Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Knowledge-Guided Agent-Tactic-Aware Learning for StarCraft
Micromanagement

Yue Hu'*, Juntao Li'*, Xi Li"', Gang Pan', Mingliang Xu?
! College of Computer Science and Technology, Zhejiang University, Hangzhou, China
2 Zhengzhou University, Zhengzhou, China
{huyue76, juntaoli, xilizju, gpan} @zju.edu.cn, iexumingliang @zzu.edu.cn

Abstract

As an important and challenging problem in artifi-
cial intelligence (AI) game playing, StarCraft mi-
cromanagement involves a dynamically adversari-
al game playing process with complex multi-agent
control within a large action space. In this pa-
per, we propose a novel knowledge-guided agent-
tactic-aware learning scheme, that is, opponent-
guided tactic learning (OGTL), to cope with this
micromanagement problem. In principle, the pro-
posed scheme takes a two-stage cascaded learn-
ing strategy which is capable of not only transfer-
ring the human tactic knowledge from the human-
made opponent agents to our Al agents but also
improving the adversarial ability. With the pow-
er of reinforcement learning, such a knowledge-
guided agent-tactic-aware scheme has the ability to
guide the Al agents to achieve a high winning-rate
performance while accelerating the policy explo-
ration process in a tactic-interpretable fashion. Ex-
perimental results demonstrate the effectiveness of
the proposed scheme against the state-of-the-art ap-
proaches in several benchmark combat scenarios.

1 Introduction

In recent years, StarCraft micromanagement [Ontanén et al.,
2013; Wender and Watson, 2012; Synnaeve et al., 2016]
based on deep reinforcement learning (DRL) [Mnih ez al.,
2015; Li, 2017; Silver et al., 2016; Lillicrap et al., 2015;
Levine et al., 2016; Mirowski et al., 2017; Pasunuru and
Bansal, 2017; Li et al., 2017; Silver et al., 2017] has at-
tracted considerable attention in the fields of artificial intel-
ligence and machine learning. Typically, this research prob-
lem is studied from three different perspectives: 1) learn-
ing architecture construction, 2) model training strategy and
3) multi-agent communication mechanism. For 1), a va-
riety of deep learning architectures are proposed for ef-
fective reinforcement learning such as the centralized crit-
ic and decentralized actor network [Foerster et al., 2017a;

* Authors contributed equally to this work.
"Corresponding author.

1471

Lowe et al., 2017] as well as the master-slave architec-
ture [Kong et al., 2017]. For 2), a large body of research
work [Usunier et al., 2017; Foerster et al., 2017b] aims at
designing feasible offline/online training strategies for im-
proving the agent-specific learning performance (e.g., accu-
racy, convergence, stability, etc.). For 3), a variety of re-
searchers [Foerster et al., 2016; Sukhbaatar et al., 2016;
Peng et al., 2017] focus on modeling the inter-agent inter-
actions in terms of different message passing mechanism-
s. In principle, the aforementioned approaches rely heavi-
ly on pure data-driven exploration learning from scratch and
are incapable of explicitly modeling the agent-tactic-aware
learning process, resulting in the uninterpretable learning re-
sults. Moreover, the data-driven learning strategies for these
approaches are usually carried out over the replay data pro-
duced by themselves in a batch-mode learning fashion, re-
sulting in the loss of adversarial information against the oppo-
nents. Therefore, we mainly concentrate on constructing an
interpretable agent-tactic-aware learning scheme that learns
the adversarial knowledge from the opponent.

In the literature, conventional reinforcement learning ap-
proaches for StarCraft micromanagement are usually imple-
mented under the circumstances of multi-agent game play-
ing [Usunier et al., 2017; Foerster et al., 2017a; Peng et
al., 2017]. In essence, their primary goal is to build Al a-
gents with effective and efficient policies, which are able to
achieve the high winning-rate performance against the com-
puter built-in opponent agents. Such policies are typically
trained to pursue the reward maximum objective from the re-
play data, generated by agents through interacting with the
environment. As a result, such a game playing pipeline re-
lies heavily on bottom-up data-driven learning methodologies
(lacking enough interpretability). In addition, this game play-
ing pipeline pays insufficient attention to the power of ef-
fectively inheriting top-down human prior knowledge about
game playing as well as explicitly modeling the adversarial
tactics against the opponent agents and often treats the oppo-
nent agents as a part of the environment without the aware-
ness of the opponent existence.

Motivated by the above observations, we propose a nov-
el knowledge-guided agent-tactic-aware learning scheme:
opponent-guided tactic learning (OGTL), which effectively

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

DNN .
Training

-l-l—l—:»l_}_l

el
Uqg o (s,) o(s,e),u, Store
Our Al Human-Made
Agent Opponent

2 Q)
3 G
*o) N
3 o

Environment

(a) First stage: learning from the human-made opponent

DQN .
- Training
~|—|—|~:>+"| m
2(s, o
&) %\0‘ o'
X
%4 Our Al Q@’o\ ‘0)'
Agent QQ’

Ug | @(s,a),1,¢(s",a)

Environment

(b) Second stage: self-improving

Figure 1: Illustration of the whole architecture of the proposed approach: opponent-guided tactic learning (OGTL). In (a), we store the feature
maps ¢(s, e) and actions u. into the replay and then we train the DNN using the stored data. After training, our Al agents can learn the
opponent agents’ tactic. In (b), our Al agents perform the action u, when receiving the feature map ¢(s, a) and then obtain the next feature
map ¢(s’, a) and the reward . With the interaction with the environment, we train our Al agents using the replay generated by our Al agents

based on DQN.

leverages human knowledge to learn tactic-aware policy func-
tions, making the learning process more interpretable. In the
proposed learning scheme, we first build human-made oppo-
nent agents inheriting human knowledge about game play-
ing with some particular pre-defined tactics. Subsequently,
our Al agents are enabled to play against the human-made
opponent agents and consequently learn their corresponding
tactic-aware policy functions directly from the replay data of
opponent agents. After that, our Al agents further refine the
learned policy function leveraging deep reinforcement learn-
ing against the computer built-in opponent agents. Hence,
our proposed scheme is based on two-stage cascaded learn-
ing, where the first stage is for tactic-aware knowledge trans-
fer from the human-made opponent agents to our Al agents
while the second stage is to reinforce the adversarial capa-
bilities of our Al agents against the computer built-in oppo-
nent agents. In this way, our proposed scheme is explicit-
ly tactic-aware with an interpretable policy exploration pro-
cess of effectively learning the opponent’s tactics, and has the
capability of accelerating the policy exploration process be-
cause of introducing human knowledge compared with the
conventional reinforcement learning approaches. Therefore,
the main contributions of this work are two-fold:

e Under the StarCraft micromanagement settings, we
propose a novel knowledge-guided agent-tactic-aware
learning scheme that effectively leverages human tac-
tic knowledge into the policy function learning process,
which is able to accelerate the policy exploration process
in a tactic-interpretable fashion.

e We propose a two-stage cascaded learning pipeline,
which consists of tactic-aware knowledge transferred
from the human-made opponent agents to our Al agents
as well as adversarial capability reinforcement of our Al
agents against the computer built-in opponent agents.
With this learning pipeline, our Al agents can achieve
a high winning-rate performance.

1472

2 Ouwur Approach

2.1 Problem Formulation

We focus on the micromanagement task, which consists of
the combat environment, our units and opponent units. In
our settings, we treat every unit as an agent. Without loss
of generality, we assume there are n our Al agents and m
opponent agents in the combat environment. Our Al agents
are defined as (a1, ag, ...a,,) and opponent agents are defined
as (e, ea,...6,,). The state obtained from the environment
is denoted by s € S, where S is the state space, shared a-
mong all the agents. We use ¢(s,a) or ¢(s, e) to denote the
feature map which is extracted from the state in the specific
agent viewpoint. The detail of feature map extraction will be
explained in Section 2.2. When our Al agent receives the fea-
ture map ¢(s, a), it performs the action u, € U by its own
policy 7, : ¢(s,a) — ug, where U is the action space. Sim-
ilarly, the opponent agent performs the action u, € U using
policy 7, : &(s,e) — u. when receiving the feature map
(s, €).

Our method has two stages. In the first stage, we build
human-made opponent agents with some particular pre-
defined tactics. Thus, the human-made opponent has a pre-
defined policy m.. Our Al agents are able to play against
the human-made opponent agents, transferring tactic-aware
knowledge from the human-made opponent agents to our-
selves. In this stage, we train a network F'(¢(s,a);61) that
gives us a probability distribution on the space of possible ac-
tions U, to learn the tactic-aware policy 7}, with which we
choose the action with the highest probability. Here, 6; are
the parameters of the network F'.

In the second stage, to refine the learned policy 7!, we
leverage deep reinforcement learning to learn a more so-
phisticated policy 72 by combatting against the computer
built-in opponent agents. In this stage, the whole game
is considered as a stochastic game G [Nisan et al., 2007,
Shapley, 19531, defined by G = (S,U, P, R,~). Here, P
denotes the state transition function, R denotes the reward

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

I | [T
Flip
Transform

T

1T |
1T I TT

feature m

)

P
] Background

|:| Enemy
B Ay

B Controlled Agent

ool

[2 Controlled Agent
T ¢

Health feature map

Figure 2: The left part is the real game screen. We map the game
screen into two feature maps displayed in the mid part of the figure.
In the location feature map, the background is encoded with number
zero and other parts are encoded by the numbers displayed in the
map. In the health feature map, we put the real value of the current
health of each agent in the corresponding position. The right part is
the processed location feature map after flip transformation.

function and y € [0, 1) is a discount factor. We use a network
Q(o(s,a),uq;02) that gives us a state-action value (evaluat-
ing the value of the current state and action) of possible ac-
tions, to learn the policy 72, with which we choose the action
with the highest value. Here 5 are the parameters of network
(@ initialized with 6;. The whole architecture of the proposed
approach is shown in Figure 1.

2.2 Feature Representation

Conventional studies like [Usunier et al., 2017; Foerster et al.,
2017a; Kong et al., 2017] used the parameterized features to
represent game state s for StarCraft micromanagement tasks,
which are based on the unit position, relative distance, unit
health, unit type and other information. The parameterized
features are encoded by game state parameters without ex-
plicit spatial information. However, the spatial information is
crucial for the process of tactic learning, since many tactics
are based on the specific spatial information. Therefore, we
use a structured feature representation to express the spatial
information explicitly.

We encode the game state s into two feature maps: loca-
tion feature map and health feature map, which is displayed
in Figure 2. The size of feature map can be equal to or s-
caled down at the same proportion to the game screen. In the
location feature map, we use different numbers to indicate
the currently controlled agent, allies, enemies and the back-
ground. In addition, the position of the number corresponds
to the real position of agents in the game screen, so the posi-
tion information of our Al agents and opponent agents can be
obtained from the location feature map. In the health feature
map, we put the current health value of the agents in the cur-
rent position of the agents. This encoding process is denoted
by ¢(s,a) for our Al agents or ¢(s, e) for opponent agents.

In our settings, feature maps encoded using the same game
state s are different between our Al agents and opponent a-
gents. Because in the opponent agents’ feature map, the po-
sition of enemies is usually in the left part, different from our
Al agents’ feature map, where the position of enemies is usu-

1473

$Ga) — F — e

pGa) — F — B
377
$(s,a) — § — EEEEL :

—————— » Attack [] Human-Made Agent [JJ] Enemy

L]

[T

Figure 3: Illustration of the tactic: WC. The yellow grid denotes
the human-made agent; the red grid denotes the enemy. In addition,
the darkness of the color indicates the health value: the darker color
marks higher health value. In the figure, agents No.1 to No.3 choose
to attack the No.l enemy, because No.l enemy is the weakest and
closest enemy. Similarly, the No.4 and No.5 agents attack the No.2
enemy.

ally in the right part. In our training process, we train our Al
agents using the opponent replay data. To unify the position
of enemies in feature maps of both opponent agents and our
Al agents, we flip the opponent agents’ feature map during
the training process.

The representation of the two feature maps and flip trans-
formation is shown in Figure 2. With our feature maps, our Al
agents can learn tactics with the specific position and health
information. In the meantime, our Al agents can answer the
following questions after training. Where am 1?7 Where are
my allies? Which enemy is the closest or the weakest?

2.3 Opponent-Guided Tactic Learning

Our knowledge-guided agent-tactic-aware learning scheme:
opponent-guided tactic learning (OGTL) is a two-stage cas-
caded learning pipeline. The first stage is learning tactic-
aware policy from the human-made opponent agents, and the
second stage is a self-improving process.

First stage: learning from the human-made opponent

In this stage, our Al agents play against the human-made op-
ponent agents to learn opponent’s tactics. Firstly, we leverage
human knowledge to build a script opponent to perform ac-
tions in predefined tactics, like attacking the closest or the
weakest enemies. The illustration of the tactic, attacking the
weakest and closest enemy (WC) is shown in Figure 3, with
which agents will attack the weakest enemy, and when the
health of two enemies is the same, agents choose the closest
one.

Then, we train our Al agents to play against this human-
made opponent agents. During the combat, the opponent a-
gents will choose the action based on the current feature map
and predefined tactic-aware policy m.. Since the mapping
from feature maps to actions can reflect the tactic, we col-
lect those feature maps and actions in the replay D; for our
agents to learn from.

To learn the tactic-aware policy 7., we use deep neural net-
work (DNN), which can be defined as F(¢(s, a);61), taking
feature map ¢(s,a) as the input. The output of the DNN is
the probability distribution on the space of possible actions
U. The loss function is defined as follows:

L1(61) = Es(|lue — F((s,a); 01)]13) M

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

where ||-||, denotes L2 norm, u, is the one-hot label, encod-
ing the opponent agent action and the ¢(s,a) is flip trans-
formed using ¢(s,e) in the replay D;, where the detail of
flip transformation is explained in Section 2.2. After training,
our Al agents learn a tactic-aware policy 7., with which we
choose the action with the highest probability.

The first stage’s training process is an iterative process,
during which our AI agents first play against the opponent
agents to collect data and then we train our Al agents from
the gathered data. Therefore, the training process is online
and dynamic with the following two advantages: 1) our train-
ing data are collected during the combats, so we do not need
to prepare a lot of data in advance. 2) during the training pro-
cess, our Al agents are improving, so the data collected from
the opponent agents are changing, which help our Al agents
to learn the tactics under different circumstances and make
our Al agents more adaptive.

After the first training stage, our Al agents have learned
some tactics like attacking the weakest and closest enemy
from the opponent agents. However, in this stage, our Al
agents learn the predefined tactics without exploration, so we
refine the learned policy with deep reinforcement learning.

Second stage: self-improving
In this stage, our Al agents play against the computer built-in
opponent agents, and our goal is to improve the learned pol-
icy .. We apply the deep reinforcement learning algorithm
deep Q-network (DQN) [Mnih et al., 2015] to refine the tac-
tics. The key goal of DQN is to learn the Q-function using
the DNN. Here, Q-function is a state-action value function,
used for choosing the appropriate action. Thus, our Al agents
are trained to learn the policy wg, with which we choose the
action with the highest state-action value.

We use the first stage’s learned model’s weights 6 to ini-
tialize the DQN’s weights 6-. In this stage, the loss function
is defined as follows:

L2(02) = By o [(yPN = Q(0(5,0),ua362))°] (2)
yPON =1+ ymax Q(a(s', a), ug: 05) 3)

where yP@N | formulated in Eq. 3, is the Q-learning target;
~ is the discount factor; Q is the target network, cloned from
the network @ every C steps; 0 are the parameters of the
network @ and 6 are the parameters of the target network Q;
s’ and u, are the next state and next action; r is the reward
computed by our reward function. The overall algorithm is
described in Algorithm 1.

2.4 Analysis of Learned Tactics

Our proposed method OGTL is a knowledge-guided agent-
tactic-aware learning scheme, and the whole training process
is interpretable. Therefore, after two stages’ training, our
Al agents have learned the tactics preserved some of human-
made opponent agents’ tactics. We take attacking the weakest
and closest tactic, for example, to analyze the learned tactics
with our feature maps. In Figure 4, we compare the policy
learned after the first stage and the second stage.

In Figure 4(a), agents No.1 to No.3 are attacking the No.2
enemy, the weakest and closest enemy to them. Similarly,

1474

Algorithm 1 Opponent-Guided Tactic Learning

Set learning-rate n = 0.001, collection number M = 4
Set train epochs E' = 10, minibatch size B = 64
Set discount factor v = 1, C' = 100
Set 71 =200, T3 = 500000, N = 10000
Initialize replay D;,D to capacity N
/[First stage:
Initialize network weights 6,
for i =0to T} do
if i mod M # 0O then
while episode (combat) not ended do
Observe the feature map ¢(s;, a)
Execute action
Obtain ¢(s¢, e) and uey
Store (¢(s¢, €),uey) in Dy
else
for epoch = 0 to E do
for step = 0to N/B do
Sample random minibatch of
two-tuple (¢(s;, €),u. ;) from Dy
Compute £ (6) using Eq. 1
0, < 0; + 7767{31‘51 (91)

//Second stage:
Initialize network weights 6> with 6,
for i =0to75 do
while episode (combat) not ended do
Observe the feature map ¢(s¢, a)
Execute action
Store (¢(st, a),uasrt,P(St41, @) in Doy
Sample random minibatch of
four-tuple (¢(s;, a),ua,75.¢(5;41,a)) from Dy
Compute £5(62) using Eq. 2
02 < 02 + T]%L‘,Q(Qg)

Every C steps reset Q = Q

agents No.4 and No.5 are attacking the No.4 enemy. Thus,
our Al agents have learned a tactic-aware policy, attacking the
weakest and closest enemy. Furthermore, we leverage deep
reinforcement learning to refine our agents’ learned policy.
After the second stage, in Figure 4(b), our Al agents’ policy
has improved, with which our AI agents focus fire on No.2
enemy although No.2 enemy is not the weakest and closest
enemy to agents No.4 and No.5. Because in this scenario,
focus fire on the weakest and closest enemy to them all can
achieve higher winning rate than WC.

3 Experiments
3.1 Experimental Setup

To evaluate our proposed method, we conducted experiments
on the StarCraft platform. In the experiment, our method
controls one group of agents to defeat the other group of
agents controlled by the computer build-in opponent. We
perform our learning method based on DQN compared with
ZO [Usunier et al., 20171, BiCNet [Peng et al., 2017] and
CommNet [Sukhbaatar et al., 2016], all of which perform

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

(b) Second stage
" Enemy === Health Bar

(a) First stage
Attack & Our Al Agent

Figure 4: Analysis of tactics: we add health bar to display the health
of agents. After training, our Al agents play against computer built-
in Al agents. (a) the learned tactic after the first stage and (b) the
improved tactic after the second stage.

well in the StarCraft micromanagement task. In addition, our
method is compared with the WC, the human-made scrip-
t. Following the similar experiment setup as [Usunier et
al., 2017], we build several micromanagement scenarios, like
m5v5, wl5v17 and w18v20. M5v5 means our Al controls 5
agents, the computer built-in opponent controls 5 agents and
the unit type is marine. W15v17 means our Al controls 15 a-
gents, the computer built-in opponent controls 17 agents, and
the unit type is wraith. The w18v20 scenario only changes
the number of units compared with w15v17.

3.2 Baselines

Before conducting the experiment, we simply introduce the
baselines. 1) DQN combines Q-learning with DNN to learn
a Q-function. 2) ZO is based on greedy MDP, making agents
aware of each other’s next action and adding the episodic
noises when performing the exploration. 3) BiCNet adopts
the actor-critic architecture combining with the bidirectional
RNN [Schuster and Paliwal, 1997] to encourage the agents to
communicate. 4) CommNet leverages a message channel to
implement the communication mechanism between agents.
5) Attack the weakest and closest enemy (WC) means the
human-made script controls the agents to attack the weakest
enemy and when the health of two enemies is the same, WC
chooses the closest one.

3.3 Implementation Details

State feature maps

Different from the conventional parameterized features, we
use two feature maps, health and location, to represent the
game state. The real game screen size is 256x256, which
is very sparse and needs lots of resources to process. To
solve this problem, we map the whole game into a map, sized
85x85. In the health feature map, we put the current health
value of the agents in the current position of the agents. In the
location feature map, we use number 3 to denote the current-
ly controlled agent and number 2 to indicate its allies, so that
the network can learn about the difference between the cur-
rently controlled agent and its allies. To distinguish different
enemies, we sort the enemies using their ID value in ascend-

1475

Layer la Layer 2a Layer 3a Layer 4a
8x8x32 4x4x64 3x3x64 128

Location Feature Map
. J y v Layer 5
N am of g o 128 Layer 6
o= M DA R D 64
H 1__#_ [le l‘" [le Layer 7 Py
Jele
= L I“ P
% P,
FFEEH P,
OamaEmaE coﬂ; 60“; Gﬂﬂlj Py3
sogess =l J v e P,
FH e PRI 14
HH g

Health Feature Map
Layer 1b Layer 2b Layer 3b Layer 4b
8x8x32 4x4x64 3x3x64 128

Figure 5: Illustration of the network architecture

ing order and the index is the order of each enemy. We use
the index + 4 to indicate the different enemies in the location
feature map.

Action definition

The definition of action space is similar to [Usunier et al.,
2017]. Each agent can move to eight directions, hold the po-
sition and attack the specific enemy. Therefore, the number of
action space is nine plus the number of opponent’s agents. A-
part from this, since our action space has attack actions bind-
ing to specific enemies, when one enemy dies, we should not
choose that action. Therefore, when the chosen action is in-
valid, we will choose the second best action and iterate this
process until we find a valid action.

Reward definition

Our reward function is based on the health change and kill
bonus. The value of kill bonus is 100, a large value to en-
courage the agents to kill the low-health enemy first. In this
way, our agents are able to learn to attack the low-health ene-
my much more easily.

Model architecture

We describe our network architecture implementation, dis-
played in Figure 5. In both training stages, we use the same
network architecture with different losses. And all of our Al
agents share the same network. The network is implement-
ed using full-connected and convolutional layers to learn the
tactics and improve the learned tactics. Since our state is con-
structed with two feature maps, the network is built to process
these two feature maps at the same time and then concatenate
the two extracted features to make the final decision. Lay-
ers 1 to 3 are convolutional layers with the ReLU activation
function. Layers 4 to 6 are full-connected layers, with the
ReLU activation function. Layer 7 is the output layer with
action size hidden units, and the activation function of this
layer is softmax. The output of the network is the probability
distribution on the space of possible actions U.

Training process

In the first stage, we launch two games, one for our Al agents
and the other for human-made opponent agents in the training
scenario, where the number of our Al agents and opponent a-
gents is the same. We train our Al agents to play against the
opponent agents. We collect the opponent feature map ¢(s,)
and action u, in the replay D1 for every M episodes and each

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

— OGTL first stage
= OGTL second stage
— DQN

0.9 r

0.8 - Second stage

0.7
First stage !
0.6

0.5

winning rate

0.4 -

0.3

0.2

1
50 100 150 200 500 1k 5k
episode

10k 20k 30k 40k 50k

Figure 6: Average winning rate for OGTL and DQN on m5v5. The
blue line is the first stage’s average learning curve of OGTL, and the
red line is the second stage’s average learning curve of OGTL. The
black line is the DQN’s average learning curve.

time after collecting, we train the network F(¢(s,a);6;) for
E epochs. Every time after training, our agents perform bet-
ter and are more aware of opponent’s tactics. When our Al
agents learn well enough, the first stage is over. In the sec-
ond stage, we use the learned model to play against computer
built-in opponent agents to improve the learned tactics using
DQN. In this stage, we can train the DQN model, initialized
by the weights of learned model F', in symmetrical or asym-
metrical scenarios, where the number of opponent agents and
the number of our Al agents can be different (the number of
opponent agents is the same to that in the first training sce-
nario). The detailed training process is displayed in Algorith-
m 1.

3.4 Results

In the experiment, our Al agents learn from the WC tactic in
the first stage. Figure 6 shows the average winning rate of
OGTL and DQN on the scenario m5v5. We train 100 models
for testing and record the average wining rate learning curve.
For DQN and the second stage of OGTL, we freeze the net-
work for every 500 episodes and evaluate the learned model
for 100 episodes per method. For the first stage of OGTL,
we store the models for every 10 episodes and test models
in m5v5 scenario playing against the computer built-in oppo-
nent agents.

From Figure 6, we can see that the first stage training pro-
cess is quick. When the first stage is over, the model can
achieve about 50 percent winning rate. The red line in Fig-
ure 6 denotes the second stage training process. In the second
stage , our model can achieve 90 percent winning rate after
only 5000 episodes, which is much faster than the DQN. In
the meantime, the final winning rate is almost the same as
DQN’s and the learned tactics are preserved.

For all the results that we present in Table 1, we run mod-
els using the deterministic policy over 1000 episodes. OGTL
learns from the opponent with WC tactic in the first stage.
And the data in ZO, BiCNet, CommNet are directly quoted
from their papers. The settings of ZO are almost the same as
ours. Both BiCNet and CommNet use the local view while
our settings use the full view.

1476

Combat \ OGTL DQN ZO BiCNet CommNet WC

m5vS | 096 099 1.00 0.92 0.95 0.76
wl5svl7 | 0.74 0.16 049 0.53 0.47 0.19
wi8v20 | 0.80 0.31 0.76 - - 0.22

Table 1: Winning rates of different methods on the training scenar-
ios. The best result for a given map is in bold and the blank (_) result
means the method is not tested on that scenario in their paper.

From the data in Table 1, our method OGTL outperforms
these baselines in most of scenarios. In scenario m5v5, al-
though ZO and DQN perform better than OGTL, OGTL can
achieve 90 percent winning rate after only 5000 episodes, dis-
played in Figure 6, which is much faster than both of them.
In both w15v17 and w18v20 scenarios, our method outper-
forms all the other baseline algorithms. And in the w15v17
scenario, the second best baseline is BiCNet with 53 percent
winning rate, while OGTL has 74 percent winning rate, much
higher. In addition, in the latter two scenarios (w15v17 and
w18v20), our method learns from the opponent with the WC
tactic in the first stage and uses DQN in the second stage, but
has a much higher winning rate than both of them.

From the tactic perspective, these algorithms perform quite
well in scenario m5v5. Both DQN and our method learn to
focus fire, the difference is that our method often firstly e-
liminates the weakest and closest enemy, which is similar to
the predefined tactics. In scenario wl5v17, our method out-
performs all these other methods. In this scenario, since the
cooldown time of wraith weapon is very long, the key point
to win the combat is to learn a balance between focusing the
fire and splitting the fire. Our method first learns tactics about
attacking the weakest and closest enemy in the first stage and
then improves the tactics to learn the balance point in the sec-
ond stage. The scenario w18v20 is very similar to w15v17.

4 Conclusion

In this paper, we have proposed a novel knowledge-guided
agent-tactic-aware learning scheme applied in the StarCraft
micromanagement task. Opponent-guided tactic learning
scheme is a two-stage cascaded learning pipeline. By learn-
ing from the opponent, our Al agents have transferred the
tactic-aware knowledge from the human-made opponent a-
gents to ourselves in the first stage. In the second stage, our
Al agents have refined the adversarial capabilities by com-
bating with the computer built-in opponent agents. Through
OGTL, our Al agents can get a better result in less training
time compared with traditional reinforcement learning algo-
rithms. The experimental results have demonstrated that the
proposed learning scheme can achieve higher winning rate in
some scenes of the StarCraft micromanagement tasks than the
current state-of-the-art methods.

Acknowledgments

This work was supported in part by the National Natu-
ral Science Foundation of China under Grants (U1509206,
61472353, and 61751209), in part by the National Basic Re-
search Program of China under Grant Grant 2015CB352302.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

References

[Foerster et al., 2016] Jakob Foerster, Yannis Assael, Nando
de Freitas, and Shimon Whiteson. Learning to communi-
cate with deep multi-agent reinforcement learning. In Ad-
vances in Neural Information Processing Systems, pages

2137-2145, 2016.

[Foerster et al., 2017a] Jakob Foerster, Gregory Farquhar,
Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients.
arXiv preprint arXiv:1705.08926, 2017.

[Foerster et al., 2017b] Jakob Foerster, Nantas Nardelli,
Gregory Farquhar, Philip Torr, Pushmeet Kohli, Shimon
Whiteson, et al. Stabilising experience replay for deep
multi-agent reinforcement learning. International Confer-
ence on Machine Learning, 2017.

[Kong et al., 2017] Xiangyu Kong, Bo Xin, Fangchen Liu,
and Yizhou Wang. Revisiting the master-slave architecture
in multi-agent deep reinforcement learning. arXiv preprint
arXiv:1712.07305, 2017.

[Levine et al., 2016] Sergey Levine, Chelsea Finn, Trevor
Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning
Research, 17(1):1334-1373, 2016.

[Li er al., 2017] Xuijun Li, Yun-Nung Chen, Lihong Li, and
Jianfeng Gao. End-to-end task-completion neural dialogue
systems. arXiv preprint arXiv:1703.01008, 2017.

[Li, 2017] Yuxi Li. Deep reinforcement learning: An
overview. arXiv preprint arXiv:1701.07274, 2017.

[Lillicrap er al., 2015] Timothy P Lillicrap, Jonathan J Hunt,
Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tas-
sa, David Silver, and Daan Wierstra. Continuous control
with deep reinforcement learning. arXiv preprint arX-
iv:1509.02971, 2015.

[Lowe et al., 2017] Ryan Lowe, Yi Wu, Aviv Tamar, Jean
Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive envi-
ronments. In Advances in Neural Information Processing
Systems, pages 6382-6393, 2017.

[Mirowski et al., 2017] Piotr Mirowski, Razvan Pascanu,
Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea Ban-
ino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray
Kavukcuoglu, et al. Learning to navigate in complex en-
vironments. International Conference on Learning Repre-
sentations, 2017.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529-533,
2015.

[Nisan et al., 2007] Noam Nisan, Tim Roughgarden, Eva
Tardos, and Vijay V Vazirani. Algorithmic game theory,
volume 1. Cambridge University Press Cambridge, 2007.

1477

[Ontanén er al., 2013] Santiago Ontanén, Gabriel Synnaeve,
Alberto Uriarte, Florian Richoux, David Churchill, and
Mike Preuss. A survey of real-time strategy game ai re-
search and competition in starcraft. [EEE Transactions
on Computational Intelligence and Al in games, 5(4):293—
311, 2013.

[Pasunuru and Bansal, 2017] Ramakanth Pasunuru and Mo-
hit Bansal. Reinforced video captioning with entailment
rewards. arXiv preprint arXiv:1708.02300, 2017.

[Peng er al., 2017] Peng Peng, Quan Yuan, Ying Wen,
Yaodong Yang, Zhenkun Tang, Haitao Long, and Jun
Wang. Multiagent bidirectionally-coordinated nets for

learning to play starcraft combat games. arXiv preprint
arXiv:1703.10069, 2017.

[Schuster and Paliwal, 1997] Mike Schuster and Kuldip K
Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673-2681,
1997.

[Shapley, 1953] Lloyd S Shapley. Stochastic games.
Proceedings of the national academy of sciences,
39(10):1095-1100, 1953.

[Silver et al., 2016] David Silver, Aja Huang, Chris J Maddi-
son, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. Mastering the game of

go with deep neural networks and tree search. Nature,
529(7587):484-4809, 2016.

[Silver et al., 2017] David Silver, Julian Schrittwieser,
Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human
knowledge. Nature, 550(7676):354, 2017.

[Sukhbaatar er al., 2016] Sainbayar Sukhbaatar, Rob Fergus,
et al. Learning multiagent communication with backprop-
agation. In Advances in Neural Information Processing
Systems, pages 2244-2252, 2016.

[Synnaeve et al., 2016] Gabriel Synnaeve, Nantas Nardelli,
Alex Auvolat, Soumith Chintala, Timothée Lacroix, Zem-
ing Lin, Florian Richoux, and Nicolas Usunier. Torchcraft:
a library for machine learning research on real-time strat-
egy games. arXiv preprint arXiv:1611.00625, 2016.

[Usunier ef al., 2017] Nicolas Usunier, Gabriel Synnaeve,
Zeming Lin, and Soumith Chintala. Episodic exploration
for deep deterministic policies: An application to star-
craft micromanagement tasks. [International Conference
on Learning Representations, 2017.

[Wender and Watson, 2012] Stefan Wender and Ian Watson.
Applying reinforcement learning to small scale combat in
the real-time strategy game starcraft: Broodwar. In Com-
putational Intelligence and Games, 2012 IEEE Confer-
ence on, pages 402-408. IEEE, 2012.

