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Abstract
The broker mechanism is widely applied to serve
for interested parties to derive long-term policies in
order to reduce costs or gain profits in smart grid.
However, a broker is faced with a number of chal-
lenging problems such as balancing demand and
supply from customers and competing with other
coexisting brokers to maximize its profit. In this
paper, we develop an effective pricing strategy for
brokers in local electricity retail market based on
recurrent deep multiagent reinforcement learning
and sequential clustering. We use real household
electricity consumption data to simulate the retail
market for evaluating our strategy. The experiments
demonstrate the superior performance of the pro-
posed pricing strategy and highlight the effective-
ness of our reward shaping mechanism.

1 Introduction
Traditional power grid is suffering fundamental changes with
unprecedented challenges from the advent of decentralized
power generation technologies and the increasing number of
active electricity customers. The smart grid aims to address
these challenges by using two-way flows of electricity and
information to create an automated and distributed advanced
energy delivery network [Fang et al., 2012]. A critical ob-
jective of smart grid is to guarantee its stability, reliability,
security and especially the real-time balance of demand and
supply. Nevertheless, with the increasing penetration of re-
newable energy resources in modern electricity systems, ex-
isting centralized control mechanisms are unable to simul-
taneously accommodate the vast numbers of small-scale in-
termittent producers and the volatile changes in demand of
customers in response to price variations [Peters et al., 2013].

A promising approach to maintain a real-time balance of
supply and demand is applying electricity brokers, which are
intermediaries between retail customers and electricity pro-
ducers. In different markets of smart grid, the participants
can employ autonomous trading agents to interact with other
interested parties for the sake of reducing costs or making
profits. One important type of brokers in local tariff market
∗Corresponding author: Jianye Hao.

is the retail broker, which offers tariff contracts for both local
consumers and small-scale producers at each time slot. Af-
ter customers subscribing contracts, retail brokers purchase
electricity from local producing customers or remote power
plants and then deliver power to their consuming customers
via public power facilities. To satisfy the demand of the con-
tracted customers in the retail market, retail brokers need op-
timize their trading strategies to balance demand and sup-
ply while minimizing their costs [Zare et al., 2011]. Power
TAC [Ketter et al., 2013], as a rich, competitive, open-source
simulation platform, is adopted extensively to develop au-
tonomous electricity brokers. However, it focuses on energy
overall arrangement in which traditional fossil fuel is still the
primary generation resource. Brokers developed on Power
TAC mainly purchase electricity from remote power plants
via a wholesale market, and they usually overlook small-scale
producers in local power market [Urieli and Stone, 2014;
Liefers et al., 2014; Urieli and Stone, 2016].

In the local retail market, the retail broker’s pricing strategy
has been an active research topic in the power grid community
and numerous advanced technologies have been proposed.
The traditional supervised and unsupervised learning have
been widely used to develop an electricity purchasing strategy
for domestic electricity consumers [Reddy and Veloso, 2013;
Robu et al., 2014]. Meanwhile, given that broker dynamics
can be modeled as a Markov decision process (MDP) [Reddy
and Veloso, 2011], reinforcement learning techniques have
also been applied to learn electricity broker strategies [Angel-
idakis and Chalkiadakis, 2015; Chowdhury et al., 2015]. Re-
inforcement learning based brokers can be well suited since
the environment is highly dynamic and complicated. To
the best of our knowledge, Q-learning [Watkins and Dayan,
1992] is firstly applied to form an electricity broker policy in
[Reddy and Veloso, 2011]. Recently, researchers [Peters et
al., 2013; Wang et al., 2016] propose retail broker strategies
by adopting SARSA [Sutton and Barto, 2005], another tem-
poral difference algorithm. However, all the existing works
are based on the simple Q-table structure or a linear function
approximation, where features are approximated as discrete
values and may need to be constructed manually. This would
necessarily result in information loss since the original input
information signals are usually continuous. Thus, one key to
improving the broker pricing strategy is to receive continuous
market signals to adjust prices more accurately.
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On the other side, customers in smart grid exhibit various
electricity consumption or producing patterns. This indicates
that we need to develop distinct pricing strategies for differ-
ent types of customers. Following this idea, the retail bro-
ker can be regarded as a multiagent system in that each agent
may be responsible for pricing for one particular class of elec-
tricity consumer or producer. For example, in [Wang et al.,
2016], its broker framework assigns each kind of customers
with an independent pricing agent. However, the authors use
independent SARSA for different customers and regard the
whole broker’s profit as each agent’s immediate reward in its
Q-value update process. It does not distinguish each agent’s
unique contribution to the broker’s profits and thus does not
encourage the learning of an optimal strategy.

To address above problems, in this paper, we propose a
recurrent deep multiagent reinforcement learning (RDMRL)
broker framework augmented with sequential clustering. This
paper’s contributions can be summarized as follows:

• This study for the first time investigates the feasibility of
Deep Reinforcement Learning (DRL) in the application
of the retail broker design in the smart grid;

• A novel multiagent recurrent DRL is proposed to de-
velop a pricing algorithm in local electricity retail mar-
ket by clustering consumers into different groups;

• A reward shaping mechanism is designed to coordinate
the internal agents of our multiagent broker for cooper-
ating with each other;

• To evaluate our broker framework, we introduce real
household electricity load measurements of London city
over the past three years to simulate the retail market.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces tariff market and its MDP model; Sec-
tion 3 explains every part of our broker framework in de-
tail; Section 4 demonstrates the effectiveness of the proposed
RDMRL broker in our simulation platform derived by real-
world data; Concluding remarks are provided in Section 5.

2 Background and Problem Definition
2.1 Tariff Market
Future smart grid is composed of tariff market, wholesale
market and Distribution Utility (DU) [Ketter et al., 2013].
In the local tariff market, consumers (e.g., households) buy
power and producers (e.g., solar generators) sell power via
retail brokers. More specifically, brokers publish tariff con-
tracts to attract customers to develop their power portfolio.

In the wholesale market, power plants sell energy gener-
ated by conventional methods (e.g., coals) and brokers sell or
buy energy promises for future delivery. DU represents pub-
lic power facilities such as substations and storage power sta-
tions. It is responsible for real-time demand and supply bal-
ancing. For example, once a power gap emerges in a broker’s
portfolio, DU provides the emergency supply and charges the
broker excessive costs. Traditional brokers obtain electricity
from the wholesale market [Urieli and Stone, 2016]. How-
ever, with the depletion of coal and oil resources, renewable
energy will finally replace conventional power generation

methods. And one major function of future brokers is to pur-
chase local distributed renewable energy to satisfy their con-
sumers as traditional fossil resources gradually wither away.
Therefore, here we focus on the tariff market and simplify the
wholesale market and DU. This study investigates the design
of the broker pricing strategy to maximize expected long-term
revenues and also achieve the balance of supply and demand.
The principal components of the proposed simplified smart
grid environment are outlined as follows:
1) Consumers C = {Ci, i = 1,2, ...,N} are electricity con-
sumers. Each Ci denotes a group of consumers with similar
power consumption patterns. Consumers subscribe to brokers
when they select corresponding tariff contracts.
2) Producers P = {Pi, i = 1,2, ...,M} are power producers.
Each Pi represents one type of producers of the same genera-
tion way. Producers sell energy to brokers via power tariffs.
3) Brokers B= {Bi, i= 1,2, ...,K} are intermediaries between
consumers and producers for seeking profits in electricity
markets. They offset the gap between consumption and pro-
duction by acquiring or remising production commitments.
Brokers’ current customers constitute their portfolio of con-
sumers ψt,C and portfolio of consumers ψt,P at current time
slot t, which is executed in real-time by DU.
4) Service Operator O manages the physical facilities for the
regional grid and operates the electric grid in real-time.

At every hour’s beginning, brokers publish tariffs based on
market state. Then customers select tariffs and service opera-
tor delivers the electricity commitments according to brokers’
portfolio ψt =ψt,C

⋃
ψt,P. At current hour’s end, tariff market

computes brokers’ profits and imbalance punishments.

2.2 Problem Formalization
Such a process can be modeled as a Markov decision process
(MDP) [Reddy and Veloso, 2011]. Formally, MDP for the
proposed reinforcement learning broker BL can be defined as:

MBL =< S,A,P,R > (1)

where:
• S is a set of states. Each state si encodes brokers and

costumers’ historical action profiles in past rounds;
• A is a set of actions. Each action a j is a method that

determines a broker’s prices in the next time slot;
• P(s,a) → s′ is a state transition probability function

which defines the probability of a transition from state
s to state s′ when an agent executes action a.
• r ∈ R is an immediate reward representing brokers’ prof-

its received at current time slot;
• Π = S → A is the pricing strategy that π(s) specifies

which action BL should choose under state s.
In a previous study [Reddy and Veloso, 2011], the

market state is designed and abstracted by two features
PriceRangeStatus and Port f olioStatus. PriceRangeStatus
describes whether the tariff prices are rational or not and its
values are represented as {Rational, Inverted}. The tariff mar-
ket is Rational from broker BL’s perspective if:

pmin
t,C ≥ pmax

t,P +µL (2)
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where pmin
t,C and pmax

t,P respectively represent the minimum con-
sumer tariff prices and the maximum producer tariff prices
of all brokers except BL itself, and µL is the margin profit
which BL expects. Port f olioStatus describe the balance sta-
tus of demand and supply in BL’s portfolio, and its values are
defined as Balanced, OverSupply or ShortSupply. We can
identify BL’s current state by the above two features. The set
A of actions is described as:

A = {Maintain;Lower;Raise;Revert; Inline;MinMax} (3)

where each action defines how BL adjusts its current tariff
prices for the next time slot. The price range is restricted in
[0.01,0.20] which is a realistic range of electricity prices in
US [Detailed State Data, 2010] and the smallest price unit is
0.01. The definition of each action is given as follows:

• Maintain: publishing the same prices as last time;

• Lower: reducing consumer and producer prices by 0.01;

• Raise: increasing consumer and producer prices by 0.01;

• Revert: adjusting prices by 0.01 towards the midpoint,
mt =

⌊
1
2 (pmax

t,C + pmin
t,P )
⌋

;

• Inline: setting the new consumer and producer prices as
pBL

t+1,C =
⌈
mt +

µL
2

⌉
and pBL

t+1,P =
⌊
mt − µL

2

⌋
;

• MinMax: setting the new consumer and producer prices
as pBL

t+1,C = pmax
t,C and pBL

t+1,P = pmin
t,P .

Transitions S×A→ S are given by the tariff market and the
reward of brokers Bk is computed by the following equation:

rBk
t = pBk

t,Cψt,C− pBk
t,Pψt,P−Φt ,

Φt =

{
φ−(ψt,C−ψt,P), i f ψt,C ≥ ψt,P

φ+(ψt,C−ψt,P), i f ψt,C < ψt,P

(4)

where ψt,C and ψt,P represent current consumption and pro-
duction of customers in Bk’s portfolio, and Φt is the imbal-
ance fee of Bk at time t. If Bk’s current Port f olioStatus is
OverSupply, it sells redundant power to O at price φ+. And
it buys power from O at price φ− if current Port f olioStatus is
ShortSupply. The reward design forces brokers to maintain
the balance of their portfolio by punishing the imbalance.

3 RDMRL: Recurrent Deep Multiagent
Reinforcement Learning Framework

Figure 1 shows the overall design of our multiagent-based
broker strategy. Customers with various electricity consump-
tion patterns are clustered into different groups, detailed in
section 3.2. Then an individual recurrent DQN is employed to
solve the continuous state space explosion problem for each
type of customers detailed in section 3.1. And a reward shap-
ing mechanism (section 3.3) is proposed to allocate the cor-
rect reward for each sub-broker to update its DQN network.

Figure 1: Our broker clusters customers into separate groups and
assigns them to corresponding agents. Each agent (i.e., sub-broker)
employs a DQN to interact with tariff market and gets its contribu-
tion value calculated by our reward shaping method.

3.1 Learning Framework of Individual
Sub-brokers

Existing RL-based pricing strategies are based on Q-learning
and its variation SARSA. In Q-learning, the traditional struc-
ture for storing Q(s,a) is Q-table. One major defect of Q-
table is much information loss caused by the discretization of
the state space. DRL has recently been shown to master nu-
merous complex problem domains, ranging from computer
games [Mnih et al., 2015] to robotics tasks [Gu et al., 2017],
and allows RL techniques to be applied to domains that suf-
fer from the curse of dimensionality. It is expected to learn
more efficient pricing policies by employing Deep Q-learning
Network (DQN) technique into the broker pricing domain.

Meanwhile, as the state of tariff market is naturally tempo-
ral, we apply recurrent neural units to handle it. Raw con-
tinuous signals from the retail market such as broker tar-
iff prices can directly compose the state instead of man-
ually constructed discrete features PriceRangeStatus and
Port f olioStatus. Additionally, to define the state informa-
tion more precisely, we can also utilize information in the
past several rounds. The state of one kind of customers can
be defined as:

S =< Pt ,Ut ,Rt |t = 1,2, ...,T > (5)

where Pt is the collection of all brokers’ tariff prices for this
kind of customer at time slot t, Ut is the average electric-
ity consumption in a group of customers at t, and Rt is the
subscribing ratio of this type of customers. The state rep-
resentation includes accurate continuous market signals thus
resulting in an infinite state space. Because each state con-
sists of time series data, the high-level temporal informa-
tion can be extracted using recurrent neural networks such as
Long Short-Term Memory (LSTM) [Hochreiter and Schmid-
huber, 1997] units. LSTM has shown excellent modeling
power for sequential data and powerful discriminative abil-
ities [Wen et al., 2015]. We input the continuous and tem-
poral state into LSTM to extract features that cannot be eas-
ily designed manually. The structure of the recurrent Deep
Q Network (RDQN) for an individual sub-broker is shown
in Figure 2. The complementary description of the recurrent
deep Q-learning algorithm is omitted due to space limitation
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Figure 2: The two-hidden-layer recurrent DQN. The first hidden
layer uses LSTM to extract features from the sequential state inputs.

and can be found in an online appendix1. After training, the
neural network can adequately approximate Q(s,a).

3.2 Clustering Consumers
It is not enough to publish only one tariff for all consumers.
For example, even though we only consider the households
in the tariff market, because of different living habits and
consumption concepts, their electricity consumption patterns
vary. Therefore, using multiple agents to publish correspond-
ing tariffs for different groups of consumers can better fa-
cilitate balancing demand and supply. Here we cluster con-
sumers according to their electricity consumption patterns.

Considering that electricity consumptions are time-series
data, our broker conducts K-Means with Dynamic Time
Warping (DTW) distance criterion [Keogh and Ratanama-
hatana, 2005] to cluster consumers. Although a variety of
clustering methods have been proposed to categorize the
electricity consumers (e.g., C-vine mixture model clustering
(CVMM) [Sun et al., 2017]), in time series analysis, DTW
is the state-of-the-art algorithm for measuring the similarity
between two temporal sequences. DTW warps the curves of
sequences according to their similarity and gets the optimal
match order of points on sequences. Then it calculates dis-
tances between the corresponding points in the order of opti-
mal match rather than in the order of time. After clustering,
we obtain groups of users who share the same power patterns
even sometimes their consumptions are out of sync in time.

3.3 RDMRL Broker with Reward Reshaping
Given the clustered groups of customers, each of them can
be assigned to an independent reinforcement learning control
process to publish tariffs [Wang et al., 2016]. However, such
an approach fails to address the multiagent credit assignment
problem [Chang et al., 2003]. Simply updating Q-values us-
ing global rewards does not explicitly consider how an indi-
vidual agent contribute to the system. Since the other agents
may be exploring, the global reward signal for that agent be-
comes very noisy, particularly when there exist many agents.
For example, at time slot t, if sub-broker i chooses a bad ac-
tion but other sub-brokers’ actions offset the bad influence,
thus making the broker’s reward higher than before, then sub-
broker i will increase the probability of choosing such a bad

1https://goo.gl/HHBYdg

action under similar states. Consequently, sub-broker i can-
not update its policy correctly if we use the broker’s global
reward as each sub-broker’s individual reward.

Therefore, we consider the proposed broker as a cooper-
ative multiagent system rather than a combination of inde-
pendent agents. The critical point is how to calculate each
sub-broker’s contribution given the broker’s global reward rt .
From equation (4), it is difficult to quantify how much im-
portance one sub-broker plays in gaining the reward rt . In
the literature, difference rewards [Tumer and Agogino, 2007]
are a powerful way to address the multiagent credit assign-
ment problem. Based on it, we consider how much loss will
be caused if we do not count a particular type of customers
who are handled by sub-broker i. In this way, the contribution
value of sub-broker i can be defined as follows:

ri
t = rt − (∑

j 6=i
p j

t ψ
j

t,C−∑
k 6=i

pk
t ψ

k
t,P−Φ

i
t), j ∈C,k ∈ P (6)

where i represents the customer type charged by the corre-
sponding sub-broker i, rt is computed as equation (4), ψ

j
t,C

denotes total consumptions of consumers of type j at time t,
ψk

t,P denotes total outputs of producers of the type k at the

time t. Also, p j
t is the broker’s current tariff price for C j,

and pk
t is the broker’s current tariff price for Pk. Φi

t is current
imbalance fee:

Φt =

{
φ−(∑ j 6=i ψt,C−∑k 6=i ψt,P), i f ∑ j 6=i ψt,C ≥ ∑k 6=i ψt,P

φ+(∑ j 6=i ψt,C−∑k 6=i ψt,P), otherwise
(7)

With the shaping reward ri
t for each sub-broker i, they up-

date their policies by their contribution values. As previously
mentioned, if a sub-broker i chooses a bad action but broker’s
global reward increases, sub-broker i will avoid selecting this
action under such a state with the negative contribution value.

4 Experiments and Analysis
In this section, we first describe the tariff selection model for
customers and other effective strategies. Afterward, we eval-
uate a DQN based broker and a Q-table based broker [Reddy
and Veloso, 2011] in a simple setting to demonstrate the su-
perior performance of DQN. SARSA is quite similar to Q-
learning except Q-learning is an off-policy learning algorithm
while SARSA is an on-policy one, and thus is not considered
for evaluation here. Then we evaluate the performance of
our RDMRL broker with our reward shaping mechanism and
compare it with a single agent broker based on recurrent DQN
and an RDMRL broker without reward shaping to show the
superior performance of our reward shaping mechanism.

4.1 Tariff Selection Model
Customers choose electricity tariffs mainly according to
prices, but they also have the dependence that they will re-
new contracts with previous brokers if brokers still provide
reasonable prices of tariffs. To model such a selection pro-
cess, we combine a buyer behavior model from shopping plat-
form [Cai et al., 2017] and the probability selection model in
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[Reddy and Veloso, 2011]. The buyer model denotes each
buyer has his expectation price of a specified product, and he
decides to buy it if its price is less than his expectation price.
The probability model shows that customers may not overall
evaluate their available tariff options and, therefore, choose
a suboptimal tariff. Combination of the above two models
describes customer tariff selection behavior more generally.
The detailed descriptions of the tariff selection model are
omitted and can be found in an online appendix2.

4.2 Other Broker Strategies
We mainly follow settings in [Reddy and Veloso, 2011]
to configure other effective strategies. There are four ri-
val broker strategies: Balanced Strategy, Greedy Strategy,
Random Strategy and Fixed Strategy. Balanced Strategy
attempts to minimize imbalance between supply and de-
mand by playing Raise on both producer and consumer tariff
prices when it sees excess demands and playing Lower on
prices when it sees short demands. Greedy Strategy attempts
to maximize profits by playing MinMax on tariff prices
when PriceRangeStatus of the market at last time slot is
Rational and plays Inline on prices when PriceRangeStatus
is Inverted. The third strategy is Random Strategy that every
time it randomly chooses an action from the action set A. And
Fixed Strategy here we configure always plays Maintain.

4.3 Comparison between DQN based and Tabular
Q-learning Brokers

In this experiment, we demonstrate that DQN is a more ef-
fective structure than Q-table for retail broker learning. We
follow settings in [Reddy and Veloso, 2011] except the im-
balance fee. In [Reddy and Veloso, 2011], the imbalance fee
is $0.02 which is too small and discourages brokers’ offer-
ing reasonable prices. If a broker’s current Port f olioStatus
is ShortSupply, it could offset the imbalance at a price much
less than the general power price, which is usually around
$0.10. Therefore, we set two imbalance fees φ− and φ+ un-
der different situations. φ− is configured as $0.15 per elec-
tricity unit to charge brokers for the ShortSupply part. φ+ is
configured as $0.05 per electricity unit to purchase brokers’
OverSupply part. Such a setting encourages brokers to keep
the balance of demand and supply in their portfolio.

More specifically, we manually configure 1000 consumers
and 100 producers as follows. The load of per consumer
is 10kWh while the production of per producer is 100kWh.
Thus the whole supply and demand are balanced in aggregate.
The number of time slot per episode was fixed at 240. To eval-
uate the learned strategy, we run 200 episodes for training and
100 episodes for evaluation. Furthermore, the customer selec-
tion probability distribution χ is set as {40,30,20,10,0} to
encourage reasonable prices. The margin profit µL, the initial
consumer price, and the initial producer price are set to $0.02,
$0.12 and $0.08 respectively by [Reddy and Veloso, 2011;
Detailed State Data, 2010]. We use PriceRangeStatus and
Port f olioStatus for Q-table and the two features’ raw market
signals for DQN. We disable the buyer behavior part of our
customer selection model. The network here we use only has

2https://goo.gl/HHBYdg

one ordinary hidden layer with 24 units. Our DQN is trained
by RMSProp with a carefully selected learning rate of 0.0001,
which yields good performance in our experiments. Table 1
and Table 2 show the detailed results.

Broker Profits ShortSupply OverSupply

Tabular−Q 1327482$ -244764kWh 313536kWh
Fixed 1197984$ -501072kWh 259536kWh

Balaced 422360$ -307250kWh 327200kWh
Greedy -130950$ -210550kWh 148488kWh
Random -1411186$ -402560kWh 617436kWh

Table 1: Q-table Based BL and Other Brokers’ Total Profits

Broker Profits ShortSupply OverSupply

DQN 2721828$ -226826kWh 275564kWh
Fixed 1942126$ -430242kWh 266176kWh

Balaced 1530284$ -270696kWh 282394kWh
Greedy 409918$ -174778kWh 127416kWh
Random -246562$ -400172kWh 551164kWh

Table 2: DQN based BL and Other Brokers’ Total Profits

We can see the profit of DQN based BL is 105% higher
than Q-table based BL while its imbalance amount is reduced
by 10%. This demonstrates that DQN can receive continu-
ous market signals to adjust prices effectively. We also notice
that other brokers competing with DQN based BL also have
higher profits than competing with Q-table based BL. We can
see that the whole amount of short supply and oversupply of
all brokers in Table 2 is less than in Table 1 by 9.8%, which
means the imbalance costs they suffer are less than in Ta-
ble 1. This situation appears because that DQN based BL
can control its actions better to reach an inner balance sta-
tus more smoothly and the remaining market holds balanced.
Thus, other brokers can also achieve their inner balance more
likely. Such a phenomenon does not imply that DQN based
BL loses its competitive ability. The essential goal of brokers
in tariff market is to make more benefits rather than suppress
others. Overall, the experiment results demonstrate the power
of DQN when applied in the tariff market broker design.

4.4 Validation of RDMRL with Reward Shaping
In this experiment, we set a more realistic setting by intro-
ducing the real-world data to model consumer consumption
patterns. First, to prove the necessity of the multiagent mech-
anism, we test a single agent broker using the same recur-
rent DQN as RDMRL. Then we prove the effectiveness of re-
ward shaping for RDMRL by comparing with an incomplete
RDMRL broker without this mechanism.

The raw data consists of power consumption records of
5,567 households that took part in the UK Power Networks
led Low Carbon London project between November 2011
and February 2014 [Energy Consumption Data, 2015]. And
there remain 4,747 households after cleaning data with miss-
ing values. The running data is the household consump-
tion data in the first week of 2013. We also use the full

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

573



customer tariff selection model including the buyer behav-
iors described in section 4.1. The clustering feature is each
consumer’s sequential power consumption pattern. Our bro-
ker clusters consumers into eight groups, which is empiri-
cally found to achieve the highest prediction accuracy for
load forecasting. The population distribution of groups is
{512,487,102,186,264,1269,1844,83}. After clustering,
our broker records the result and assigns each group to its
sub-brokers for publishing corresponding tariffs.

Figure 3: The upper left figure shows all households’ average usage
pattern, the others display patterns of different classes of households.

The neural network structure is already shown in Figure 2.
The numbers of units in the two hidden layers are both set to
24 and output layer has six nodes in which each outputs the
Q-value of an action. The ε−greedy algorithm is used in the
action selection process and ε decreases from 0.9 to 0 across
training. Each recurrent DQN is trained by RMSProp with
a learning rate of 0.0001. And the most recent six time step
information is used, i.e., S =< Pt ,Ut ,Rt |t = 1,2,3,4,5,6 >.

For the customer selection model, we configure the con-
sumer initial expectation price range at [0.10,0.15] and pro-
ducer’s at [0.05,0.10]. Training lasts for 200 episodes and the
learned policy is evaluated for 100 episodes. The length of
each episode consists 7 days. Because we only simulate the
tariff market, we manually set two groups of producers which
each group outputs 50% of the total consumption. Although
the overall system is balanced, it is challenging for each bro-
ker to achieve balance because each consumer’s usage and
expectation price are different from others and change from
time to time. We first use a single agent learning broker with
the same recurrent DQN as our broker to compete in tariff
market. Figure 4 shows the accumulated profits on the eval-
uation phase. It shows that Fixed Strategy broker gains the
most benefits while the single agent broker’s performance is
approximately the same as Balanced Strategy broker. The
result indicates that the broker using only one recurrent DQN
cannot learn effective pricing strategies in the current com-
plex setting. In contrast, Fixed Strategy broker under such a
setup can attract and preserve most customers who have the
selection dependence.

Next, we conduct the experiment of our RDMRL broker

Figure 4: Brokers’ accumulated profits in the evaluation episodes.

with the proposed reward shaping mechanism. Figure 5(a)
shows the profit results in the evaluation episodes. We can
observe that other brokers cannot make profits while our
RDMRL broker gains the most profits. The winning RDMRL
broker can adapt to the environment well and learn an effec-
tive strategy. By assigning each group of customers to a sub-
broker and calculating the contribution value, sub-brokers
in the RDMRL broker cooperate interiorly to compete with
other competing brokers efficiently.

(a) RDMRL with reward shaping (b) RDMRL’ without reward shaping

Figure 5: Brokers’ accumulated profits in the evaluation episodes.

Finally, to verify the effectiveness of the reward shaping
mechanism, we evaluate the performance of an RDMRL bro-
ker without reward shaping (denoted as RDMRL’) in the
same setting. Figure 5(b) shows that RDMRL’ using the
global reward instead of reward shaping fails to learn a sat-
isfactory policy and cannot make profits.

5 Conclusion and Future Work
In this work, we model the retail broker pricing problem in the
tariff market of smart grid as a multiagent decision-making
problem, and firstly propose a recurrent deep multiagent RL
framework to learn effective pricing strategies. We validate
the strong competitiveness of our broker framework under
complicated settings using household electricity consumption
data in London city.

As future work, it is interesting to apply more advanced
DRL techniques (e.g., actor-critic algorithm) to generate
more effectual pricing strategies. Besides, the proposed bro-
ker can be further extended for a more authentic smart grid
by considering real small-scale generation data and house-
hold power storage equipments.
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