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Abstract
In this big-data era, vast amount of continuously
arriving data can be found in various fields, such
as sensor networks, web and financial applications.
To process such data, algorithms are challenged by
its complex structure and high volume. Represen-
tation learning facilitates the data operation by pro-
viding a condensed description of patterns under-
lying the data. Knowledge discovery based on the
new representations will then be computationally
efficient, and be more effective due to the removal
of noise and irrelevant information in the step of
representation learning. In this paper, we will
briefly review state-of-the-art techniques for ex-
tracting representation and discovering knowledge
from streaming and temporal data, and demonstrate
their performance at addressing several real appli-
cation problems.

1 Introduction
We are entering an information-dominated age. Mining, and
analyzing complex and massive data have become a funda-
mental challenge because the data sources in nature, in in-
dustry, in science, and even in everyday life are becoming
increasingly large, diverse, dynamic and geographically dis-
tributed1. To process continuously arriving data (called data
streams), the traditional data mining and machine learning al-
gorithms are usually challenged by the volume of data flushed
into memory and disk. Representation of streams facilitates
the data operation by providing a condensed description of
patterns underlying the streams. Moreover, the new represen-
tation reveals intrinsic properties or semantics that are hidden
in data, and thus makes the downstream knowledge discovery
be effective and computationally efficient.

In this paper, representation learning models will be dis-
cussed for characterizing the dynamic density of the data
stream by an online density estimator, for profiling users from

1According to “what happens in an internet minute (2018)”, ev-
ery 60 seconds, there are 4.3M video views at YouTube, 973K Face-
book updates, 187M emails sent, 3.7M Google search queries, 481K
new Tweets, etc. http://www.visualcapitalist.com/internet-minute-
2018/

their movement trajectories and their tweets, and for approxi-
mating and compacting data stream by a number of consecu-
tive line segments. Knowledge discovery from new represen-
tations will be introduced and applications to different prob-
lems will be demonstrated.

2 Data Stream Density Estimator and its
Applications

2.1 Online Density Estimator
The unbounded, rapid and continuous arrival of data streams
have a unique feature, which is the dynamic underlying dis-
tribution. Estimating the Probability Density Function (PDF)
for data streams enables the visualization and monitoring
of the changing distribution of data streams, and the detec-
tion of outliers/anomalies/variations in data streams. Most
of the existing approaches are based on the Kernel Density
Estimation (KDE) method due to its advantages for estimat-
ing the true density [Scott, 1992]. Given a set of samples,
S = {xxx1,xxx2, . . . ,xxxn}, where xxxj ∈ Rd. KDE estimates the
density at a point xxx as: f̂(xxx) = 1

n

∑n
j=1Kh (xxx,xxxj), where

Kh (xxx,xxxj) is a kernel function. Eq. (??) shows that KDE
uses all the data samples to estimate the PDF of any given
point. In the problem of online density estimation of data
stream, KDE has quadratic time complexity w.r.t. the stream
size. Also, the space requirement for KDE significantly in-
creases.

We introduced a method called KDE-Track in [Qahtan
et al., 2012] for univariate data streams and extended for
multi-variate in [Qahtan et al., 2017]. KDE-Track solves the
quadratic complexity problem of KDE by introducing a lin-
ear interpolation and adaptive resampling strategy. Taking a
sampleaaa in 2-dim for example, the PDF ataaa can be efficiently
estimated by bilinear interpolation of the resampling points,
as shown in Figure 1 (left),

f̃(aaa) =
D (aaa,rrrs2) f̃ (rrrs1) +D (rrrs1, aaa) f̃ (rrrs2)

D (rrrs1, rrrs2)
, (1)

where f̃(rrrs1) = D(rrrs1,mmms1+1)f̂(mmms1)+D(mmms1,rrrs1)f̂(mmms1+1)
D(mmms1,mmms1+1)

,

and f̃(rrrs2) = D(rrrs2,mmms2+1)f̂(mmms2)+D(mmms2,rrrs2)f̂(mmms2+1)
D(mmms2,mmms2+1)

. Here,
D(bbb, ccc) is the Euclidean distance between bbb and ccc.
mmms1,mmms1+1,mmms2, and mmms2+1 are resampling points sur-
rounding aaa. The interpolation is efficient as it stores only
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Figure 1: (left) Computing the density at aaa by interpolation given
f̂ at mmms1, mmms1+1, mmms2 and mmms2+1. (right) Example of adaptive
resampling: more resampling points are used in regions with high
curvature of the function.

f̂(mmm) at resampling points which are much less than the
streaming points.

To guarantee the estimation accuracy and to lighten the
load on the model (reduce the number of resampling points),
an adaptive resampling strategy is employed, i.e., more points
are resampled in the areas where the PDF has a larger curva-
ture, while less number of points are resampled in the areas
where the function is approximately linear, as shown in Fig-
ure 1 (right). The resampling points and their PDF values are
updated after receiving a new data sample, which requires
computing time linear to the total number of the resampling
points.

The KDE-Track has unique properties as follows:
(1) it generates density functions that are available to visual-
ize the dynamic density of data streams at any time.; (2) it has
linear time and space complexities w.r.t. the model size and
8 − 85 times faster than traditional KDE; (3) the estimation
accuracy is achieved by adaptive resampling and optimized
bandwidth (h), which also address the spatial non-uniformity
issue of data streams.

2.2 Discovery of Anomalies and Variations
In this section, we apply the estimated dynamic density to
three different application problems: Taxi traffic real-time vi-
sualization, unsupervised online change detection and online
outlier detection.

Visualizing the Taxi Traffic Data
One of the main advantages of KDE-Track is the availability
of the density function at any time point, which can be used
for visualization in real time without any further processing.
Figure 2 shows our application on visualizing the dynamic
traffic distribution in the New York Taxi trips dataset2 with
window size of 10K. We can find more pickup events dur-
ing weekends (left) than during regular working days (right)
in the Greenwich and the East villages where there are many
restaurants and nightclubs. Note that these snapshots are pro-
vided as examples only3. Similar patterns of the density func-

2Available at: http://www.andresmh.com/nyctaxitrips/
3Sample videos of visualization are available at

https://youtu.be/YvJZ2aeyLq4 (Global view for 2-D density in the
Manhattan Island); https://youtu.be/jq37IRdBUI0 (Detailed view of

Figure 2: The density estimated from the New York Taxi trips data
at weekend (left) and working day (right).

tion are repeated over time with minor changes. Such patterns
not only are useful in planning better services but also provide
critical information to reduce social and environmental costs
in the transportation systems.

Online Change Detection
Change detection in data streams refers to the problem of
finding time points, where for each point, there exists a
significant change in the current data distribution. Accu-
rate detection of changes (concept drifts) is important for
data stream mining problems such as online classification,
online clustering [Zhang et al., 2014], online optimizing
cost of continuous queries [Xie et al., 2016]. A typical
window-based solution is to extract a fixed S1 (reference
window) from streaming samples and to update an S2 (test
window) with newly arriving samples [Dasu et al., 2006;
Kifer et al., 2004]. Changes are then detected by measuring
the difference between the distributions in S1 and S2.

Modeling the data distribution and selecting a comparison
criterion are essential for change detection in data streams.
However, density estimation of multidimensional data is dif-
ficult. It becomes less accurate and more computationally
expensive with increasing dimensionality. In our previous
work [Qahtan et al., 2015], we introduce a framework which
applies Principal Component Analysis (PCA) to project the
multidimensional data from the stream on the principal com-
ponents to obtain multiple 1D data streams. Density esti-
mation by KDE-Track, distribution comparison, and change-
score calculations can then be conducted in parallel on those
1D data streams. Compared with projecting the data on the
original coordinates (i.e., using the original variables), pro-
jecting on PCs has the following advantages: 1) it allows the
detection of changes in data correlations, which cannot be de-
tected in the original individual variables; 2) it guarantees that
any changes in the original variables are reflected in PC pro-
jections; and 3) it reduces the computation cost by discarding
trivial PCs. Theoretical proofs and evaluation results can be
found in [Qahtan et al., 2015].

Online Outlier Detection
Given the density estimated by KDE-Track, outliers can be
directly detected based on the intuition that data samples hav-
ing small PDF values are more likely to be outliers, e.g., if
f̃(x) is smaller than 5% of f̄ , x is reported as a suspicious

2-D density around the Central Park); https://youtu.be/d4n09DYz-
o8 (Estimated density using 3-D NY Taxi data)
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Figure 3: Outliers detected by MBOD, AROD and KDE-Track in the Air Temperature from CIMIS dataset

outlier, where f̄ is the average density value of the resam-
pling points. A suspicious outlier is released if its density
value increases up to be larger than the threshold. Otherwise,
it is confirmed as an outlier.

Figure 3 shows the outliers detected by three methods
when applied on the air temperature dataset from [CIMIS, ]
from Jan 2000 to Apr 2012, which contains more than 100K
data points. Besides KDE-Track, one baseline AROD is an
Auto-regression based outlier detection method [Curiac et al.,
2007]. The other baseline is MBOD (Median-Based Outlier
Detection) [Basu and Meckesheimer, 2007]. Figure 3 shows
that MBOD and AROD failed to detect outliers correctly,
while KDE-Track reports only those points that have either
very small or very large values.

3 Representations of Temporal Traces
Information on our location is now recorded almost every-
where we go, either intentionally over social media like Face-
book, or unintentionally via our mobile phones and their asso-
ciated cellular and Wifi networks. The location trace of one
person can be represented as a temporal sequence of places
he/she visited, or called trajectories. Mining trajectories al-
low for social analysis, marketing and urban analysis. How-
ever, trajectories are not directly useable as people go to dif-
ferent places at different times.

3.1 Representation of Users from Where they
Went and When

In [Alharbi et al., 2016], we proposed a novel representation
learning model that infers latent patterns from user trajecto-
ries with minimum human intervention. The learned latent
patterns characterize the habitual movement patterns of indi-
viduals. The graphical representation of the proposed Human
Mobility Representation (HuMoR) model is shown in Figure
4. The key advantage of HuMoR is the utilization of times-
tamp feature of trajectory sequences, which can add impor-
tant contexts to the raw anonymized user location data, where
no semantic categories or geographical location is available,
to ensure the privacy of users..

HuMoR is a mixed-membership model built on the basis
that there exists a set of latent patterns, i.e., global mixture
components, underlying the data. Those global mixture com-
ponents, i.e., patterns, uncover shared recurring patterns from
sequences of locations co-visited by users with similar side
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Figure 4: Graphical representation of HuMoR. Nodes represent ran-
dom variables. Shaded nodes are observed ones (location p and
common side feature q, e.g., timestamp). Plates indicate repeti-
tion. I is the length of a sequence, |S| is the number of sequences.
The generative process is: for each sequence, a probability distri-
bution over patterns is drawn, θs, from Dirichlet(αs), where αs is
a function of the sequence feature qs, and Λ (packing λk column
by column). Then, for every element in the sequence, a mixture
assignment is drawn, i.e., a pattern z, from the multinomial pattern
distribution given the probabilities in θs. Finally, a location is drawn
from the multinomial location, parameterized by wk=z which is ran-
domly drawn from Dirichlet(β).

Baseline Representations
Datasets Measures FE PCA LDA HuMoR

MDC

CN 0.645 0.859 0.831 0.858 0.891
AA 0.645 0.861 0.831 0.864 0.888
Jacc 0.645 0.845 0.831 0.866 0.893
MF 0.820 0.873 0.893 0.881 0.943

GW

CN 0.892 0.727 0.689 0.881 0.969
AA 0.901 0.934 0.938 0.936 0.972
Jacc 0.832 0.721 0.774 0.914 0.954
MF 0.906 0.922 0.942 0.932 0.950

Table 1: Mean AUC for link prediction for MDC and GW.

features. Additionally, the model infers mixture proportions
local to each sequence, at which global components occur. In
HuMoR, global mixture components are distributions of pat-
terns over locations, and thus provide means for computing
the new location representations. The local mixture propor-
tions, on the other hand, are distributions of sequences over
patterns, which provide means for computing the new user
representations. The details of model inference can be found
in [Alharbi et al., 2016].

3.2 Discovery of Future Social Links
The new user representation can be used for link prediction,
which is formulated as a feature-based classification and su-
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Figure 5: Graphical model of DUWE. ut and vt are the dynamic
representation of user u and Twitter word v at time t, respectively.
zt is the observed co-occurrence of words, and yt is the observed
user-word pairs from Twitter streams.

pervised matrix factorization (MF) problem. Table 1 shows
the AUC when using four different representation produced
by Feature Engineering (FE), PCA, Latent Dirichlet Alloca-
tion (LDA), and HuMoR to three different topology measures
(Common Neighbors (CN), Adamic Adar (AA), and Jaccard
Coefficient (Jacc)), on two data sets: Mobile Data Challenge
(MDC) [Laurila et al., 2012] and GoWalla (GW) [Leskovec
and Krevl, 2014]. Values under Representations indicate the
mean AUC obtained when the new representations used in
conjunction with pairs of baseline measures.

Table 1 shows that the overall best result in each dataset is
achieved by HuMoR. In both datasets when comparing to the
column of Baseline Measures, the new representation learned
by HuMoR always improves the results significantly and out-
performs all other representation learning methods. This is
not the case for other baseline methods, especially in the GW
dataset, as they even worsen the results because of the inap-
propriately added representations.

3.3 Representation of Users from Where they and
their Friends Went

User location data collected from LBSNs have incomplete
user movements, as locations are manually entered and not
automatically logged. Given that 30% of users have check-
ins ≤ 5 in GW, learning of their representation is a challeng-
ing task. Existing work completed trajectories with estimates
[Farrahi and Gatica-Perez, 2011], or simply eliminated short
trajectories like in HuMoR. In [Alharbi and Zhang, 2016],
we proposed a model that learns from incomplete trajectories
with anonymized locations by leveraging online social links.
Comparing to existing work, the proposed model considers
extrinsic factors (social ties) while learning mobility patterns,
as opposed to existing work which only focuses on individ-
uals’ intrinsically motivated mobility patterns (i.e., utilizing
metadata directly associated with check-ins, rather than with
users). In this regard, this work introduces an important di-
mension to the human mobility framework.

4 Dynamic User Representation from their
Twitter Streams

Twitter users post their current status, recent activities and
opinions in short pieces of texts. Learning user representation

(a) (b)

Figure 6: (a) Piecewise linear representation. (b) Asynchronized
local correlation detection between S1 and S2.

(a.k.a. user profiling) from their Twitter streams is important
to a variety of downstream applications, such as user cluster-
ing, and news recommendations. Our recent work proposed
a model, called DUWE (dynamic user and word embedding),
which builds dynamic user and their Twitter word represen-
tation in a common semantic space [Liang et al., 2018]. The
graphical model is shown in Figure 5. The core idea is the uti-
lization of Kalman filter for modeling the diffusion process of
the vector representations of both users and words over time.

Given user representation at time t − 1, the evolving user
representation at t has a probability

p(Ut | Ut−1) ∝ N (Ut−1,α
2
t−1I) · N (0,α2

0 I), (2)

where α2
t−1 is the variances of the transition kernels of user

representations modeled by Kalman filter. Each element
α2
u,t−1 = ε · g(Du,t,Du,t−1)(τt − τt−1), where ε is a lo-

cal diffusion constant Du,t is a set of documents generated
by user u at time t, g(Du,t,Du,t−1) is a local diffusion value
measuring the word distribution changes from t − 1 to t for
user u, which can be modeled by Kullback-Leibler (KL) di-
vergence, and (τt − τt−1) is the time interval between subse-
quent observations in the stream. Gaussian prior with mean
0 and variance α2

0 is added for regularization purpose. Sim-
ilarly, the probability of word embedding at t, Vt, given the
word embedding results at t− 1, Vt−1, is

p(Vt | Vt−1) ∝ N (Vt−1,β
2
t−1I) · N (0,β

2

0 I). (3)

Having inferred the new representaitons of words and
users, we can generate top-K relevant and diversified key-
words to profile users interests over time in streams of tweets.
More details can be found in [Liang et al., 2018].

5 Online PLR of Time Series
The problem of Piecewise Linear Representation (PLR) is il-
lustrated in Figure 6 (a) (the left is a stream and the right
is a new representation of it). Formally, the optimal error-
bounded PLR is to construct a minimal number of line seg-
ments to represent the stream, and the approximation error
does not exceed the predefined error bound. What are the
benefits of using the new representation? First, it takes less
time and space for processing (a set of stream points can be
represented by the slope and offset of a line segment). Sec-
ond, it helps in excluding outliers that may have negative
impact on processing. Given a short and fixed stream, ex-
isting solutions can find an optimal set of line segments for
PLR. However, it is unrealistic to run PLR every time when
there is a new point in streaming data. Our work in [Xie et
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al., 2014] proposed novel linear-time algorithms for perform-
ing online PLR, which guarantees optimal representation and
lower costs in time and disk space than baseline methods. A
direct usage of the new representation is to facilitate the corre-
lation detection between streams (illustrated in Figure 6 (b)).
PLR can reduce the cost of correlation detection between two
streams, especially when the correlation occurs in burst, lasts
for certain duration, and then disappears. Our work in [Xie
et al., 2013] solves the asynchronized local correlation detec-
tion problem in an online fashion with high efficiency.

6 Conclusion and Future Work
We create new representation of data to facilitate the latent
pattern discovery and decision-making in efficient and au-
tomated ways. Besides the above-mentioned work, we also
proposed an efficient model that can online extract the best
representative instances from streams, which can be used
for clustering [Zhang et al., 2014] and anomalies detection
[Wang et al., 2014]. In graph streams, we develop effi-
cient methods that can approximately count triangles and
graphlets in large graph streams with a fixed memory us-
age, which can be used for network anomaly analysis [Wang
et al., 2017]. We also studied time series in cloud systems,
such as CPU/memory/disk utilization rate, and network traf-
fic, with a purpose to automate the management of comput-
ing resources in Cloud system with more elasticity and bet-
ter utilization rate [Williams et al., 2014; Zhang et al., 2012;
Zheng et al., 2011].

Our current research focuses on several streaming data
problems. First, learning user representation comprehen-
sively from their social activities by integrating multi-source
information like user trajectories, tweets and social links.
Second, we develop semi-supervised representation learn-
ing methods, as introducing labels in representation learn-
ing process greatly helps the downstream predictive appli-
cations. Our ongoing study helps on a system called Delve
(https://delve.kaust.edu.sa), which we develop for dataset re-
trieval and document analysis [Akujuobi and Zhang, 2017].
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