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Abstract
Probabilistic machine learning provides a suite of
powerful tools for modeling uncertainty, perform-
ing probabilistic inference, and making predic-
tions or decisions in uncertain environments. In
this paper, we present an overview of our recent
work on probabilistic machine learning, includ-
ing the theory of regularized Bayesian inference,
Bayesian deep learning, scalable inference algo-
rithms, a probabilistic programming library named
ZhuSuan, and applications in representation learn-
ing as well as learning from crowds.

1 Introduction
The world is an uncertain place because of physical random-
ness, incomplete knowledge, ambiguities, and contradictions.
Drawing inference from noisy or ambiguous data is an im-
portant part of intelligent systems, where probability theory
(in particular Bayes’ theorem) serves as a principled frame-
work of combining prior knowledge and empirical evidence.
The past 30 years have seen tremendous progress in develop-
ing both Bayesian and nonparametric Bayesian methods for
resolving model complexity and adapting to stochastic and
changing environments with data-driven learning algorithms.

However, conventional probabilistic inference is facing
great challenges in dealing with large-scale complex data,
arising from unstructured, noisy, and dynamic environments
such as the Web, which records massive digital traces of hu-
man activities. To address these challenges, our research con-
sists of developing flexible Bayesian inference methods and
scalable algorithms to solve important problems in scientific
and engineering domains. This paper presents an overview of
our recent progress on probabilistic machine learning.

2 Bayesian Inference with Posterior
Regularization

At the core of Bayesian inference is the Bayes’ rule (a.k.a
Bayes’ theorem). Though intuitively simple, the standard
Bayesian inference with Bayes’ rule is lacking of a mecha-
nism to directly control the target posterior distribution, as

the inference process is a “one-way” procedure that projects
the prior distribution to the posterior by observing empiri-
cal data. In many settings, such as supervised learning and
reinforcement learning, our ultimate goal is to apply the
posterior to learning tasks with some measurement on the
performance (e.g., prediction error or expected reward). A
good posterior distribution should have a low prediction er-
ror or a high expected reward. Furthermore, as the large-
scale knowledge bases are built [Suchanek et al., 2007;
Carlson et al., 2010] and crowdsourcing platforms [Raykar et
al., 2010] are widely adopted to collect human data, it is de-
sirable to incorporate the external side information into sta-
tistical modeling and inference when building an intelligent
system.

We generalized the flexibility of Bayesian methods by pre-
senting a new framework for Bayesian inference with pos-
terior regularization, named regularized Bayesian inference
(RegBayes) [Zhu et al., 2014b], which can capture the de-
sired properties or side information into the inference pro-
cess by solving an optimization problem. RegBayes intro-
duces a new dimension (i.e., posterior regularization) to the
standard Bayesian inference, and makes it significantly more
flexible in optimizing the objectives of learning/decision-
making tasks or incorporating domain knowledge. When
the posterior regularization is derived from the discriminative
max-margin principle, RegBayes sets up a bridge between
(nonparametric) Bayesian methods and max-margin learn-
ing, two important subfields in machine learning that have
taken largely disjoint paths for decades. As illustrating ex-
amples, we have applied RegBayes to learn discriminative la-
tent representations from text [Zhu et al., 2014a], image [Li
et al., 2015], and network [Zhu, 2012] data, where the pos-
terior regularization term measures the prediction error. We
have also applied RegBayes to perform robust Bayesian in-
ference with domain knowledge that is represented in FOL
(first-order logic) form and collected from crowds [Mei et al.,
2014], and demonstrated that the idea can be naturally gener-
alized to unsupervised learning and semi-supervised learning
settings [Chen et al., 2014]. Finally, we extended the Reg-
Bayes theory to the reproducing kernel Hilbert space [Song
et al., 2016], which avoids parametric assumptions of prior
distribution and likelihood function.
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3 Scalable Inference Algorithms

It is generally intractable to infer the posterior distribution of
a non-trivial Bayesian model using either the vanilla Bayes’
rule or the more flexible RegBayes principle, especially when
we consider the applications with streaming and/or massive
data as well as the deep Bayesian models that have a hier-
archical structure of latent variables. The intractability also
poses challenges for learning the parameters of a probabilis-
tic model that has latent variables. To address the computa-
tional challenges, we have developed scalable algorithms in
both online and distributed settings [Zhu et al., 2017], and
further developed a probabilistic programming library to en-
able the fast development and application of deep Bayesian
models.

For the online setting, the conventional Bayes’ rule is es-
sentially sequential, that is, the posterior at time t is actu-
ally playing the role of a prior for the data at time t + 1
for the Bayesian updating. We generalized this sequential
property to the more flexible RegBayes for sequential learn-
ing. Specifically, we have presented a form of streaming Reg-
Bayes inference — online Bayesian passive-aggressive learn-
ing (BayesPA) [Shi and Zhu, 2017], where a Bayesian clas-
sifier is sequentially updated by considering two cases. If the
incoming sample is correctly classified by the current poste-
rior, a passive update strategy is adopted (i.e., no update);
otherwise, an aggressive update strategy is adopted which
projects the current posterior to the one that makes an accu-
rate prediction on the given sample. This passive-aggressive
strategy was applied to learn supervised topic models, with
about two-orders of magnitude speedup against the batch
counterpart algorithms, where the intractable posterior dis-
tribution of latent topics was inferred by variational approxi-
mation methods.

We have also developed stochastic gradient algorithms for
posterior inference with large-scale datasets. As the intrigu-
ing results of [Bottou and Bousquet, 2008] suggest, an algo-
rithm as simple as stochastic gradient descent (SGD) can be
optimally efficient in terms of “number of bits learned per
unit of computation”. We considered both stochastic varia-
tional and stochastic Monte Carlo methods for probabilistic
inference, especially by exploring the structures of the mod-
els (e.g., manifolds or graphical structures). For instance, we
developed the stochastic gradient geodesic Monte Carlo (SG-
GMC) [Liu et al., 2016] on manifolds with known geodesic
flow, and we developed Riemannian Stein Variational Gra-
dient Descent (RSVGD) [Liu and Zhu, 2018], a Bayesian
inference method that generalizes Stein Variational Gradient
Descent (SVGD) to Riemann manifold. RSVGD has the ad-
vantage over SVGD of utilizing information geometry and
brings the unique advantages of SVGD to the Riemannian
world. Finally, we have generalized Stein variational infer-
ence to graphical models [Zhuo et al., 2018], where a mes-
sage passing protocol was developed to explore the graphical
structure for efficient inference without degenerating the par-
ticle efficiency.

For the distributed setting, we consider both general
Bayesian inference algorithms (e.g., MCMC) and the highly
optimized algorithms for particular models (e.g., topic mod-

els). For generic algorithms, we presented a distributed pos-
terior sampling algorithm with a moment sharing scheme un-
der EP (i.e., expectation propagation) to achieve high accu-
racy [Xu et al., 2014]. For the concrete models, we have stud-
ied extensively the scalable algorithms to learn topic models,
which provide a suite of statistical tools to discover latent se-
mantic structures from complex corpora, with latent Dirich-
let allocation (LDA) [Blei et al., 2003] as the most popular
one. We have finished a series of work on scaling up the
vanilla LDA [Chen et al., 2016] as well as various represen-
tative extensions, including correlated topic models [Chen et
al., 2013], dynamic topic models [Bhadury et al., 2016], and
max-margin topic models [Zhu et al., 2013]. In particular,
we developed WarpLDA [Chen et al., 2016], an LDA sam-
pler which achieves both the best O(1) time complexity per
token and the best O(K) scope of random access, where K
is the number of topics. Our empirical results in a wide range
of testing conditions demonstrate that WarpLDA is consis-
tently 5-15x faster than the state-of-the-art competitors. With
WarpLDA, users can learn up to one million topics from hun-
dreds of millions of documents in a few hours, at an unprece-
dentedly throughput of 11G tokens per second. We further
developed SaberLDA, a GPU-based LDA system that imple-
ments a sparsity-aware algorithm to achieve sublinear time
complexity and scales well to learn a large number of top-
ics [Li et al., 2017c]. SaberLDA can learn from billions-
token-scale data with up to 10,000 topics, which is almost
two orders of magnitude larger than that of the previous GPU-
based systems.

4 Bayesian Deep Learning and a Probabilistic
Programming Library

Recently, the popularity of deep generative models have
demonstrated the promise of combining deep neural net-
works with probabilistic modeling, which has shown supe-
rior results in image generation [Kingma and Welling, 2013;
Goodfellow et al., 2014], semi-supervised classification [Sal-
imans et al., 2016] and one-shot learning [Rezende et al.,
2016]. We call such an arising direction that conjoins the ad-
vantages of Bayesian methods and deep learning as Bayesian
Deep Learning (BDL). The scope of BDL covers the tradi-
tional Bayesian methods, the deep learning methods where
probabilistic inference plays a key role, and their intersec-
tion. One unique feature of BDL is that the deterministic
transformation between random variables can be automati-
cally learned from data under an expressive parametric for-
mulation typically using deep neural networks, while in tra-
ditional Bayesian models, the transformation tends to have a
simple analytical form (e.g., the exponential function or inner
product). One key challenge for Bayesian deep learning is
on posterior inference, which is typically intractable for such
models and needs sophisticated approximation techniques.

We aim to address the newly arising challenges in Bayesian
deep learning by developing efficient algorithms and a pro-
gramming library. Namely, we have developed kernel im-
plicit variational inference [Shi et al., 2018a], which is a
variational inference algorithm by using an implicit distribu-
tion (i.e., without a tractable density) as the variational pos-
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terior. Our method addresses the issues of noisy estimation
and computational infeasibility when applied to models with
high-dimensional latent variables. We further developed a
gradient estimator for implicit distributions based on Stein’s
identity and a spectral decomposition of kernel operators,
where the eigenfunctions are approximated by the Nyström
method. Unlike the previous works that only provide esti-
mates at the sample points, our approach directly estimates
the gradient function, thus allows for a simple and principled
out-of-sample extension. We provide theoretical results on
the error bound of the estimator and discuss the bias-variance
tradeoff in practice [Shi et al., 2018b].

Finally, we designed ZhuSuan1 [Shi et al., 2017], a python
probabilistic programming library for Bayesian deep learn-
ing. We built ZhuSuan upon the popular deep learning li-
brary Tensorflow [Abadi et al., 2016]. Unlike existing deep
learning libraries, which are mainly designed for determinis-
tic neural networks and supervised learning tasks, ZhuSuan
is featured for its deep root into Bayesian inference, thus
supporting various kinds of probabilistic models, including
both the traditional hierarchical Bayesian models and recent
deep generative models. ZhuSuan incorporates the recent ad-
vances on scalable inference/learning algorithms, including
both variational and MCMC methods. We have developed
many examples to illustrate the probabilistic programming on
ZhuSuan, including Bayesian logistic regression, variational
auto-encoders, deep sigmoid belief networks and Bayesian
recurrent neural networks.

5 Applications
5.1 Learning Interpretable and Predictive

Representations
Due to the complex nature of the environment, the collected
data often presents various unfavorable properties, such as be-
ing noisy, incomplete, and dynamics. It is typically unwise to
directly throw the raw data into a learning machine for further
knowledge discovery or data management tasks. Extracting
a proper representation from the raw data is playing a vital
role to make a learning algorithm work well. Researchers
have taken decades to manually design such good features
for various types of data, including text, image, video, voice
and networks. Recently, significant progress has been made
on learning representations, especially when a hierarchical
model structure is adopted which can lead to a compact and
rich form to represent complex data [LeCun et al., 2015]. In
our research, we have studied extensively on various impor-
tant aspects in representation learning, including discrimina-
tiveness, sparsity, model complexity as well as scalability.

For discriminativeness, we focus on developing flexible
statistical models that can consider supervising information
to guide the learning of feature representations. This is mo-
tivated by the increasing availability of free on-line informa-
tion such as image tags, user ratings, etc. Various forms of
side-information that can potentially offer “free” supervision
have led to a need for new models and training schemes that
can make effective use of such information to achieve better

1GitHub repository: https://github.com/thu-ml/zhusuan

results, such as more discriminative latent representations of
image contents, and more accurate image classifiers. Under
the similar principle of RegBayes, we have developed various
statistical models that learn discriminative representations for
text, image, and network data. For example, we presented a
max-margin supervised topic model (MedLDA) [Zhu et al.,
2012], which conjoins the principe of max-margin learning
with Bayesian latent variable models. MedLDA can signifi-
cantly improve the discriminativeness and interpretability of
the learnt topics, as well as making accurate predictions in
classification and regression tasks. The similar idea has been
applied to learn latent representations shared by multimodal
data [Chen et al., 2012], demonstrating significant improve-
ments on cue integration and prediction, as well as learning
the social space representations for network data [Chen et
al., 2015]. When a hierarchy is adopted to represent the la-
tent features, we derived a discriminative training algorithm
for deep generative models (DGMs), which for the first time
manages to lift DGMs to the same level of prediction accu-
racy with deep neural networks [Li et al., 2015], while retain-
ing (or even improving) the ability of generating out-set sam-
ples and completing missing values. We further demonstrated
that a discriminative DGM [Li et al., 2017b] can achieve
state-of-the-art accuracy for semi-supervised learning, where
only a small part of the labels are provided. For the same task
of semi-supervised classification, we also carefully investi-
gated the generative adversarial networks (GAN) and pre-
sented effective training schemes, including an adversarial
game with three players (i.e., Triple-GAN) [Li et al., 2017a]
and structured GAN [Deng et al., 2017]. Finally, we have also
proposed novel spectral decomposition algorithms on learn-
ing supervised latent topic models [Wang and Zhu, 2014b;
Ren et al., 2017], which are provably correct and computa-
tionally efficient.

Sparsity is another desired property in latent representa-
tion learning. For example, very often it makes intuitive
sense to assume that each document or word has a few salient
topical meanings or senses, rather than letting every topic
make a non-zero contribution; this is important in practice for
large scale text mining endeavors such as those undertaken in
Google or Yahoo, where it is not uncommon to learn hun-
dreds or thousands of topics for hundreds of millions of doc-
uments; without an explicit sparcification procedure, it would
be extremely challenging, if not impossible, to nail down
the semantic meanings of a document or word. However, to
achieve sparsity in a probabilistic topic model is non-trivial.
Existing attempts by using a sparse prior could indirectly in-
troduce a sparsity bias over the posterior representations. We
addressed this problem by presenting sparse topical coding
(STC) [Zhu and Xing, 2011], a novel non-probabilistic for-
mulation of topic models for learning hierarchical latent rep-
resentations of input samples (e.g., text documents). In STC,
each individual input feature (e.g., a word count) is recon-
structed from a linear combination of a set of bases, where
the coefficient vectors (or codes) are unnormalized, and the
representation of an entire document is derived via an aggre-
gation strategy (e.g., truncated averaging) from the codes of
all its individual features. When applied to text, we use the
log-Poisson loss to model discrete word counts and learn the
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topical bases that are unigram distributions over the terms in a
vocabulary. The nonprobabilistic STC enjoys nice properties
which make it an appealing alternative formulation of topic
models. We also presented an online learning method to deal
with large-scale datasets [Zhang et al., 2013].

Finally, we addressed the model complexity issue of latent
representation learning, that is, how to decide the dimension-
ality of the latent space, which is unknown a priori. Tradi-
tional methods usually resort to post-processing procedures
such as cross-validation or likelihood ratio test. The recent
success of nonparametric Bayesian techniques, such as the
Dirichlet process (DP) mixtures in dealing with similar chal-
lenges in clustering (i.e., unknown number of clusters), offers
a promising direction to bypass the model selection prob-
lem and automatically resolve the unknown number of ex-
perts. We followed this line of research by presenting novel
nonparametric Bayesian models. Unlike the conventional
Bayesian inference, we built our models under the RegBayes
framework, which enables the adoption of the max-margin
principle for learning discriminative representations. In par-
ticular, we have presented the infinite SVMs (iSVMs) [Zhu et
al., 2011a], a Dirichlet process mixture of large-margin ker-
nel machines, and infinite latent SVMs (iLSVMs) [Zhu et al.,
2014b; 2011b], an SVM classifier with an unbounded number
of latent features. Such techniques can be naturally general-
ized to learn latent representations with an unbounded dimen-
sionality for relational data, such as social networks [Zhu,
2012] and the “user-movie” dyad data in recommendation
systems [Xu et al., 2013]. We further investigated the scal-
ability issue by presenting more efficient algorithms under
a small-variance asymptotic analysis. For instance, we per-
formed the small-variance version of iSVMs and got a sim-
ple and efficient algorithm which monotonically optimizes a
max-margin DP-means [Wang and Zhu, 2014a] problem, an
extension of DP-means for both predictive learning and de-
scriptive clustering. We also used small-variance analysis to
derive DP-space [Wang and Zhu, 2015], a simple and effi-
cient subspace learning method that can automatically decide
the number of subspace components and the dimensionality
of each component.

5.2 Learning from Crowds
Crowdsourcing provides an effective way to collect large-
scale experimental data from distributed workers with a low
cost. However, the labeling accuracy of web workers is of-
ten lower than expected due to their various backgrounds or
lack of knowledge. To improve the accuracy, a typical strat-
egy is to label every data (or task) multiple times by different
workers, then the redundant labels can provide hints on re-
solving the true labels. To extract useful information from
the cheap but potentially unreliable answers to tasks, we need
sophisticated methods to identify reliable workers as well as
unambiguous tasks. We consider both supervised learning
(SL) and unsupervised learning (USL) settings. The SL set-
ting aims to resolve the assumed but unknown ground truth
label for each data sample, while the USL setting aims to un-
derstand the behaviors of workers and tasks, without a true
label assumption. One common thread of our approaches in
both settings is that we build sophisticated statistical models.

For the SL setting, existing work includes both genera-
tive approaches and discriminative approaches. A generative
method builds a flexible probabilistic model for generating
the noisy observations conditioned on the unknown true la-
bels and some behavior assumptions, with examples of the
Dawid-Skene estimator [Dawid and Skene, 1979] and the
minimax entropy estimator [Zhou et al., 2012]. In contrast,
a discriminative approach does not model the observations; it
directly identifies the true labels via some aggregation rules.
Examples include majority voting and the weighted majority
voting that takes worker reliability into consideration [Karger
et al., 2011]. We approach this problem from a very different
perspective. Instead of building on the popular methods, we
re-took the most classical rule of majority voting and present
a significant extension by adopting the max-margin princi-
ple [Tian and Zhu, 2015]. Under the RegBayes theory, we
were further able to present a Bayesian generalization that
conjoins the advantages of both generative and discrimina-
tive approaches. The max-margin majority voting (M3V) di-
rectly maximizes the margin between the aggregated score
of a potential true label and that of any alternative label,
and the Bayesian model consists of a flexible probabilistic
model to generate the noisy observations by conditioning on
the unknown true labels. We adopted the same approach as
the classical Dawid-Skene estimator to build the probabilis-
tic model by considering worker confusion matrices, though
many other generative models are also possible. Then, we
strongly coupled the generative model and M3V by formu-
lating a joint learning problem under the RegBayes frame-
work, where the posterior regularization enforces a large mar-
gin between the potential true label and any alternative label.
Naturally, our Bayesian model covers both the David-Skene
estimator and M3V as special cases by setting the regular-
ization parameter to its extreme values (i.e., 0 or ∞). Ex-
periments on real datasets suggest that max-margin learning
can significantly improve the accuracy of majority voting,
and the Bayesian estimators achieve better results than state-
of-the-art estimators. With the same goal of learning accu-
rate classifiers, we further considered the extremely challeng-
ing setting of zero-shot learning by leveraging crowdsourc-
ing to learn human comprehensible and cross-category trans-
ferrable attributes. This is achieved by carefully designing
the mechanism and crowdsourcing jobs as well as a hierar-
chical Bayesian model to aggregate the noisy labels [Tian et
al., 2017].

For the USL setting, we analyze the phenomenon of
schools of thought, where each task may have multiple valid
answers. This phenomenon is commonly observed in apply-
ing crowdsourcing for qualitative user studies, demographic
survey or solving a hard problem, because of the subjective-
ness of the tasks or the variety of workers’ cultural and educa-
tional background. We built a nonparametric Bayesian model
to identify worker reliability and task clarity without the as-
sumption of ground truth labels [Tian and Zhu, 2012]. Our
model was built on two mild assumptions on the grouping be-
havior that happens in schools of thought: 1) reliable workers
tend to agree with other workers in many tasks; and 2) the
answers to a clear task tend to form tight clusters. Finally,
we have developed a scalable system using the above tech-
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niques to detect crowd frauds in internet advertising [Tian et
al., 2015], which has been deployed in a giant internet com-
pany in China.

6 Conclusions
The above topics give some of the overall flavor of our re-
search, including the fundamental theories of machine learn-
ing, the design of scalable algorithms and a probabilistic pro-
gramming library, and the applications in various domains.
We keep improving probabilistic machine learning. We are
also working on some exciting but largely unaddressed prob-
lems, such as adversarial attack and defense of deep learn-
ing models [Dong et al., 2018; Pang et al., 2018] or machine
learning models in general.
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