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Abstract

We give a survey on recent advances at the fore-
front of research on probabilistic knowledge bases
for representing and querying large-scale automat-
ically extracted data. We concentrate especially on
increasing the semantic expressivity of formalisms
for representing and querying probabilistic knowl-
edge (i) by giving up the closed-world assumption,
(ii) by allowing for commonsense knowledge (and
in parallel giving up the tuple-independence as-
sumption), and (iii) by giving up the closed-domain
assumption, while preserving some computational
properties of query answering in such formalisms.

1 Introduction

In the recent years, there has been a strong interest in build-
ing large-scale probabilistic knowledge bases (PKBs) from
data in an automated way, which has resulted in several sys-
tems, such as DeepDive [De Sa er al., 2016; 2017], NELL
[Mitchell et al., 2015], Microsoft’s Probase [Wu et al., 20121,
and Google’s Knowledge Vault [Dong er al., 2014]. These
systems continuously crawl the Web and extract structured
information, and thus populate their databases with millions
of entities and billions of tuples. A recent survey on such
systems has been given in [Hossain and Schwitter, 2018].

To what extent can these search and extraction systems
help with real-world use cases? This turns out to be an open-
ended question. For example, DeepDive is used to build
knowledge bases for domains such as paleontology, geology,
medical genetics, and human movement [Ku er al., 2015;
Peters er al., 2014]. Google’s Knowledge Vault has com-
piled more than a billion facts from the Web and is primar-
ily used to improve the quality of search results on the Web.
Currently, it can even estimate the trustworthiness of more
than 119M sources [Dong et al., 2015].

From a broader perspective, the quest for building large
knowledge bases serves as a new dawn for artificial intelli-
gence (Al) research. Fields such as information extraction,
natural language processing (e.g., question answering), rela-
tional and deep learning, knowledge representation and rea-
soning, and databases are taking initiative towards a common
goal. Querying large-scale probabilistic knowledge bases is
commonly regarded to be at the heart of these efforts.
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Beyond all these success stories, however, probabilistic
knowledge bases still lack the fundamental machinery to
convey some of the valuable knowledge hidden in them to
the end user [Weikum et al., 2016], which seriously lim-
its their potential applications in practice. These prob-
lems are rooted in the semantic expressivity of probabilis-
tic databases (PDBs) [Imieliriski and Lipski, 1984; Fuhr and
Rolleke, 1997; Suciu et al., 2011], which are used for en-
coding most probabilistic knowledge bases. Most relational
PDB management systems are restricted in their expressivity
in three dimensions: the relational dimension, the knowledge
dimension, and the probabilistic dimension.

More specifically, along the relational dimension, PDB
systems are restricted by two shortcomings, all of which are
inherited from classical databases:

e The closed-world assumption states that any fact that
is not entailed by the knowledge base is false, i.e., has
probability 0.

* The closed-domain assumption fixes the domain of dis-
course to a finite set of known constants, i.e., those that
appear in the database.

In the knowledge dimension,

e the lack of commonsense knowledge means that PDB
systems cannot infer new facts from stated ones in the
way a human does intuitively.

All three limitations have been crucial for the efficiency, and
hence the success, of classical database systems. They are
also well-justified in an environment where the data are well-
curated and of high quality, e.g., for small-to-mid-scale com-
panies’ internal knowledge management systems. However,
in recent years, it has been increasingly recognized that when
dealing with automatically constructed large-scale knowl-
edge bases, these restrictions need to be relaxed to allow for
more flexibility and expressivity [Weikum et al., 2016].
There is an additional tradeoff between expressivity and
efficiency along the probabilistic dimension of PDBs:

¢ The most popular PDB model employs the fuple-inde-
pendence assumption, i.e., it views every extracted fact
as an independent Bernoulli variable, which means that
all facts in the database are assumed to be probabilisti-
cally independent.
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Figure 1: Landscape of formalisms for probabilistic knowledge bases. The horizontal lines (in blue) represent the relational dimension, the
vertical lines (in orange) the probabilistic dimension, and the models in green boxes include some form of commonsense knowledge (encoded
by logical formulas). We classify some closed-domain models as open-world in the sense that these representations allow to assign positive
probabilities to facts that are not explicitly inferred (unlike closed-world, closed-domain models). More conventional open-world models are

those that also operate over open domains.

Again, this has been crucial for the success of PDB systems;
nonetheless, this assumption is unnatural in many real-world
applications, which need to express at least some correlations
or conditional dependencies between pieces of information.

Following the recent paradigms in querying probabilistic
data and knowledge bases [Ceylan, 2017], we survey the
landscape of current research on relaxing these four restric-
tions towards more expressive probabilistic knowledge base
formalisms. These restrictions are tightly connected, as we
illustrate in Figure 1. Along the relational dimension (blue),
we observe an increase in expressivity from closed-world,
closed-domain PDBs (bottom) to open-world, open-domain
approaches (top). In the knowledge dimension (green), we
distinguish models that can encode commonsense knowl-
edge. Along the probabilistic dimension (orange), we com-
pare tuple-independent models (left) to ones that allow cor-
relations between facts and explicit conditional dependencies
(right). This classification clearly abstracts away from other
subtle differences among these formalisms; more details are
given in the relevant sections.

In the rest of this paper, we first introduce the basic PDB
models, highlighting the development of successful systems,
and then address relaxing the closed-world assumption, the
lack of commonsense knowledge, and finally the closed-
domain assumption. The discussion of probabilistic depen-
dencies is internal to each section.

2 Probabilistic Databases

Tuple-independent probabilistic databases (PDBs) [Dalvi and
Suciu, 2007] are a simple and intuitive model for adding
probabilities to classical databases, interpreted using the stan-
dard possible-worlds semantics. A possible world is a combi-
nation of true and false facts, and is assigned a probability by
multiplying the probabilities of the true facts with the com-
plementary probabilities of those facts that are believed to be
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false. A query (i.e., formula) is evaluated by summing up the
probabilities of all those worlds where it is satisfied.

Example 1. Consider the following tuple-independent
PDB P, which assigns the probability 0.5 to several self-
explaining facts

composer(haydn): 0.5, teacherOf(haydn, beethoven): 0.5,
knows(haydn, beethoven): 0.5, friendOf(haydn, mozart): 0.5,

e.g., Joseph Haydn was recognised to be a composer with a
certainty of 0.5. The conjunctive query

@1 = 3z (knows(z, beethoven) A composer(x)),

is evaluated to a probability of 0.25, since it is satisfied in all
worlds in which the first and the third facts are true. L]

Dalvi and Suciu [2012] have shown that evaluating unions
of conjunctive queries is either possible in polynomial time
(safe), or it is #P-hard (unsafe), and gave an effective algo-
rithm to recognise and evaluate safe queries. However, the
class of safe queries is small, and it is crucial to achieve scal-
ability for unsafe queries, using the insights provided by the
structure of safe queries. Beyond exact query evaluation, it
is well known that unions of conjunctive queries can be ap-
proximately evaluated in polynomial time, since such queries
are positive (existential) DNF formulas, for which polyno-
mial time approximation schemes exist [Karp et al., 1989].

The tuple-independent PDB model has been extended
towards expressing probabilistic dependencies. In block-
independent-disjoint (BID) PDBs [Dalvi et al., 2009], each
relation is grouped into blocks, and the facts of each block
are assumed to be disjoint (i.e., mutually exclusive), while
the facts of different blocks are assumed to be indepen-
dent. Conditional PDBs (C-PDBs) and U-databases allow
to encode further dependencies between facts by annotating
them with propositional formulas [Green and Tannen, 2006;
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Antova ef al., 2008]; this allows them to represent any proba-
bility distribution over the set of possible worlds.

Query evaluation over PDBs is closely related to the task of
weighted (first-order) model counting [Gribkoff et al., 2014b;
Beame et al., 2017]. For solving either task, the method of
knowledge compilation has proven fruitful, where the PDB is
translated into a different representation over which queries
can be evaluated more efficiently. While the translation may
be time-consuming, this effort is paid off when a large num-
ber of queries needs to be answered over the same PDB.
In this way, knowledge compilation solvers can be applied
to tasks that are PP-complete [Park and Darwiche, 2004],
such as threshold query evaluation over PDBs [Jha and Suciu,
2013; Olteanu and Schleich, 2016]. Tensor factorization has
recently also been applied to PDBs [KrompaB et al., 2014].

There exists a multitude of PDB systems, such as Mys-
tiQ [Boulos et al., 20051, SPROUT [Fink et al., 2011],
SlimShot [Gribkoff and Suciu, 2016], MayBMS [Antova et
al., 2008], and Tuffy [Niu er al., 2011], which are based on a
variety of exact and approximate query evaluation techniques.
A recent survey on query answering over probabilistic data
has been given in [Van den Broeck and Suciu, 2017].

3 Open-World Assumption

Most real-world probabilistic knowledge bases encode only
a portion of the real world, and this description is, in most
cases, incomplete. However, for computational efficiency
reasons, PDBs typically lack a suitable handling of incom-
pleteness. In the query semantics, most of these systems em-
ploy the closed-world assumption, i.e., any fact that is not
entailed by the knowledge base is assigned the probability 0,
and thus assumed to be impossible, although it actually has
some unknown probability in [0,1]. Hence, many queries
evaluate to the probability 0, which makes it impossible to
distinguish queries that should intuitively differ.

Example 2. We illustrate the effects of the closed-world as-
sumption on the PDB P from above, where all missing facts
have the probability 0, i.e., they are false. The following two
queries both evaluate to the probability O over the PDB:

Q2 = 3z (teacherOf(x, beethoven) A bornin(z, austria)),
Q3 = 3z (person(x) A —person(z)).

In particular, the fact bornin(haydn, austria) is assumed to
have the probability 0 (i.e., to be false); however, this as-
sumption is likely incorrect. Indeed, bornin(haydn, austria)
may even have the probability 1 (i.e., may be true), which
would result in ()2 having the probability 0.5. In contrast, Q3
is unsatisfiable and should always have the probability 0, no
matter how incomplete the PDB is. That is, the closed-world
assumption forces a very flat representation, which makes it
impossible to even distinguish a satisfiable query from an un-
satisfiable one. L]

Since [Reiter, 1980], the closed-world assumption has been
widely criticised in the context of classical data and knowl-
edge bases, and alternatives have been proposed. Similar ar-
guments apply to PDBs and probabilistic knowledge bases.
In fact, for real-world applications of PDBs, it is common to
use the so-called local closed-world assumption [Dong et al.,

2014], arelaxed version that is, however, still distant from the
open-world assumption, which allows all facts to have a non-
zero probability, even if they do not follow from the database.
An alternative approach is to set the probabilities of facts
that are not in the database to a default probability interval.
This approach, i.e., allowing unknown facts to take on prob-
abilities from an interval, belongs to the area of imprecise
probabilities [Levi, 1980]. The resulting inference over sets
of probability distributions is harder than inference over a
single distribution; for efficiency reasons, one is thus inter-
ested in closed and convex sets of distributions in the spirit
of credal networks [Cozman, 2000]. In open-world PDBs
(OpenPDBs) [Ceylan et al., 2016al, the dichotomy result and
algorithm for PDBs [Dalvi and Suciu, 2012] were lifted to the
case where unknown facts take on a value from a default prob-
ability interval, without decreasing the class of safe queries.

4 Commonsense Knowledge

Another limitation of PDBs is the lack of commonsense
knowledge. This shows up in real-world applications of
PDBs: nowadays, results of Web search usually come with
structured information boxes whenever possible, e.g., the
search for “Mozart” or “Beethoven” results in a box con-
taining basic information about them, such as their date of
birth and their compositions. This information is linked to
the underlying knowledge base [Dong ef al., 2014], but when
it comes to query answering, these systems lack a means of
intuitive reasoning. This problem is also closely linked to the
tuple-independence assumption in PDBs.

Example 3. The query @4 asking whether there is a com-
poser who knows both Mozart and Beethoven,

Jx(composer(x) Aknows(z, beethoven) Aknows(z, mozart))

is evaluated to the probability 0, since the fact knows(haydn,
mozart) is missing from the knowledge base. Even using
open-world PDBs, this fact would only be assigned a de-
fault probability interval, i.e., would be equally likely as
knows(haydn, elvis). However, the PDB P actually contains
concrete information about this fact, namely that Haydn was a
friend of Mozart. The only missing link is the commonsense
knowledge that friends of course know each other. Further-
more, under tuple-independence, the query

Q@5 = 3z (teacherOf(x, beethoven) A knows(x, beethoven))

evaluates to the probability 0.5-0.5=0.25. But, if Haydn is
a teacher of Beethoven, then he also knows Beethoven, i.e.,
these tuples are not independent. So, the probability of Q5
should actually be 0.5. [

As we can see, adding commonsense knowledge to a prob-
abilistic knowledge base can help improving query answers.
Reasoning exploits such basic knowledge to deduce implicit
consequences from data, and this kind of knowledge is essen-
tial for querying large-scale PDBs in an uncontrolled envi-
ronment, i.e., the internet. Realistic data models should thus
incorporate commonsense knowledge, which is also inher-
ently connected to giving up the tuple-independence assump-
tion of standard PDBs. Indeed, this knowledge automatically
induces implicit dependencies between facts, which means
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that the tuple-independence assumption does not hold any-
more (cf. Figure 1).

The need to relax the tuple-independence assumption and
to allow for representing commonsense knowledge has al-
ready been recognized in several recent approaches to PKBs,
e.g., based on Markov logic networks (MLNs) [Richardson
and Domingos, 2006; Jha and Suciu, 2013; Gribkoff and Su-
ciu, 2016]. There, the PDB is viewed as a set of weighted
facts in an MLN; additional soft/hard constraints are imposed
through a set of weighted/unweighted rules. This is closely
related to maximum-entropy (ME) models, where the proba-
bility distribution is obtained as the one of maximum entropy
satisfying some constraints; intuitively, such a model makes
the least assumptions on dependencies between tuples, and
leaves all unaffected tuples independent [Jaynes, 1957].

In particular, the recent system SlimShot [Gribkoff and Su-
ciu, 2016] reduces such PKBs to tuple-independent PDBs
with additional logical constraints; it also provides certain ac-
curacy guarantees; but the numbers and sizes of the resulting
independent probabilistic facts grow very quickly with the
number of logically related facts. Other related approaches
based on Markov logic networks, like Tuffy [Niu ez al., 2011]
and DeepDive [De Sa et al., 2016; 20171, use Markov Chain
Monte Carlo (MCMC) for probabilistic inference, or a vari-
ant called MC-SAT [Poon and Domingos, 2006]. In general,
however, such approximating algorithms do not provide any
accuracy guarantees.

Other probabilistic formalisms that allow to encode com-
monsense knowledge, but still make the closed-domain as-
sumption, are based on (function-free) probabilistic logic
programming, covering positive as well as more general logic
programs, such as normal and disjunctive normal logic pro-
grams. In particular, in probabilistic logic programming
under the distribution semantics (e.g., probabilistic Data-
log [Fuhr, 1995], Bayesian logic programs [Kersting and
De Raedt, 20011, ProbLog [De Raedt et al., 2007], and
probabilistic description logic programs [Lukasiewicz et al.,
2011])—which is perhaps closest in spirit to PDBs—different
joint instantiations of random variables specify subsets of a
logic program and thus their least Herbrand models. Along
with probability distributions over the values of each random
variable and an independence assumption on the random vari-
ables, this then generates a probability for each joint instan-
tiation, and thus overall a probability distribution (or a set of
probability distributions) over all Herbrand models.

Observe that this is fundamentally different from the prob-
abilistic semantics above that are based on Markov logic net-
works or maximum-entropy models. Furthermore, this distri-
bution semantics for probabilistic logic programs is an ex-
ample where the independence of a collection of random
variables is not in conflict with a large amount of common-
sense knowledge, as the latter is defined on top of instanti-
ations of the random variables. Note also that probabilis-
tic logic programs under the distribution semantics allow to
encode explicit conditional dependencies between the prob-
abilistic facts, similar to Bayesian networks; for a recent
survey on probabilistic logic programming under the distri-
bution semantics and their ability to encode Bayesian net-
works, see [De Raedt and Kimmig, 2015]. Importantly, many
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approaches to probabilistic logic programming also make a
closed-world assumption (cf. Figure 1), e.g., the distribution
semantics assigns the probability 0 to facts that are not en-
tailed in any possible world, and approaches to probabilistic
logic programming with nonmonotonic negation in rule bod-
ies employ negation as failure as part of their semantics.

There are also many alternative approaches to probabilis-
tic logic programming that are not based on the distribu-
tion semantics, such as the ones in [Lukasiewicz, 2001;
Kern-Isberner and Lukasiewicz, 2004; Lukasiewicz, 2008b];
they are based on a language of conditional constraints, which
specifies a convex set of probability distributions over a fi-
nite set of Herbrand models, the maximum-entropy model in
that convex set of probability distributions, and a probabilis-
tic default semantics, respectively. The approach in [Kern-
Isberner and Lukasiewicz, 2004] is similar to the probabilis-
tic semantics above that are based on MLNs or maximum-
entropy models; however, a crucial difference is that condi-
tional probabilities are a modeling primitive, while the above
MLNs and maximum-entropy models only model uncondi-
tional probabilities as primitives.

5 Open-Domain Assumption

All the approaches in the previous section have in common
that they also allow for modelling logic-based commonsense
knowledge. However, since they are based on grounding
universally quantified variables in first-order formulas with
known constants of a finite domain, they essentially only al-
low for encoding propositional logical knowledge, and not
fully fledged first-order knowledge, as it already occurs in
(rather restricted) ontology languages that are used to formu-
late commonsense knowledge. In particular, e.g., standard
MLNSs cannot express full existential quantification, which
may introduce unknown individuals, as illustrated by the fol-
lowing example.

Example 4. Consider the constraint “every employee has a
private address”. Unless the private address of employee A is
explicitly mentioned in the PDB, in an MLN, this constraint
means that A must be assigned a private address that is either
(a) a private address of another employee that is mentioned
in the data, or (b) a completely different object, e.g., an em-
ployee or a department. Obviously, neither (a) nor (b) reflects
the intended meaning. L]

Interpreting databases under fully fledged first-order com-
monsense knowledge in the form of ontologies is closely re-
lated to ontology-based data access (OBDA) [Poggi et al.,
2008], which has been very widely studied in the context of
classical databases, and also addresses the need for open-
world, open-domain querying. Ontology-based access to
probabilistic data has been studied for the lightweight de-
scription logics £L and DL-Lite, and the data complexity di-
chotomy in PDBs has been lifted [Jung and Lutz, 2012]; they
also describe the case of a more expressive ontology language
that causes all CQs of a certain form to become #P-hard. The
paper [Borgwardt ef al., 2017] considers the more expressive
languages of the Datalog* family and provides results both
relative to PDBs and OpenPDBs. It shows that the semantic
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differences between these formalisms lead to different results,
and also identifies tractable cases.

Most of the recent work on probabilistic query answer-
ing using ontologies is based on lightweight ontology lan-
guages, such as the approaches to Bayesian description log-
ics in [d’Amato et al., 2008; Ceylan and Pefialoza, 2015;
2017], which combine the description logics of the DL-
Lite family and the description logic £L£, respectively, with
Bayesian networks [Pearl, 1988]. The underlying probabilis-
tic semantics can be generalized to other ontology languages
and graphical probabilistic models as well. For example, a
closely related approach is the one to probabilistic Datalog*
in [Gottlob er al., 2013], which combines Datalog® with
Markov logic networks [Richardson and Domingos, 2006].
In [Ceylan er al., 2016b], the computational complexity of
query answering in probabilistic Datalog* under the pos-
sible worlds semantics is investigated. In closely related
work [Lukasiewicz et al., 2016; Lukasiewicz and Predoiu,
2016], the computational complexity of query answering over
annotation-based PDBs under Datalog* is explored.

There are many alternative approaches to probabilistic on-
tology languages that are based on a different probabilistic se-
mantics (for a survey, see [Lukasiewicz and Straccia, 2008]),
such as the approach in [Lukasiewicz, 2008al, which uses
a probabilistic default reasoning semantics, and which al-
lows to represent and reason about terminological probabilis-
tic knowledge about classes of individuals, as well as asser-
tional probabilistic knowledge about single individuals.

The need for the open-domain assumption has also been
recognized in statistical relational formalisms. The proba-
bilistic programming language BLOG [Milch et al., 2005] al-
lows to encode probabilistic models with unknown objects
(i.e., objects that may not be known a priori and may not be
directly and uniquely identified), and thus to perform infer-
ence over open domains. In [Singla and Domingos, 20071,
also MLNs were extended to an open domain by allowing
universal quantifiers to range over an infinite domain (but not
existential quantifiers as used in Example 4). Rather recently,
a probabilistic extension of Datalog is proposed in [Barany et
al., 2017] to also cope with infinite domains.

There are also many approaches to open-domain prob-
abilistic logic programming (with function symbols) under
the distribution semantics, such as probabilistic Horn abduc-
tion [Poole, 19931, PRISM [Sato and Kameya, 1997], the
independent choice logic [Poole, 1997], and P-log [Baral et
al., 2009]. The main idea behind the underlying probabilis-
tic semantics is that a well-definedness condition ensures fi-
nite probability distributions even in the presence of function
symbols, namely, by guaranteeing that there are only finitely
many different possible worlds (often along with assuming
that their canonical Herbrand models are also finite).

6 Alternative Inference Tasks

In addition to query evaluation and computing conditional
probabilities, a lot of research effort has also focused on ex-
plaining probabilistic knowledge bases. The explanation of
the behaviour of Al systems is widely regarded as an impor-
tant item on the agenda of Al research in general. In proba-

bilistic models, this encompasses research on established in-
ference tasks such as maximum a posteriori (MAP) compu-
tations and most probable explanations (MPE), e.g., in prob-
abilistic graphical models [Koller and Friedman, 2009], as
well as recent trends towards notions of causality, e.g., in
database research [Meliou et al., 2010; Kanagal et al., 2011].

In MPE and MAP, one is interested in finding the most
plausible instantiation of a set of probabilistic variables that
explains a given observation. In our setting, this corresponds
to identifying tuples that contribute the most to the satisfac-
tion of an observed query.

Example 5. One may ask, for example, what are the tu-
ples from P that are responsible for the query Q;—the an-
swer being, of course, composer(haydn) and knows(haydn,
beethoven). If the PDB contains more composers that knew
Beethoven, the task is to find the combination of tuples with
the highest probability. This task is more important in the
presence of commonsense knowledge, where it is not always
so clear which tuples contribute to satisfying the query.

For MLNs and probabilistic logic programming ap-
proaches, this is one of the central inference tasks investi-
gated [Richardson and Domingos, 2006; De Raedt and Kim-
mig, 2015]. For tuple-independent PDBs, first investigations
into this problem for a variety of database and ontology-based
query languages have been made in [Gribkoff et al., 2014a;
Ceylan et al., 2017].

More generally, research on causality in (probabilistic)
databases also tries to explain negative query answers, as well
as rank the causes according to their responsibility, a measure
of the influence they have on the query result [Meliou et al.,
2010; Kanagal et al., 2011]

7 Summary and Outlook

We have surveyed recent advances in querying probabilistic
knowledge bases. We focused on research efforts to increase
the semantic expressivity of formalisms for representing and
querying probabilistic knowledge. Our survey does not pro-
vide a deep discussion in terms of the scalability issues in
each of the above formalisms, which is still a very active re-
search area, and there are big challenges remaining in this
regard. On the other hand, expressive semantic representa-
tions do not necessarily lead to a computational overhead; for
example, it is well-known that some ontology languages ad-
mit rewritings into unions of conjunctive queries; meaning
that they can essentially be evaluated on PDB systems using
existing approximation schemes.

All the above topics are also subject to heavy present re-
search activities on representing and querying probabilistic
knowledge. Despite all the described advances, further re-
search efforts will be necessary to unlock the full potential of
probabilistic knowledge bases in applications in practice.
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