Dam, Hoa Khanh, Truyen Tran, Trang Thi Minh Pham, Shien Wee Ng,

John Grundy, and Aditya Ghose. "Automatic feature learning for

predicting vulnerable software components." IEEE Transactions on

Software Engineering (2018).

10. Russell, Rebecca, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob

Harer, Onur Ozdemir, Paul Ellingwood, and Marc McConley.

"Automated vulnerability detection in source code using deep

representation learning." In 2018 17th IEEE International Conference

on Machine Learning and Applications (ICMLA), pp. 757-762. IEEE,

2018.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019

3150

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A9746109119/2019©BEIESP

DOI: 10.35940/ijeat.A9746.109119

11. Ren, Jiadong, Zhangqi Zheng, Qian Liu, Zhiyao Wei, and Huaizhi

Yan. "A Buffer Overflow Prediction Approach Based on Software

Metrics and Machine Learning." Security and Communication

Networks 2019 (2019).

APPENDIX

Mr. Markad Ashok Vitthalrao did B.E in

Information Technology from Pune

University in 2006 and M.E in Computer

Engineering from Pune University in 2013.

He is Currently pursuing Ph.D in Computer

Science & Engineering from Suresh Gyan

Vihar University Jaipur (Rajasthan). His

research area is Machine Learning and Deep

Learning.

Name: Dr. Mukesh Kumar Gupta

Designation: Professor & Associate Dean

(Research) Department: Electrical

Engineering

Qualification: Ph.D., M.E. (Power System),

B.E. Area of Interest: Power System &

Renewable Energy

