International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.5, August 2015

RecB: Set Theory based Technique for Large Scale
Pattern Mining in Web Logs

Tanya Steen, Ray Lindsay
Enterprise Analytics
Australian Taxation Office

ABSTRACT

Web Analytics is a way of turning raw data into actionable in-
formation. Large organisations own web based applications and
connect to external databases which generate very large web log-
files. It then becomes crucial to estimate how information sys-
tems are accessed by staff, what their search preferences are,
what documents are of greater demand. One challenge in obtain-
ing this knowledge is that logfiles contain unstructured informa-
tion where authentic search requests are not discriminated from
crawler hits. Another challenge is that many proposed pattern min-
ing techniques are usually tested on small benchmark datasets,
so their performance on a large scale is hard to predict. This pa-
per stresses the importance of data preprocessing and introduces
an efficient method for mining patterns in large sized collections
of web logs (of all types) based on classic set theory properties.

General Terms

Algorithms, Big Data

Keywords

set theory, pattern mining, web mining, computational complexity,
complexity reduction, big data analytics

1. INTRODUCTION

Set theory has often been regarded as a universal theory behind
mathematics, whose role was to generalise our reasoning. Set the-
ory is integrated into many branches of mathematics and computer
science, thus discovering new set-theoretic properties has often
been inspired by a question from another field, helping to find new
applications of that theory to other areas. This paper describes
some properties of set theory applied to web usage mining and
offers a method for pattern identification in weblog data. As such,
the problem of mining web logs was attended to years ago and a
number of techniques was introduced. In general, there are three
major knowledge discovery domains that pertain to web mining:
content mining, user path tracking and web usage. While in the
first two areas there has been significant progress, in the area of
estimating web usage some obstacles remain. One major obstacle
in that area is the difficulty in discriminating between authentic
user requests and automated search engine responses all generated
at the same time and written in web logfiles in the same manner.

Traditional user activity analysis is often centred around traffic
traces collected at user level at aggregation points inside the net-
work. This is a very straight forward hardware related methodology
to capture user activity. One metric for usage comparison was
proposed in [1] and is the proportion of connections corresponding
to a particular port, that is the ratio of connections on one port to
the total number of connections. However, if an organization is
subscribed to commercial (external) databases, it usually uses the
shared IP address for the whole office, which makes it impossible
to trace individual user traffic.

Web servers register and collect records about interactions between
servers and users every time a search request is initiated. Web
access logs can help to understand the user search preferences
and the web structure, thereby improving the design of such a
complex system. To do this, web usage mining is performed in
the two directions: general pattern mining and pattern mining at
user level. The general pattern mining analyses the web log data to
understand access patterns and trends. Such analyses can shed light
on better structure of web resources. Patterns at user level help to
understand and measure one’s performance and evaluate access to
information. However, quite often the availability of software for
this purpose has serious limitations and is therefore unsatisfactory,
according to [2].

Web log records generally contain information about users and
their activities thus the study of such data can help to profile clients,
their search preferences and estimate volumes of information they
retrieve. Log records are essential to understand the activities of
complex systems, particularly in the case of applications with little
user interaction such as server applications. In most cases, log files
are too verbose and hard to understand; they need to be subjected
to log analysis in order to make sense of them. This also requires
sophisticated log analysis software, usually tailored to specific
organisational needs.

The popular free downloadable open source Web analytics tools
are listed in the relevant wikipedia page under the title List of
web analytics software. Tools such as these typically analyse web
server log files, extracting items such as visitors’ IP addresses,
URL paths, access times, user agents, referrers, etc. and grouping
them in order to produce HTML reports.

Despite many obvious advantages of using free Web analytics tools,
there are some drawbacks. The most common criticisms of such
tools include:

—Generated statistics do not discriminate between humans and
robots (a.k.a. crawlers). Web crawlers are mainly used to create
a copy of the visited pages for later indexing to speed up access.
Crawlers can also be used for automating maintenance tasks like
checking links or validating HTML codes. Crawler hits are nor-
mally counted as visitor hists. As a result all reported metrics are
higher than those initiated by humans only. Some tools produce
unrealistic figures of visits, which may be many times higher
than the data produced by JavaScript based web statistics.

—Query string analysis is not performed. Consequently, dynamic
generated websites can not be listed separately (e.g., PHP pages
with arguments)

JavaScript based programs have their limitations, too. The potential
impact on data accuracy comes from users deleting or blocking
cookies. Without cookies being set, the JavaScript code will not be
able to collect data.

Another limitation of the majority of web analytics tools is the use
of sampling in statistical computation. On the one hand, it reduces
the load on the servers, but on the other hand, the generated reports
are limited by the size of a sample. If hits (not sessions) are
sampled, it is difficult to estimate the margins for various types of
errors. The above listed and other limitations in using popular web
analytics tools led to the development of new approaches to web
usage mining.

Many of the developed web log mining techniques work around
growing search or prefix trees. While trees generally serve as
compact structures to effectively store and access data, it may be
costly to actually build these structures in large datasets. Most of
the publications on the subject demonstrate experimental results
obtained on small datasets, so the full potential of the proposed
algorithms could not be seen. That uncertainty could be cleared by
analysis of the algorithms’ worst-case computational complexity
as this is the only way to guarantee an upper bound on the
computational time.

Complexity analysis has demonstrated its practical value by
giving us a better understanding of the algorithmic difficulties of
a problem, which affect how much of the computational power
is required to mitigate the performance time. Theoretical esti-
mates of computational complexity could be a good practical guide
to algorithm’s structure and efficient computational methodologies.

The next sections will address the challenges associated with di-
versity of web logs and their filtering, describe the most notable
developments in the area of web log mining to better understand the
purpose of the technique RecB, which is introduced later on. The
computational complexity analysis of RecB and popular tree based
methods will then further strengthen our argument about what type
of methodology can be suitable for mining large collections of log
records.

2. LOG RECORDS

The log files often provide mixed data on using internal and exter-
nal databases, and one challenge in actually processing the data
is that a single search request triggers automated requests by a
database engine (a document retrieval system) generating up to

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.5, August 2015

Fig. 1 Typical information system with a desktop, web server, proxy servers
and web logs

hundreds of logs. In order to obtain accurate information about user
activity one has to find ways of discriminating between initial re-
quests and automated responses. Figure 1 illustrates the interaction
(requests and responses) within a typical information system and
generation of log files.

The log files suitable for Web usage mining usually come from
three different locations: Web server, Web proxy server and client
browser. Web server logs provide complete data on usage but do
not keep record about cached pages. Web proxy server processes
HTTP requests, sends them to Web server, and only then the result
is returned to user. Proxy servers provide an intermediate level of
caching. Multiple users could view the cache generated by a single
search request. Besides, all requests from a proxy server share
the same ID, which makes it difficult to identify individual users.
These and other problems have been addressed in [3][4].

Storing log records in multiple places makes data mining for
navigational patterns quite challenging. For example, server
logs do not contain Web access data, which is cached by proxy
servers or on the client side. Log records from all three sources
complement each other, thus must be joined together to maintain
accuracy. This can be hard to accomplish, which explains why
many web log mining algorithms are designed to work only with
one type of log records (usually server side) and not with all types.

Web log files vary in size depending on the period of time they
cover and may reach hundreds of Gigabytes. A significant propor-
tion of web logs is usually redundant thus the initial step is to filter
the redundant logs out, which is a big problem in itself.

Table 1 illustrates the diversity in log file formats. Note, the names,
links and numbers in this table are artificial.

2.1 Query Analysis

For query analysis, the scripting language Python was used because
of its string processing capability. Python’s built-in string classes
support the sequence type methods and also the string-specific
methods. There are seven sequence types: strings, Unicode strings,
lists, tuples, bytearrays, buffers and xrange objects. All sequence
types support comparisons. In Python, strings are immutable
sequences (i.e., objects whose value is unchangeable once they
are created). Python code treats elements or substrings just like it
treats a sequence. Python refers to substrings with the flexible slice
operation.

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.5, August 2015

l Type of server Log Sample

|

Mozilla%2F5.0%20

elib 20110224150925+1100(1298560165) Get
gex/view.htm?docid=AUS/AUS2003377/D00001

http%3 A%2F%2Fhelp.yahoo.com%2Fhelp%2Fus%2Fysearch%2Fslurp) %0.227 3

/datastora
67.999.112.88
(compatible%3B%20Yahoo!%20Slurp%3B %20

84.501 0.545

idatalib 07/22/11 14:05:40 10.99.99.66 user7856 Allowed none 23 21.9KB 43.5KB
www.databasez.com.cn/search/default.aspx ?st=Shanghai+Textile+Fabric
+and+Cotton+Co+Ltd&srtid=0

wiki user023 1/06/2010 9:47 ewiki_LIB_acronyms_and_abbreviations_overview

wiki user023 1/06/2010 9:47 ewiki_LIB_acronyms_and_abbreviations_working_taxonomy

External DB “www.datareference.com”, “Reference”, 750467, ”12757”, ”530225529”

External DB “www.datareference.com.ezproxyl.acu.edu.au”, "Education”, 799", ’6”, 404958”

Internal DB “user66”, "QLD/0053146971/D00008”, 20120416191838”

Table 1. Diversity in log records.

There are several ways of composing string literals in Python. One
can use single or double quotes, and there are other variations on
quoting that are useful. The Python module string offers functions
that transform strings in common ways and can be combined to
perform uncommon transformations. For example, the functions
.split() and .join() provide a quick way to convert between strings
and tuples, which is useful when working with diverse types of
log records. The module re helps to identify regular expressions in
textual parts of log data. Simple regular expressions can be con-
catenated to form more complex regular expressions. Additional
information on these and other string methods may be found in the
Python Reference Manual.

While the log files generated by information systems are usually
of structured design, the textual information within a record is
often unstructured. For example, refer to the first two cases in
Table 1. The search activities via Yahoo! Help and databasez.com
are represented in the log file differently. In the first record, the
useful for analysis part of the string is represented by the document
path "AUS/AUS2003377/D00001", in the second - by the key
words used for search (”Shanghai”, ”Textile”, ”Cotton”, "and”,
"Wool”).

Clearly, differentiated approaches need to be applied to processing
log records with unstructured textual information. For instance,
in the first record, the pattern "docid” is present, which always
prefaces the path to a specific document. In the second record,
there is the term "search”, which indicates the presence of key
words separated (in this case) by the symbol ”+”. These and other
identification criteria can be implemented with Python string
processing functions in order to define the category for an infor-
mation request, its weight and origin (i.e., human or non-human).
Different sections of the document path separated by slash offer
valuable information about the search domain and subdomains,
which also contributes to the quantitative part of analysis.

The next pair of records in Table 1 is the initial request from the
user023 for the Acronyms and Abbreviations Overview and an
unspecified request from an unspecified client. In the log file, the
first case is represented by the original query and series of very
similar records with the same timestamp indicating that several
webpages have been retrieved. In the second case, no any informa-

tion is available about who initiated the search and what exactly
it was about, although several responses from datareference.com
had been triggered. Table 1 stores just one such a record - the
one containing the pattern “proxy”, for demonstration purposes, to
show that in this case it would be relatively easy to discriminate
the authentic user request from automated responses generated by
the database engine.

Often enough, log records do not contain identical timestamps
or system specific terms, thus other (domain specific) criteria are
required to filter the crawler hits out with full certainty. Once
found, such a criteria form the framework for an automated log
file processing. With this scenario, the computational part of the
framework will consist merely of splitting and pattern matching
operations on strings and lists, for which Python offers a powerful
capability.

2.1.1 Example. The following example demonstrates how
Python function .findall() represents a line of text with punctuation
as a set of terms in just one go:

>> import re

>> phrase = "Hello, world!”

>> print re.findall(r'\w+', phrase)
[’Hello’, world’]

2.2 Data Cleaning

The important aspect of web usage mining is data cleaning and
preprocessing. The approach proposed in this paper (the algorithm
RecB) is designed to work with authentic search requests. Some
techniques do not make that distinction. For example, the WEKA
webmining tool considers all log records and, as a result, does not
accurately aggregate relevant data at user level, as outlined in [5].
Amongst the popular publications on web mining techniques and
applications only few, namely [3][6-8], touch on the subject of
’data cleaning’ by identifying a ’single user session’. The above
authors view an authentic user session as an isolated in time set of
logs.

While this approach may work well on small web resources,
in large organisations it can be rather challenging. Users or work

areas may share the same IP address, and information systems
can be too complex and generate too many logs to fit into the
predefined timeframe. For this reason, it would be sensible enough
to not rely on timestamps but rather focus on mining logdata
in order to identify patterns that help to single out unique user
requests.

The problem of identifying user sessions has been discussed
and some methods proposed in [3][9][10]. As mentioned earlier,
logfiles come in various types and formats and from various
locations. For instance, encrypted transactions or interactions do
not get combined with related logs on the same resource, thus do
not allow to form the logical whole associated with a user. One
heuristic for user identification is to use the server access log in
conjunction with the referrer log. Another heuristic is to use path
completion methods, where the site topology is also used to check
the number of links to the requested page. Timeouts could also be
used to brake series of records into separate sessions, if logs span
long periods of time.

In the data cleaning step, a log set is examined and items
such as media files, executable cgi files and alike are removed. Log
entries of the HTML file requests could be relevant thus should
be kept for a more detailed analysis. Items associated with HTTP
errors, status codes such as 400 or 500, crawler signatures are
removed. Records with extensions such as gif;, jpeg, jpg, mpg are
removed selectively. Why some graphic files could be retained is
explained in detail in [3].

The remaining logs should contain only fields suitable for
pattern mining. These usually are the user ID, timestamp (op-
tional), current webpage visited or current document accessed,
referrer, etc. Then the data is converted into a format required by
the mining algorithms. As suggested in [4], for one’s convenience,
it may be worthwhile to store the logs as two sets — transactional
set and sequential set. The transactional set is defined by the two
fields — record ID and the set of documents (pages) accessed. A
sequential set contains lists of documents accessed over period of
time and the server data.

3. WEB USAGE ANALYSIS

Once the redundant log content has been filtered out, the remaining
search requests have to be aggregated at user or group level, inter-
preted and categorised into groups or topics of interest according
to some categorisation principle. In practice, it translates into
processing large amounts of records containing combinations of
items in order to establish what category they belong to and if the
topic in question is popular. To do this, all records should be visited
and the combinations of relevant items explored and counted,
which often implies exponentiality in computational complexity.

Many efforts have been made towards developing mining
techniques for web log data. They are usually based on the apriori
paradigm or tree building methodology, such as Web Access
Pattern (WAP) tree, initially introduced in [11]. A new data
structure (WAP-tree) is built to compactly store sequences of
items and corresponding counts. The tree also maintains linkages
between prefixes and suffixes. The actual mining takes place after
such a tree has been devised, to boost scalability. The total number
of scans required to grow a WAP-tree is usually two. The recursive
procedure is then applied to enumerate access patterns from the
tree performing conditional search. The algorithm counts frequent

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.5, August 2015

events in the set of prefixes with respect to condition as suffix, to
find all Web access patterns.

The Combined Frequent Pattern Mining (CFPM) algorithm
proposed in [12] also grows a tree similar to FP-tree or WAP-tree.
The main difference is that the improved tree has no header table
as such but instead has indices for tree nodes at same level. The
improved tree is frequency-ascending and contains more single
paths than the frequency-descending original. It also has more
branches at its higher levels than the original. A branch is removed
after it has been processed and, as a result, the total number of
nodes increases at a slower rate which helps to optimise the overall
performance.

The State Machine (SM) tree and the Pattern Discovery (PD)
tree techniques introduced in [7] also work around tree like
structures in order to optimise pattern mining process. The
central idea of the SM-tree and PF-tree algorithms is to test the
subsequence inclusion to ensure that the input data sequences
are visited just once. The theoretical basis for this approach is a
deterministic finite automation (DFA), or deterministic finite state
machines. Finite automata constitute a perfect illustration of basic
concepts in set theory. SM-trees or PD-trees are built via joined
automations which scales the computation of candidate itemsets.
The algorithms do not require more memory in large datasets, but
their performance does depend on the number of variables, like in
the WAP-tree based techniques.

The Breadth-First linked WAP-tree (BFWAP-tree) algorithm was
introduced in [13]. The algorithm is designed to mine frequent
itemsets that contain information on parent-child relationship of
nodes. BFWAP grows the frequent header node links of the original
WAP-tree in a Breadth-First fashion and then examines each node
in order to check the parent-child relationships between nodes.
After that it computes frequent sequential patterns through pro-
gressive Breadth-First sequence search. The proposed algorithm
does not re-construct the WAP-tree, which helps to speed up its
performance.

The mWAP algorithm proposed in [14] modifies a WAP-tree struc-
ture, so that reconstructions of the intermediate WAP-trees are not
required. A binary code is used to mark each node in the modified
tree structure. These binary codes help to identify the position of
the nodes in the tree during mining. The nodes are then linked to
keep track of those with the same label of prefix sequences. The
algorithm scans the database two times. It also builds a prefix tree
data structure by inserting the frequent sequence of each record
in the tree just like the WAP-tree algorithm. After that, the tree is
visited again to build links between the frequent header nodes.

The Sequence Tree (ST) algorithm introduced in [4] is designed to
identify the frequent sequences of items in web logs. The ST reads
the input data and creates a map with key-value pairs. Key refers
to the unique web page that was visited and sequence value refers
to the number of visits. Like other tree building techniques, the ST
consists of the two stages - building a sequence tree structure and
then mining that tree in order to find patterns of interest.

A novel algorithm called Bidirectional Growth based mining
Cyclic behavior Analysis of web sequential Patterns (BGCAP)
has recently been introduced in [15]. The BGCAP combines Web

prefetching with properties of directed acyclic graphs in order to re-
duce the levels of recursion during mining stage. The authors also
provide an extensive overview of pattern mining algorithms for web
logs.

According to [7][8], in the web usage mining process, the data min-
ing techniques are applied in order to identify the trends and the
patterns in the ways users browse websites. Figure 2 illustrates the
major stages of that framework.

The navigation patterns extracted from log records can help in op-
timising the structure of the website. Thus the stages of pattern dis-
covery and pattern analysis are absolutely essential in web usage
mining. The main approaches to pattern discovery in web log data
suggested in [7][8] are:

(1) Association Rules (to predict the correlation of items)
(2) Sequential Patterns (to discover users navigation behaviour)
(3) Cluster Analysis (to profile similar items.)

The framework introduced in the next section can power all three
approaches because it helps to efficiently identify and classify pat-
terns of interest by eliminating redundant itemsets from data.

4. THE E-RECORD BREAKING ALGORITHM
RECB

The record breaking algorithm RecB is the technique designed to
rearrange and compress electronic records down to subrecords in
order to reduce search space for further categorisation. First, it
finds the frequent subrecords (or itemsets) and substitutes dupli-
cates with a single set of items. The modified structure then con-
tributes to Content Analysis performed to estimate a user activity,
user preferences and information systems usage overall. With the
RecB this is done more efficiently because the algorithm focuses
on elimination of records, or their sub-records, and does not grow
new data structures like the WAP-tree based methods.

4.1 Substitution of eRecords by Unions of Subrecords

The central idea of this space reduction method is that a record
can be substituted by its subrecords according to the following
principle:

If a set of items of cardinality M contains the infrequent 2-itemset
AB, it can be substituted by 2 subsets of size M-1, such that one
subset will not contain the item A and the other will not contain
the item B.

Definition 1. If an object o = {iy,...,i;} contains one infrequent
2-itemset {ip, iy}, then o can be substituted by its two subsets
1= {i17"'ai]7—17i])+17"'aim} :0\{ll7} and

52 = {1, yig—1,0g41s--im} = 0\ {ig} such that s; Us, = o and
o +— {s1,s2}. We will call the subsets s| and s, projections of
the object o.

Now o is substituted by the union of its subsets s; and sp. If
a record contains one infrequent 2-itemset, it is substituted by its
two sub-records. If it contains one infrequent 3-itemset, it can
be substituted by its 3 sub-records, and so on. The number of
projections resulted from one infrequent k-itemset is, therefore,
defined by k and is bounded by (). Thus for the present let it
suffice to consider the infrequent 2-itemsets in order to better
understand a computational part of the method.

An infrequent itemset of size k effectively divides an object into
a set of smaller subsets. The number of projections resulted from
division with one infrequent k-itemset is k. The number of projec-
tions resulted from division with the second, third, etc, infrequent

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.5, August 2015

k-itemsets can vary. It depends on the k-itemsets, particularly, if
they contain the items already used in the previous divisions. If
the k-itemset picked for breaking does contain at least one such
an item, the number of projections after division will be smaller.
The number of projections also depends on the difference between
m and k. The greater this difference is, the more (k+1/)-itemsets
can be identified in a record, therefore, the more divisions will
be performed. Finally, the number of projections depends on the
number of infrequent itemsets the record contains.

It is important to note that projections should not be of length
equal or less than the length of the infrequent itemset by which
they are divided. It is also important to note that the support of an
itemset contained in two or more projections of the same object is
the same as that of the record.

As a part of pre-processing, the dataset is scanned and the
infrequent [-itemsets are identified and deleted. The items are
lexicographically ordered. The data records are placed into a hash
table, so the computations are performed on the unique records
only. Once the dataset is ready, the RecB algorithm makes k paths
through the data. The value of k is incremented by / from 2 to,
say, P, which is usually not large. The algorithm computes only
the itemsets of length & at a time. This is done because the number
of k-itemsets in a record of length m can not be greater than (’,’:)
To do this is more effective than to generate all subsets of an
m-itemset, excluding the empty set and the m-itemset.

In each step, RecB computes all k-itemsets and stores them in
a hash table. It then tests each k-itemset against the predefined
threshold. After this procedure, the frequent and infrequent
k-itemsets are stored separately. The frequent k-itemsets are not
included in further computation. The set of infrequent k-itemsets
is used for the divisions. Once some data records have been
replaced with the unions of their subsets and some are deleted, k
increments and the modified dataset is again used for identification
of k-itemsets. The algorithm terminates when no more frequent
k-itemsets are found in data.

The frequent and infrequent itemsets are stored in hash ta-
bles. As k increments, the number of records decreases, therefore,
the less computation is needed for finding k-itemsets in the next
step.

Here, the division is performed on a set of m elements. If the
m-itemset o contains one infrequent k-itemset, it can be substituted
with & projections s; of size m-1 such that

0= Ué{:] sik

In other words, o is mapped into the set {51,555, ..., 5,%}. If k=2, 0
is always mapped into a union of the two subsets s% and s% of size
m-1 each. It is obvious why — s% will not contain one of the infre-
quent items and s% will not contain the other. For example, if an
infrequent 2-itemset is {i,,i,}, then s% ={it,eslp—1sips1senrim})
and S% = {il,...,l'qfl,l'quh...,im}.

When k=3, an infrequent 3-itemset, say {ip,i4,i,}, projects o into
§3 =il esipsipsts i}

53 = {ily.eesig—1,ig+1s--rim} and

sg ={i1y b1y byt Ly ooy I

It follows from the apriori property introduced in [16] that no
superset of an infrequent itemset can be frequent. Then suffice to
substitute o by the union of its 3 subsets of size m-1/ such that the
first projection will not contain i,, the second projection will not
contain i, and the third projection will not contain i,. The ordering

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.5, August 2015

PREPROCESSING

Data filtering, data conversion

Session authentication, user identification

Pattern

/] v i

Analysis

Sequence
Discovery

Pattern
Mining

Fig. 2 Process of Web Usage Mining

within the union is not important, it is only required to maintain
L-order within the itemsets.

When k=K, an infrequent K-itemset, say {ij,i,...,ix}, is
broken o in the same manner, that is, into the K pro-
jections s{(= {i2,i3,--, ik} s§ = {i1,i3,..,ix}, etc, and
s§ = {i1,i2,...,ix_1 }. At each step k, the projections s* should be
of size k+1 or greater.

The first infrequent k-itemset used in division maps an m-
itemset onto k subsets of size m-1. The projected once object o can
be further projected with another infrequent k-itemset, in which

case o will be mapped onto L < (/'f}) projections such that

OZUiLzlsik

The value of L depends on the items contained in the k-itemset. For
example, if the first k-itemset contains the item ip, then as a result,
at least one of the projections, say s, will not contain this item, e.g.,
s = {il,.A.,ip,l,ipﬂ,...im}. If the second k-itemset does contain
ip, s can not be used in breaking by the k-itemsets containing i,,.

If the second k-itemset does not contain any of the items of the
first k-itemset, then L will depend only on the difference between
m and k. If m-k is not big, then some of the projections may not
be of the required size and, therefore, should be deleted. If one of
the projections is a subset of another projection in a given union of
subsets, it is deleted. All these factors are in favour of L be reduced.

If o contains p infrequent k-itemsets, then after p consecutive
divisions o is finally mapped into the set of projections and is as
follows:

P
o=UY, st

where LP < (kf':l)'

4.2 RecB: Computational Process

In the RecB algorithm, the process of projecting an object of size
m by the infrequent k-itemsets contained in it is continued until it
terminates when either:

(1) all projections of an object are reduced down to the length
k+1; or

(2) there are no more infrequent k-itemsets left to continue.

With each infrequent k-itemset used for dividing an object, the first
projection is obtained , then the second, the third and so on, finally
the P-th degree projections, where P is the number of infrequent
itemsets contained in the object .

The cardinality of a projected object is bounded by the sum of car-
dinalities of its L projections:

L L

[Uizy sil < Xy Isil
which follows directly from the inclusion-exclusion principle for
sets.

The Erdos-Ko-Rado theorem introduced in [17] states that if
m > 2k, then the maximal number of subsets of o of size k, each
pair of which contains at least one common element, is (’Z:ll).
The current example is less specific. The object o is of size greater
than k. The subsets of o resulted from divisions may not be of the
same size and may not have at least one element intersecting. In
this case, a limit for the subsets of o is set to be of size k+1 or
greater. Consequently, the number of projections of size no less
than k+1 may vary from 2 (with projections of size m-1) to (")
(with projections of size k+1).

The following is a pseudocode of the RecB algorithm, semantically
based on the scripting language Python. Here, D is a dataset, k is
the length of an itemset and o is its support. The following data
structures are generated during the computational process: setO-
JfAllKsets is a hash table containing all itemsets of size k; freqKsets,
infreqKsets - the two separate data structures containing only fre-
quent and only infrequent itemsets of size k, respectively; k-set is a
set of k items; setOfCat (a set of categories) is a hash table contain-
ing only frequent itemsets and is subject to pruning; record is a set
of items, or a record in the dataset D; infreqKsetsInRecord is a list
of infrequent itemsets of size k contained in record; setOfProj (a set
of projections) is a set of subsets of record resulted after breaking
a record.

RecB(D)

1 setOfCat < { '}

2 k<2

3 repeat:

4 freqKsets, infreqKsets < { }

5 setOfAllKsets < generateKsets(D, k)

6 for k-set in setOfAllKsets:

7 if o (k-itemset) < minsup then:

8 infreqKsets.update[k-set]

9 else:

10 freqKsets.update[k-set]

11 for record in D:

12 setOfKsets < generateKsets(record, k)
13 infreqKsetsInRecord + { }

14 for k-set in setOfKsets:

15 if k-set in infreqKsets then:

16 infreqKsetsIinRecord.update(k-set)
17 setOfProj < record

18 for k-set in infreqKsetsInRecord:

19 setOfProj <— breakRecord(setOfProj,k-set)
20 for projection in setOfProj:

21 if len(projection) < k then:

22 setOfProj.delete(projection)

23 if setOfProj = 0 then:

24 D.delete(record)

25 else:

26 setOfProj <— removeSubset(setOfProj)
27 record < setOfProj

28 setOfCat.update(freqKsets)

29 setOfCat < removeSubset(setOfCat)
30 k< k+1

31 until fregKsets =0

32 return (setOfCat)

The function generateKsets has two input parameters. The first
parameter is the original dataset D stored as a dictionary. The
second parameter is the current value of k. The function returns the
collection of k-itemsets in D - the hash table setOfAllKsets.

The function breakRecord has two input parameters: setOf-
Proj and k-set. setOfProj is first initialised by record - a set
of items, or a record of the dataset D. In the consecutive calls,
breakRecord takes as an input setOfProj resulted from the previous
division. k-set is an infrequent itemset of size k, by which divisions
are performed, provided that k-set is contained in record. The
function generates k copies of record (or a subset of setOfProj) and
then removes one item —an element of k-set —from each copy.

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.5, August 2015

For example, if k-itemset is A,B,C, record is replicated three times
with each replica missing either A or B, or C. An example further
on in the section illustrates how breakRecord works. The function
breakRecord returns setOfProj.

The function removeSubset has one input parameter - a set
of itemsets. This function deletes the itemsets which are subsets
of the other itemsets in the input set. The function removeSubset
returns a set of supersets of the unput set. Note, when removeSubset
is used for pruning setOfCat, it takes as an input parameter only a
set of keys of the hash table serOfCat, as a list.

5. PERFORMANCE COMPARISON:
THEORETICAL ESTIMATES

While most of the publications on pattern mining illustrate perfor-
mance comparison for different algorithms on small datasets, our
aim is to predict their performance on big data. This is usually
achieved by obtaining the theoretical estimates of their complex-
ity for the worst case scenario. The reasons for looking at the worst
case are:

(1) Itis useful to know the maximum amount of time taken on any
input of size n.
(2) Average-case analysis is based on the knowledge of probability

distributions of the input data and does require much effort to
do.

This paper considers the base tree growing techniques because
they have been recommended as web usage mining applications
in [4][6][11][12][14][15][17]. The techniques introduced in the
above publications are based on a tree building methodology, in
particular, where the original web access sequence database is
stored on a prefix tree (Tree). The algorithms mine the frequent
sequences from the Tree by recursively re-constructing interme-
diate trees, traversing from suffix sequences to prefix sequences.
The ways the Tree is mined can vary from algorithm to algorithm,
but their core computational procedures are quite common. Let us
estimate their complexity for the worst case scenario.

Keeping old notations, the input is a sequence of objects
(records) 2 = (oy,...,0,), Where n is the number of records. Each
oy is a subset of the set . = {i|,..., i }, where m is the number of
distinct items (attributes) in 2. A pattern [is a subset of .#.

The most time consuming computational procedures in the
tree growing agorithms are as follows:

(1) count supports for all items i € ¥

(2) identify all records o such thatij €0, j=1,....,m

(3) count supports for all {i;lij €0, j=1,....m

(4) compute possible combinations of iy,...,i, for each {I|I €
Tree} and their supports.

The access time for each step will be denoted by 7, the average size
of oy by [, and the number of frequent items m. In our estimation,
the procedures above will require the following complexity:

1) nit

(2) mnt

(3) mpnlt

@) 2™ mpnt+ 2" mpnt

which in total, if bounded from above, is as follows

nlt+mnt+mpnlty + 2™ mpnt + 2" mpnt

The following generalises that for the tree growing techniques,
their performance is influenced mainly by n, [and mf.

The local variables such as access time 7 may be omitted
thus the final estimate is as follows:

Spp ~nl+2""mpn ~ 2" mpn

which puts the tree growing algorithms in the class of O(2"'n)
complexity, in the worst case. Here, m is the number of attributes
and n is the number of records.

These are the main memory based mining techniques, and
their cost in space consumption may reach O(2™). Each path in the
grown tree will be at least partially traversed the number of items
existing in that tree path (n in the worst case) times the number
of items in the header of the tree (m). Therefore, the upper bound
on complexity of searching through all paths will be O(mzn). In
order to establish which itemsets qualify to be frequent and keep
all paths containing header-items, a tree growing algorithm may
reach the complexity of O(2™n) order in the final stage.

Test runs on benchmark (small sized) datasets referred to in
the works [4][6][7] [11]1[12][17][15][19] could not really show a
marked slowdown on such a scale. Thus more testing would be
desirable to demonstrate the algorithms’ capability. It would be
worth mentioning that in some techniques, recursions in counting
create an additional computational barrier, timewise, which was
acknowledged by some authors, for example, in [15][17][20][21].
Overall, the computational complexity estimate for the tree based
mining techniques in question is exponential, in the worst case. In
contrast, the RecB in the worst case will keep below or at the level
of O(KLI¥7).

While the theoretical estimates of computational complexity
give us generalised answers, some experts still prefer to illustrate
performance comparison with experimental results. The difficulty
in obtaining such a comparison in our case is the unavailability of
large sized benchmark web access data and the actual algorithms
implemented in the same scripting language.

6. CONCLUSIONS

The problem of mining large sized logfiles in order to identify user
activity patterns remains pervasive across many websites. The pur-
pose of this paper is to advocate the development of highly scalable
techniques for Web usage mining.

The proposed RecB algorithm provides the means to extract dis-
tinct features from mixed digital-text data structures such as web
access logs. RecB is based on a very different principle compared
to the algorithms described in [4][7][11][12][14] [15][17][19]. In
particular, it does not build new data structures such as trees to aid
pattern mining. Instead, it re-arranges the input data, which helps
to save a great deal of computation later on.

This paper argues that however efficient a computational technique
may appear on small datasets, it may not be as efficient on large
datasets. If the performance of an algorithm depends more on the
number of attributes than it depends on the number of records, test
runs on small datasets may not capture that.

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.5, August 2015

It also turns out that the number of scans through the data
does not define how efficient an algorithm will be. Thus it can be
rather limiting for pattern mining techniques to use newly gener-
ated data structures (candidate itemsets, trees) to optimise pattern
mining. On large data, building numerous trees or generating
itemsets requires much counting, so optimisation may become
rather costly.[20][21] In contrast, RecB performs fewer scans
across the data and converges in polynomial time. It avoids the
pattern growth induced complexities by just re-shaping the original
data, which helps to keep the computation within the acceptable
timeframe.

The data cleaning and preproscessing stage is crucial for pat-
tern mining in logfiles. Due to various challenges in identifying
a unique user search request the suggestion is to apply as many
domain specific filters to original records as possible and perform
query string analysis to eliminate redundancy. Web log prepro-
cessing techniques could also be applied to the area of intrusion
detection in networks.

7. ACKNOWLEDGMENTS

We would like to thank our colleagues Graham Williams, Felix
Andrews and Steve Curran for their generous technical support.

8. REFERENCES

[1] E.Giroire, J.Chandrashekar, G.lannaccone, K.Papagiannaki,
E.Schooler & N.Taft, The Cubicle Vs. The Coffee Shop: Behavioral
Modes in Enterprise End-Users in: Passive and Active Network
Measurement, LNCS 4979 (2008) p. 202.

[2] K.T.Kishore, S.T.Vardhan & L.N.Narayana, Probabilistic
Semantic Web Mining Using Artificial Neural Analysis,
International Journal of Computer Science and Information
Security (IICSIS) 7 (3) 2010.

[3] R.Cooley, B.Mobasher & J.Srivastava, (1999), Data
Preparation for Mining World Wide Web Browsing Patterns,
Knowledge and Information Systems 1 (1) 1999.

[4] R.Shettar, Sequential Pattern Mining from Web Log Data,
International Journal of Engineering Science & Advanced
Technology (IJESAT), 2 (2) 2012.

[5] V.Ciesielski & A.Lalani, Data Mining of Web Access Logs From
an Academic Web Site, in: Proceedings of the Third International
Conference on Hybrid Intelligent Systems HIS’03: Design and
Application of Hybrid Intelligent Systems, IOS Press, 2003.

[6] Q.Yang, Ch.Ling & J.Gao, Mining Web Logs for Actionable
Knowledge, in: Intelligent Technologies for Information Analysis,
Springer-Verlag, 2004.

[7] R.Ivancsy, 1.Vajk, Frequent Pattern Mining in Web Log Data,
Acta Polytechnica Hungarica, 3 (1) 2006.

[8] L.K.J.Grace, V.Maheswari, D.Nagamalai, Analysis of Web Logs
and Web User in Web Mining, International Journal of Network
Security & Its Applications (IJNSA) 3 (1) 2011.

[9] O.Bell, M.Allman & B.Kuperman, On Browser-Level Event
Logging, TR-12-001, ICSI, 2012.

[10] T.Callahan, M.Allman & V.Paxson, A Longitudinal View of
HTTP Traffic, in: Passive and Active Measurement, LNCS 6032,
2010.

[11] J.Pei, J.Han, B.Mortazavi-asl & H.Zhu, Mining Access
Patterns Efficiently from Web Logs, in: Proceedings of the 4th
Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Current Issues and New Applications (PADKK’00),
Springer-Verlag London, UK, 2000.

[12] L.Sun, X.Zhang, Efficient Frequent Pattern Mining on Web
Log Data, University of Melbourne, Australia, 2004.

[13] L.Liu & J.Liu, Mining Web Log Sequential Patterns with
Layer Coded Breadth-First Linked WAP-Tree, in: Proceedings of
the IEEE International Conference on Information Science and
Management Engineering, 2010.

[14] J.D.Parmar & S.Garg, Modified web access pattern (mWAP)
approach for sequential pattern mining, International Journal of
Network Security & Its Applications (IJNSA) 3 (1) 2011.

[15] K.C.Srikantaiah, K.Krishna, N.K.R.Venugopal, L.M.Patnaik,
Bidirectional Growth Based Mining and Cyclic Behaviour Analysis
of Web Sequential Patterns, International Journal of Data Mining &
Knowledge Management Process (IIDKP), 03 (2) 2013.

[16] J.Han & M.Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann, 2001.

[17] P.Erdos, C.Ko, R.Rado, Intersection Theorems for Systems of
Finite Sets, Journal of Mathematics 2 (12) (Oxford, 1961) p. 313.
[18] A.Robertson, Permutations Containing and Avoiding 123 and
132 patterns, Discrete Mathematics and Theoretical Computer
Sciences, 3 (1999) p. 151.

[19] A.Rajimol, G.Raju, FOL-Mine —A More Efficient Method
for Mining Web Access Pattern, Advances in Computing and
Communications Communications in Computer and Information
Science, 191 (2011) p. 253.

International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.5, August 2015

[20] E.Schulz, Trees with exponentially growing costs, Information
and Computation, 206 (2008) p. 569.

[21] Sh.Cong, A Sampling-based Framework for Parallel Mining
Frequent Patterns, PhD Thesis, University of Illinois at Urbana-
Champaign, 2006.

	Introduction
	Log Records
	Query Analysis
	Example

	Data Cleaning

	Web Usage Analysis
	The e-Record Breaking Algorithm RecB
	Substitution of eRecords by Unions of Subrecords
	RecB: Computational Process

	Performance Comparison: Theoretical Estimates
	Conclusions
	Acknowledgments
	References

