
Building Contrastive Explanations for Multi-Agent Team
Formation∗

Athina Georgara
IIIA-CSIC & Enzyme Advising Group

Barcelona, Spain
ageorg@iiia.csic.es

Juan A. Rodriguez-Aguilar
IIIA-CSIC

Barcelona, Spain
jar@iiia.csic.es

Carles Sierra
IIIA-CSIC

Barcelona, Spain
sierra@iiia.csic.es

ABSTRACT
As more and more hard and complex procedures are being auto-
mated with the aid of artificial intelligence, the need for humans to
understand the rationale behind AI decisions becomes imperative.
Adequate explanations for decisions made by an intelligent system
do not just help describing how the system works, they also earn
users’ trust. In this work we focus on a general methodology for jus-
tifying why certain teams are formed and others are not by a team
formation algorithm (TFA). Specifically, we introduce an algorithm
that wraps up any existing TFA and builds justifications regarding
the teams formed by such TFA. This is done without modifying
the TFA in any way. Our algorithm offers users a collection of
commonly-asked questions within a team formation scenario and
builds justifications as contrastive explanations. We also report on
an empirical evaluation to determine the quality of the explanations
provided by our algorithm.

KEYWORDS
Explainable AI, Explainability, Team Formation
ACM Reference Format:
Athina Georgara, Juan A. Rodriguez-Aguilar, and Carles Sierra. 2022. Build-
ing Contrastive Explanations for Multi-Agent Team Formation. In Proc.
of the 21st International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
In an era where artificial intelligence can be practically found in any
system, it is more and more common that people make decisions
guided by the suggestions and recommendations of some intelligent
system. As these systems support everyday life’s decisions they
unavoidably make people curious about their functionality. Often,
users question the rationale of the AI system in use, bearing a
feeling of ‘distrust’ withmachines. Explainable artificial intelligence
(XAI) [27] aims at alleviating this distrust by providing answers to
questions like “How does this machine learning model operate?”, or
“Why did the AI system reached this decision?”. Over the past years,
XAI has attracted much attention with a main focus on explaining
classification and machine learning (ML) models [2, 12, 16, 28, 33–
35]. Apart from general ML models, recommender systems are the
main type of algorithms for which explanations are needed [23, 26,
37], explainability is specially critical for recommender systems
∗Research supported by projects AI4EU (H2020-825619), TAILOR (H2020-952215),
2019DI17, Humane-AI-Net (H2020-952026), Crowd4SDG (H2020-872944), and grant
PID2019-104156GB-I00 funded by MCIN/AEI/10.13039/501100011033.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

as they need to earn the trust of users so that they accept the
recommendations provided.

Recently, Kraus et al. [24] argued about the importance of ex-
plaining decisions in multiagent environments (xMASE), an area
that has received little attention so far. As described by the authors
in [24], providing explanations in a multiagent context is rather
challenging. In particular, xMASE requires: (1) identifying the tech-
nical reasons for a decision, (2) adapting the answer to the different
agents’ preferences, and (3) deciding what kind of information can
be revealed considering privacy and fairness issues. Moreover, [24]
also states that XAI usually ignores the explanations’ social nature,
or ‘misses’ the human factor during the explanation evaluation,
which are essential aspects in the context of xMASE.

As discussed by [24], there is just a handful of recent research
works tackling xMASE in a few application domains. Among them,
[29] introduces a system that recommends a sharing policy (i.e., a
policy for sharing posts in online social networks) within multi-
user environments that can justify its proposed sharing policies.
Another work in the context of multiagent systems proposes an
explanation scheme for the multiagent path finding problem that
justifies the agents’ routes [3]. A further MAS contribution builds
explanations to justify winners’ selections in voting settings [10].

In this paper, we turn our attention to a well-studied multia-
gent system problem, that of team formation. There is a plethora of
works that tackle this problem (e.g. [5, 6, 14, 15, 25]) and investigate
different versions of it. The interest is justified as there are many
domain applications relevant to the team formation problem (e.g.
forming and coordinating working groups within companies [9, 21],
grouping students to undertake school projects [6], etc.) Despite
the interest, to the best of our knowledge, the problem of providing
explanations to team formation decisions has not been addressed
yet. In this paper we try to make headway in this matter. Thus, we
propose a general method that allows to build justifications for the
decisions of team formation algorithms without modifying them.
Our method wraps a team formation algorithm at hand and calls it,
possibly several times, to build contrastive explanations [27]. Such
type of explanations are motivated by the fact that people expect
explanations justifying the decision taken compared to another
decision (that was not taken). In particular, our method focuses on
building explanations for team formation algorithms following a
general model of team formation for task allocation (based on [6])
that we introduce in this paper. More precisely, we make the fol-
lowing contributions:
(1)We introduce a novel, general algorithm for building contrastive
explanations in the context of team formation; without modifying
the team formation algorithm at hand.
(2)We identify a collection of query templates that allow to chal-
lenge the decisions of a TFA from multiple perspectives.

Main Track AAMAS 2022, May 9–13, 2022, Online

516

(3) We detail how our justification algorithm translates queries
posed by a questioner into constraints and how these are handled
by the code wrapping the TFA. Furthermore, we analyse the vary-
ing cost of explanations depending on each type of query.
(4) We propose an explanation building technique that presents
different points of view of an explanation.
(5) Based on novel evaluation metrics that we introduce, we empiri-
cally evaluate the quality of explanations and show that, despite the
complexity of the scenario, they are easy to understand, requiring
just the reading level of a high-school student.

The paper is structured as follows. In Section 2 we present the
general team formation model for task allocations. Section 3 out-
lines our novel methodology for building explanations. In Section 4
we identify query templates that are relevant to team formation,
and in Sections 5 and 6 we show how to handle the queries. Namely,
how to translate and incorporate them into an extended version
of the original team formation problem that must be solved to
build explanations. Section 7 describes the building and tailoring
of contrastive explanation, while Section 8 conducts a systematic
evaluation of the quality of the explanations we generate. Finally,
Section 9 concludes the paper and discusses future work.

2 A GENERAL TEAM FORMATION PROBLEM
FOR TASK ALLOCATION

In this section we define a general team formation problem that
generalises previous proposals. In particular, the team formation
problems defined in [6, 11, 17, 18].

Let 𝐴 = {𝑎1, 𝑎2, · · · , 𝑎𝑛} be a set of agents with |𝐴| = 𝑛, and
𝑇 = {𝜏1, 𝜏2, · · · , 𝜏𝑚} be a set of tasks with |𝑇 | = 𝑚. A team is a
subset of agents in 𝐴. Teams of agents are built with the purpose
that its agents jointly tackle one or several of the tasks in𝑇 . A team
formation algorithm (TFA for short) forms such teams. More pre-
cisely, a TFA returns a team allocation function that assigns teams
to tasks, denoted by 𝑔. In the literature we find several variants
of team formation problems, and therefore different TFAs. That is,
there are TFAs that find a single team to tackle a single task [4, 5, 25];
TFAs that find a single team to tackle multiple tasks [14]; TFAs that
find multiple teams to tackle a single task [6]; and TFAs that find
multiple teams to tackle many different tasks [8, 11, 15, 17, 31].

Typically, a TFA forms teams based on a number of desirable
properties (e.g. agents with specific skills [4, 6, 7, 25], agents whose
location is close to the task’s location [11], etc.). The satisfaction of
such properties determines how good a team is for tackling a task.
In what follows, we refer to such properties as attributes. Formally,
we represent attribute 𝑖 as an evaluating function 𝑓𝑖 : 2𝐴 ×𝑇 → R,
which determines how good is a team for a task from 𝑖’s perspective.
We define the adequacy of matching team𝐾 with task 𝜏 with respect
to a set of attributes as an oracle function:

𝑢 (𝐾, 𝜏, 𝐹) ∈ R+ ∪ {0} (1)

where 𝐹 = {𝑓1, 𝑓2, · · · , 𝑓𝑟 } is a set of attribute functions.1 As such,
a TFA does not compute the quality of a team for a task, instead
it consults with the oracle 𝑢 to obtain such information. In fact,
any TFA is driven by the quality value of a whole team allocation

1Using an oracle function is common in several team formation algorithms, e.g., [8, 11,
30].

as specified by 𝑔. Thus, the quality of allocation 𝑔 is naturally an
aggregation over the values 𝑢 (𝑔(𝜏), 𝜏, 𝐹) for all 𝜏 ∈ 𝑇 , i.e., the
quality of 𝑔 is given by 𝑣 (𝑔) = F 𝜏 ∈𝑇 𝑢

(
𝑔(𝜏), 𝜏, 𝐹

)
, where F is some

aggregating function. Moreover, a TFA may be able to handle some
constraints imposed by the Team Formation Problem (TFP) at hand.
Such constraints may refer to: whether an agent can participate
in multiple teams, and if so what is the maximum workload per
agent; acceptable team sizes; whether every agent must be part of
at least one team; etc. Notice though that not all TFAs deal with
constraints [15, 25]. A TFA that does not handle constraints cannot
be used if the solution must respect certain constraints, some TFAs
can handle only a specific type of constraint (e.g., each agent must
be assigned to exactly one task) [4, 5, 31], others can solve a rich
variety if constraints [6, 11, 17]. With this in mind, we define our
generalised model of team formation problem for task allocation,
as follows:

Definition 2.1 (Team Formation Problem for Task Allocation (TF-
P-TA)). A Team Formation Problem for Task Allocation 𝑝 is repre-
sented by a tuple ⟨𝐴,𝑇 , 𝐹,𝑢, C⟩, where 𝐴 = {𝑎1, · · · , 𝑎𝑛} is a set of
agents; 𝑇 = {𝜏1, · · · , 𝜏𝑚} is a set of tasks; 𝐹 = {𝑓1, 𝑓2, · · · , 𝑓𝑟 } is a
set of attribute functions; 𝑢 is the oracle determining the suitability
of a team 𝐾 ⊆ 2𝐴 for a task 𝜏 ∈ 𝑇 across all attributes in 𝐹 ; and
C = {𝑐1, 𝑐2, · · · , 𝑐𝑠 } is a possibly empty set of linear constraints
(with the understanding that a problem with C = {∅} is equivalent
to an unconstrained problem).

There are many instances and variations of TFP-TAs, and there-
fore there are several corresponding TFAs [8, 11, 15, 17, 31]. In this
paper, we propose how to build explanations for problem instances
of the TFP-TA defined above, without focusing on any particular
TFA. In other words, given an instance of a TFP-TA we can use any
available TFA that can solve the problem, and we will be able to
build contrastive explanations for a rich set of questions about the
solution found. And this without modifying the TFA. Let us now
present an example which we will be using throughout the paper.

Example 2.2. In a university class a professor must divide their
20 students into teams of size 4 for them to work on their semes-
ter projects. Each semester project shall cover a different topic of
the course. The professor offers five projects: building a pathfinder
agent-squad to explore unknown planets in a simulation (pathfinder),
building competitive agents to play chess using reinforcement and
Q learning (chess), building agents to solve SUDOKU problems
using probabilistic inference and probabilistic graphical models (su-
doku), building trading agents to play the game “Shelters of Catan
(SoC)” (trading), and building competitive agents simulating electri-
cal power producers and consumers (energy). While every student
must be part of exactly one team, ideally the professor would like
to compose teams such that: (i) the members of each team have
complementary skills to tackle their assigned semester project; (ii)
the members of each team have diverse personalities; and (iii) stu-
dents’ preferences over projects are satisfied as much as possible.
In this case, the TFP-TA would be 𝑝 = ⟨𝐴,𝑇 , 𝐹,𝑢, C⟩, where:
𝐴 = {𝑎1, 𝑎2, 𝑎3 · · · , 𝑎20} is a set of 20 students;
𝑇 = {pathfinder, chess, sudoku, trading, energy};
𝐹 = {𝑓skills, 𝑓pers, 𝑓sat} are the desired attribute’s since the value of
a team working on a semester project depends on the students’

Main Track AAMAS 2022, May 9–13, 2022, Online

517

complementary skills for the project (𝑓skills), their balanced person-
alities (𝑓pers), and their interests in the project (𝑓sat);
𝑢 is the oracle determining the quality of a team for a given task;
and
C = {team size is 4, each student takes part in a single team} are
the constraints to fulfil.

3 THE JUSTIFICATION ALGORITHM
In this section we outline the algorithm wrapper to justify team
membership and assignments of teams to tasks. Given a TFP-TA 𝑝
and a TFA that can solve it we first need to wrap the TFA so that
it can now deal with the extra constraints 𝐶𝑞 associated with a
particular question 𝑞 in order to build contrastive explanations. We
will explain later on how this wrapper function is built. For now, let
us note the TFA algorithm with its 𝑢 function changed as TFA(𝑢̃)
and see the definition of a Query-Compliant TFP-TA.

Definition 3.1 (Query-Compliant TFP-TA (QTFP-TA)). Given a
Team Formation Problem for Task Allocation 𝑝 = ⟨𝐴,𝑇 , 𝐹,𝑢, C⟩,
and a question 𝑞 we define a Query-Compliant TFP-TA (QTFP-TA)
as 𝑝 ′ = ⟨𝐴,𝑇 , 𝐹,𝑢, C, 𝑢̃,𝐶𝑞⟩ where 𝑢̃ is the wrapping function of 𝑢
that satisfies the constraints 𝐶𝑞 derived from question 𝑞.

Our justification algorithm follows the steps illustrated in Fig-
ure 1 and described below:

(1) The TFA algorithm solves problem 𝑝 and yields a team allo-
cation 𝑔.

(2) A questioner makes a query 𝑞 regarding team allocation 𝑔.
(3) Query q is translated into a set of query-constraints 𝐶𝑞 .
(4) A problem transformation process combines the original

problem 𝑝 with the query constraints in 𝐶𝑞 to produce a
Query-Compliant TFP-TA 𝑝 ′.

(5) The TFA(𝑢̃) solves the QTFP-TA 𝑝 ′ and outputs a query-
compliant team allocation 𝑔′.

(6) A builder of contrastive explanations compares the original
team allocation (𝑔) with the query-compliant allocation (𝑔′)
to analyse their differences and generate explanations.

(7) Finally, the contrastive explanations are tailored, to highlight
different perspectives, and passed back to the questioner.

Next we go through the steps above in some more detail to
explain the whole justification algorithm. However, further de-
tails are left for Sections 4-7. To begin with, given a TFP-TA 𝑝 =

⟨𝐴,𝑇 , 𝐹,𝑢, C⟩, the TFA solves the problem and produces a team al-
location 𝑔. Thereafter, a questioner questions the allocation 𝑔. That
is, a questioner may ask, for instance, why a particular team was
assigned to a task, or why a questioner-made teamwas not assigned
to the task. Following Example 2.2, consider that the TFA outputs
the team allocation depicted in the second column of Table 1, the
one labelled as Original.

The professor studies the allocation, and, acting as questioner,
places a question regarding 𝑔: for instance, “Why is student 𝑎15
assigned to the pathfinder project?”. In Section 4 we introduce a
number of query templates that focus on team formation problems.
Our justification algorithm deals with such questions by providing
contrastive explanations [27]. Contrastive explanations are based
on findings in the philosophical and cognitive sciences literature
indicating that people are not interested in the causes leading to

Semester Project Original (𝑔) Query-Compliant (𝑔′)
pathfinder {𝑎1, 𝑎6, 𝑎7, 𝑎15 } {𝑎1, 𝑎6, 𝒂8, 𝒂18 }

chess {𝑎3, 𝑎8, 𝑎13, 𝑎18 } {𝑎3, 𝒂7, 𝑎13, 𝒂16 }
sudoku {𝑎2, 𝑎11, 𝑎17, 𝑎19 } {𝑎2, 𝑎11, 𝑎17, 𝑎19 }
trading {𝑎4, 𝑎9, 𝑎14, 𝑎20 } {𝑎4, 𝑎9, 𝑎14, 𝑎20 }
energy {𝑎5, 𝑎10, 𝑎12, 𝑎16 } {𝑎5, 𝑎10, 𝑎12, 𝒂15 }

Table 1: Original (𝑔) vs Query-complaint (𝑔′) Allocation

a particular outcome (in our case an allocation) per se, but, on
the contrary, they are interested in the causes that explain a non-
occurring outcome. In other words, people are interested (and also
tend to give) explanations regarding questions of the type “Why X
instead of Y?”. For instance, in our running example, the professor
is interested in the causes that led TFA assign student 𝑎15 to the
pathfinder project instead of assigning them to a different project.

To build such a contrastive explanation, we need to compute the
differences between the original allocation produced by the TFA
and another, alternative allocation, determined by the particular
question of the questioner, produced by the TFA(𝑢̃). Thus, given
a question 𝑞 made by the questioner, the justification algorithm
processes this question and proceeds on building an alternative,
query-compliant allocation. This procedure is implemented by steps
3-5 in Figure 1. First, our justification algorithm translates the ques-
tion posed into a set of constraints𝐶𝑞 . For instance, in our example,
question “Why is student 𝑎15 assigned to the pathfinder project?” is
translated into one constraint that forbids student 𝑎15 to be assigned
to the pathfinder project. Thorough details about how to translate
queries follow in Section 5. This problem 𝑝 ′ is a query-compliant
TFP-TA, that is, 𝑝 ′ is an extension of the original problem 𝑝 with
the query-constraints 𝐶𝑞 and the wrapper function 𝑢̃.

Back to our example, problem 𝑝 ′ would split the 20 students
into teams of size 4, though constrained to assigning each team
to exactly one semester project, and ensuring that every student
participates in exactly one team (likewise the original problem 𝑝).
However, 𝑝 ′ must consider an extra constraint: "student 𝑎15 must
not be assigned to the pathfinder project". The QTFP-TA 𝑝 ′ is then
solved by TFA(𝑢̃). The output is a query-compliant allocation 𝑔′
that respects the query constraints. For instance, in the allocation
depicted along the third column in Table 1, student 𝑎15 is assigned
to the energy project. Note that the query-compliant allocation is
the best allocation that TFA(𝑢̃) could find, while fulfilling the query-
constraints. Once our justification algorithm gets the original and
the query-compliant allocations (𝑔 and 𝑔′ respectively), it is ready
to build a contrastive explanation by computing the differences
between the two.

As soon as the contrastive explanation builder finds these differ-
ences (step 6 in Figure 1), the generated explanations go through a
tailoring process. This process highlights different points of view.
Specifically, as we discuss in Section 7, we focus on different levels of
abstraction in order to provide the questioner with a suitable expla-
nation. In our example, our justification algorithm would generate
three different types of explanations: (a) one referring specifically
to student 𝑎15, (b) one referring to teams and tasks, and (c) one
referring to the allocation as a whole.

The following sections detail the main processes of the algorithm:
Section 4 identifies a number of meaningful questions regarding
team formation, Section 5 shows the translation process of these

Main Track AAMAS 2022, May 9–13, 2022, Online

518

Figure 1: The Justification Algorithm.

queries into query constraints, Section 6 transforms the initial TFP-
TA to accommodate such constraints, and Section 7 elaborates on
how to build contrastive explanations.

4 IDENTIFYING USER QUERIES
Given a team formation scenario, there are several types of ques-
tions that a questioner may ask regarding the allocation computed
as the solution of a team formation problem. Here we identify a
collection of questions that are intuitive, meaningful, and cover,
in our opinion, the main points of interests regarding team forma-
tion scenarios. In Table 2 we list the collected questions as query
templates. There, we distinguish two types of queries:
Collaboration Queries question the established collaboration be-
tween agents. Thus, they question the teams formed while disre-
garding their assignments. Queries of this type consider the teams
formed in a given allocation, focusing on the complete team (see
queries Q8, Q9 in Table 2), or on individual agents (see queries Q10,
Q11 in Table 2). This type of queries also include questions about
the participation of specific agents in a team (see queries Q7, Q12
and Q13 in Table 2).
Assignment Queries challenge the assignment of tasks to teams
and individuals. This type of queries concern the assignment of a
complete team to a specific task (see queries Q3, Q4 in Table 2), or
the assignment of certain agents to a specific task (see queries Q1,
Q2, Q5 and Q6 in Table 2).

Following our running example 2.2, question “Why is student
𝑎15 assigned to the pathfinder project?” is an assignment query
questioning the assignment of student 𝑎15 to a specific project, the
pathfinder project. Question “Why is team 𝐾 = {𝑎1, 𝑎10, 𝑎15, 𝑎20}
not assigned to the SUDOKU project?” is also an assignment query
questioning the assignment of the complete team 𝐾 to a specific
project, and therefore the assignment of each student in 𝐾 to
that project. Alternatively, question “Why is student 𝑎3 in team
𝐾 = {𝑎3, 𝑎8, 𝑎13, 𝑎18}?” is a collaboration query questioning the par-
ticipation of student 𝑎3 in team 𝐾 , and therefore the collaboration
of student 𝑎3 with each of the students in team 𝐾 .

After identifying these relevant team formation query templates,
in the following section we show how to translate each of these
queries into query constraints.

5 QUERY TRANSLATION
As mentioned in Section 3, we translate the queries posed by a ques-
tioner into constraints in order to compute an alternative allocation
based on the query, and thereafter build a contrastive explanation.
Complying with a query constraint is necessary to compute an
alternative allocation corresponding to a ‘what-if’ scenario, an al-
ternative scenario. Query constraints are hard constraints, and must
be met when solving the new team formation problem that arises
by imposing the query constraints. Looking at the query templates
in Table 2, we observe that a (collaboration or assignment) query
poses: (i) why a specific collaboration or assignment is established
in a given allocation, or (ii) why a specific collaboration or assign-
ment is not established. Such types of queries are then translated
into one of two types of constraints:

• veto constraints that capture queries that question a estab-
lished team or assignment, and

• enforcement constraints that capture queries regarding why
a team or assignment did not occur.

Consider the question asked by the professor in our running
example “Why is student 𝑎15 assigned to the pathfinder project?”,
which is an instance of query template Q1. To provide an expla-
nation, we must find an allocation for the alternative what-if sce-
nario: “What would happen if student 𝑎15 were not assigned to the
pathfinder project?”. By adding the appropriate constraint, we can
compute alternative allocations suitable for answering the query
posed by the professor. Thus, in general, when a query template
targets at a team or an assignment established in the original alloca-
tion, it translates into veto constraints on the team or assignment.
This is necessary to describe a meaningful what-if scenario, and
therefore build meaningful contrastive explanations.

Alternatively, when a query template targets a team or assign-
ment that did not occur in the original allocation, the query trans-
lates into enforcement constraints so that the query-compliant

Main Track AAMAS 2022, May 9–13, 2022, Online

519

Code Query Template Query Type Query Constraints Constraints per query- Number of query-
compliant Allocations compliant Allocations

Q1 Why is agent 𝑎𝑖 assigned to task 𝜏? Assignment VETO assigning 𝑎𝑖 to 𝜏 1 1
Q2 Why is agent 𝑎𝑖 not assigned to task 𝜏? Assignment ENFORCE assigning 𝑎𝑖 to 𝜏 1 1

Q3 Assignment

VETO assigning 𝑎1 in 𝜏 OR

1 |K|Why is team 𝐾 = {𝑎1, · · ·𝑎 |𝐾 | } VETO assigning 𝑎2 in 𝜏 OR
assigned to task 𝜏? . . .

VETO assigning 𝑎 |𝐾 | in 𝜏

Q4 Assignment

ENFORCE assigning 𝑎1 in 𝜏 AND

1 |K|Why is team 𝐾 = {𝑎1, · · ·𝑎 |𝐾 | } ENFORCE assigning 𝑎2 in 𝜏 AND
not assigned to task 𝜏? . . .

ENFORCE assigning 𝑎 |𝐾 | in 𝜏

Q5 Why is agent 𝑎𝑖 assigned to task 𝜏 , Assignment VETO assigning 𝑎𝑖 in 𝜏 AND 2 1instead of 𝑎 𝑗 ? ENFORCE assigning 𝑎 𝑗 in 𝜏

Q6 Why is agent 𝑎𝑖 assigned to task 𝜏 , Assignment VETO assigning 𝑎𝑖 in 𝜏 OR 1 2while 𝑎 𝑗 is not? ENFORCE assigning 𝑎 𝑗 in 𝜏

Q7 Why is agent 𝑎𝑖 in team 𝐾 = {𝑎1, · · · , 𝑎 |𝐾 | }? Collaboration
VETO collaborating 𝑎𝑖 with 𝑎1 OR

1 |K|-1VETO collaborating 𝑎𝑖 with 𝑎2 OR
· · ·

VETO collaborating 𝑎𝑖 with 𝑎 |𝐾 |

Q8 Why is team 𝐾 = {𝑎1, · · · , 𝑎 |𝐾 | } formed? Collaboration

VETO collaborating 𝑎1 with 𝑎2 OR

1
(|𝐾 |
2
)VETO collaborating 𝑎1 with 𝑎3 OR

· · ·
VETO collaborating 𝑎1 with 𝑎 |𝐾 | OR

· · ·
VETO collaborating 𝑎 |𝐾 |−1 with 𝑎 |𝐾 |

Q9 Why is team 𝐾 = {𝑎1, · · · , 𝑎 |𝐾 | } not formed? Collaboration

ENFORCE collaborating 𝑎1 with 𝑎2 AND

1
(|𝐾 |
2
)ENFORCE collaborating 𝑎1 with 𝑎3 AND

· · ·
ENFORCE collaborating 𝑎1 with 𝑎 |𝐾 | AND

· · ·
ENFORCE collaborating 𝑎 |𝐾 |−1 with 𝑎 |𝐾 |

Q10 Why are 𝑎𝑖 and 𝑎 𝑗 in the same team? Collaboration VETO collaborating 𝑎𝑖 with 𝑎 𝑗 1 1
Q11 Why are 𝑎𝑖 and 𝑎 𝑗 not in the same team? Collaboration ENFORCE collaborating 𝑎𝑖 with 𝑎 𝑗 1 1

Q12 Collaboration

ENFORCE collaborating 𝑎𝑥 with 𝑎1 AND

|A| 1

· · ·
ENFORCE collaborating 𝑎𝑥 with 𝑎𝑖−1 AND

Why is agent 𝑎𝑖 in team 𝐾 = {𝑎1, · · · , 𝑎 |𝐾 | }, ENFORCE collaborating 𝑎𝑥 with 𝑎𝑖+1 AND
instead of agent 𝑎𝑥 ? · · ·

ENFORCE collaborating 𝑎𝑥 with 𝑎 |𝐾 | AND
VETO collaborating 𝑎𝑥 with 𝑎𝑖 AND
VETO collaborating 𝑎𝑥 with 𝑎𝑦 , ∀𝑎𝑦 ∉ 𝐾

Q13 Collaboration

ENFORCE collaborating 𝑎𝑥 with 𝑎1 AND

|K|-1
2

· · ·
ENFORCE collaborating 𝑎𝑥 with 𝑎𝑖−1 AND

Why is agent 𝑎𝑖 in team 𝐾 = {𝑎1, · · · , 𝑎 |𝐾 | }, ENFORCE collaborating 𝑎𝑥 with 𝑎𝑖+1 AND
instead of agent 𝑎𝑥 ? · · ·

ENFORCE collaborating 𝑎𝑥 with 𝑎 |𝐾 | OR
VETO collaborating 𝑎𝑥 with 𝑎𝑖 AND |A|-|K|-1VETO collaborating 𝑎𝑥 with 𝑎𝑦 , ∀𝑎𝑦 ∉ 𝐾

Table 2: Query templates for a team formation problem.

allocation contains the team or the assignment described in the
query. For instance, consider the question “Why is team 𝐾 =

[{𝑎1, 𝑎3, 𝑎5, 𝑎7} not formed”, as an instance of query template Q9.
The what-if scenario to consider would be: “What would happen if
team 𝐾 was formed?”. Hence, replying to this query demands to
compute an allocation that enforces the formation of team 𝐾 .

Depending on the query template, and more precisely on how
many agents are involved in a query, the queries are translated into
(a) a single constraint, or (b) a set of constraints. Queries translated
into a single constraint are referred to as simple queries, and involve
a pair ⟨agent, task⟩ (Q1,Q2) or two agents (Q10,Q11). Regarding
the queries translated into a set of constraints, we refer to them
as complex queries, and we differentiate three translation patterns
for them: (i) conjunction of constraints (Q4, Q5, Q9, Q12), which
deal with a team formation or assignment that did not occur; (ii)
disjunction of constraints (Q3, Q6, Q7, Q8), which focus on an

established team formation or assignment; and (iii) disjunction of
conjunctions (Q13), which consider both an established team and
one that did not occur.

6 PROBLEM TRANSFORMATION
In this section we show how to transform an original TFA by wrap-
ping its oracle function𝑢 to obtain TFA(𝑢̃). The problem transforma-
tion process is based on defining the wrapper function 𝑢̃ and thus
change the evaluation function that determines the quality of the
assignment of a team to a task, depending on the query constraints.
In more detail, given a query 𝑞, we incorporate its query-constraints
𝐶𝑞 in the oracle function by imposing large penalties when a team-
task pair violates a query constraint. What a penalty is depends on
the function that aggregates the quality of each team-task allocation.
For instance, if the aggregation is the product of the individual qual-
ities then the penalty would be zero, when the query constraint.

Main Track AAMAS 2022, May 9–13, 2022, Online

520

If the aggregation is based on an addition of qualities then the
penalty would be a large negative value. In the equations below
we are assuming we have a product aggregation as an example.
In other words, the new, query-compliant problem 𝑝 ′ is given by
⟨𝐴,𝑇 , 𝐹,𝑢, C, 𝑢̃,𝐶𝑞⟩ where

𝑢̃ (𝐾, 𝜏, 𝐹,𝐶𝑞) = 𝜓 (𝐾, 𝜏,𝐶𝑞) · 𝑢 (𝐾, 𝜏, 𝐹) (2)

and

𝜓 (𝐾, 𝜏,𝐶𝑞) =
{
0, if ⟨𝐾, 𝜏⟩ violates a constraint in 𝐶𝑞
1, otherwise

(3)

Thus, when TFA(𝑢̃) is solving problem 𝑝 ′, allocations that violate a
query constraint are penalised and therefore avoided, since the allo-
cation’s quality depends on the quality of all teams for their assigned
tasks—i.e., 𝑣 (𝑔) = F 𝜏 ∈𝑇 𝑢̃

(
𝑔(𝜏), 𝜏, 𝐹

)
. Hence, an allocation (𝑔′) that

assigns team 𝐾 to task 𝜏 (i.e., 𝑔′(𝜏) = 𝐾) that violates some query
constraint is penalised, since 𝑢̃ (𝐾, 𝜏, 𝐹,𝐶𝑞) = “𝐿𝑎𝑟𝑔𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦′′. The
wrapper 𝑢̃ simply needs to (i) check whether the constraints are
violated for each of the pairs ⟨𝑔(𝜏), 𝜏⟩, and then (ii) multiply its
suitability 𝑢 (𝑔(𝜏), 𝜏, 𝐹) by a large penalty if there is a violation, or
by 1 otherwise.

Now we analyse how to check whether an assignment violates
a constraint. There are two types of constraints: assignment and
collaboration constraints, which result from translating assign-
ment and collaboration queries respectively. On the one hand, let
𝑐𝑎 = ⟨𝑡, 𝑎𝑖 , 𝜏 𝑗 ⟩ represent an assignment constraint of type 𝑡 (veto
or enforcement), over an agent 𝑎𝑖 and a task 𝜏 𝑗 . We say that an
assignment ⟨𝐾, 𝜏⟩ violates 𝑐𝑎 if:

(1) 𝑡 = veto and 𝑎𝑖 ∈ 𝐾 and 𝜏 𝑗 = 𝜏 , or
(2) 𝑡 = enforce and

(a) 𝑎𝑖 ∈ 𝐾 and 𝜏 𝑗 ≠ 𝜏 or
(b) 𝑎𝑖 ∉ 𝐾 and 𝜏 𝑗 = 𝜏

On the other hand, let 𝑐𝑐 = ⟨𝑡 ′, 𝑎𝑘 , 𝑎𝑙 ⟩ represent a collaboration con-
straint of type 𝑡 ′ over agents 𝑎𝑘 and 𝑎𝑙 . We say that an assignment
⟨𝐾, 𝜏⟩ violates 𝑐𝑐 if:

(1) 𝑡 ′ = veto and {𝑎𝑘 , 𝑎𝑙 } ⊆ 𝐾 , or
(2) 𝑡 ′ = enforce and

(a) 𝑎𝑘 ∈ 𝐾 and 𝑎𝑙 ∉ 𝐾 , or
(b) 𝑎𝑘 ∉ 𝐾 and 𝑎𝑙 ∈ 𝐾

Therefore, notice that checking the violation of constraints in
𝐶𝑞 is not expensive, since it involves verifying the membership of
elements to sets and checking for set inclusion.
Computational cost per query template. Depending on the
query template used by the questioner the number of ‘what-if’
team formation scenarios to consider varies. For example, con-
sider the question “Why is student 𝑎15 assigned to the pathfinder
project?” (instance of query template Q1). There is only one ‘what-
if’ scenario deriving from the question that we should consider
to build an explanation: “What if student 𝑎15 was not assigned to
the pathfinder project?”. However, consider the question “Why is
student 𝑎3 assigned to the chess project, while student 𝑎14 is not?”
(instance of query template Q6). In this case, we should consider
two different ‘what-if’ scenarios to build an explanation: “What if
student 𝑎3 was not assigned to the chess project?”, and “What if
student 𝑎14 was assigned to the chess project?”.

In general, each ‘what-if’ scenario requires the computation of a
new allocation, namely the running of TFA(𝑢̃). As such, the number

Attribute function 𝑓𝑖

Individual View Δ𝑓 𝐼𝑉
𝑖

=
𝑓𝑖 (𝑔 (𝜏),𝜏) |𝑎∈𝑔 (𝜏)−𝑓𝑖 (𝑔′ (𝜏′),𝜏′) |𝑎∈𝑔′ (𝜏′)

𝑓𝑖 (𝑔 (𝜏),𝜏) |𝑎∈𝑔 (𝜏)
Local View Δ𝑓 𝐿𝑉

𝑖
=
𝑓𝑖 (𝑔 (𝜏),𝜏)−𝑓𝑖 (𝑔′ (𝜏),𝜏)

𝑓𝑖 (𝑔′ (𝜏),𝜏) , ∀𝜏 ∈ 𝑇
Global View Δ𝑓𝐺𝑉

𝑖
=

F𝜏∈𝑇 𝑓𝑖 (𝑔 (𝜏),𝜏)−F𝜏∈𝑇 𝑓𝑖 (𝑔′ (𝜏),𝜏)
F𝜏∈𝑇 𝑓𝑖 (𝑔 (𝜏),𝜏)

Table 3: Relative Differences per Explanation View

of ‘what-if’ scenarios that a query template requires to consider
determines the number of times that our justification algorithm
needs to translate the original TFP-TA 𝑝 into a QTFP-TA 𝑝 ′, and
hence the number of runs of the TFA(𝑢̃) (one per query-compliant
problem). The last column in Table 2 shows the number of query-
compliant allocations (computed by different runs of the TFA(𝑢̃)
) that are required to build a contrastive explanation per query
template. We differentiate query templates that lead to: (i) one
what-if scenario (Q1, Q2, Q5, Q10, Q11 and Q12); (ii) two what-if
scenarios (Q6,Q13); and (iii) a number of what-if scenarios that is
either linear or quadratic to the number of agents appearing in
the query (queries Q3, Q4, Q7 and Q8, Q9 respectively). Note that
complex queries translated into a disjunction of constraints lead
to multiple what-if scenarios. Therefore, such queries require the
computation of more than query-compliant allocations. However,
with the exception of query template Q13, each one of the different
query-compliant allocations of these queries need to respect a single
constraint.

7 BUILDING CONTRASTIVE EXPLANATIONS
This section describes how to build and tailor contrastive explana-
tions to answer a question about team formation.

As outlined in Section 3, a contrastive explanation compares
some original allocation (𝑔) with a query-compliant one (𝑔′), the lat-
ter one resulting from some ‘what-if’ scenario posed by the query.
The explanation compiles the differences that make the original
allocation preferable to the query-compliant one. The compari-
son between the original and the query-compliant allocation is
done along three levels of abstraction (individual, local, and global),
which we call explanation views. Each explanation view corresponds
to a different point of view that we can adopt to justify the reasons
why the original allocation is better than the query-compliant one:
the individual view (IV) focuses on the agents referred to within the
query; the local view (LV) focuses on the individual tasks and their
assigned teams; and the global view (GV) focuses on the overall
quality of the allocations.

For each view we compute the relative differences between the
original allocation and the query-compliant one, as shown in Ta-
ble 3. Such differences serve to quantify the gains or losses of
one allocation with respect to the other. That is, we compute
Δ𝑓 𝐼𝑉
𝑖
,Δ𝑓 𝐿𝑉

𝑖
,Δ𝑓𝐺𝑉

𝑖
for each attribute function 𝑓𝑖 ∈ 𝐹 . Moreover,

we compute relative differences for oracle 𝑢 in IV and LV, and ag-
gregation function F in GV. Notice that in this step we need access
on (a) the oracle function 𝑢, and (b) the aggregating function F .
However, the oracle function is accessible by our justification algo-
rithm (through the wrapper 𝑢̃); while the aggregating function is
known for a given TFA (again, our wrapper must be aware of F

Main Track AAMAS 2022, May 9–13, 2022, Online

521

in order to impose the proper penalty). Moreover, in order to com-
pute the relative differences for the individual view, we make the
following assumption: there is a way to compute the contribution
of an agent 𝑎 to its team 𝑔(𝜏) (denoted as |𝑎∈𝑔 (𝜏)) with respect to:
(i) each attribute function 𝑓𝑖 , and (ii) the value yielded by the oracle
𝑢. Even though this may seem a strong assumption, it is common
in the literature to employ oracles that allow such computation
(e.g. [6, 15]). In our empirical evaluation, we illustrate the use of
one general oracle that allows to compute relative differences as
defined in Table 3.

Back to our example, consider the question “Why is student
𝑎15 assigned to the pathfinder project?”, along with the allocations
𝑔 and 𝑔′ in Table 1. The explanation builder would generate an
explanation containing one explanation per view as follows: “If
student 𝑎15 was not assigned to the pathfinder project then...
(IV) “Student 𝑎15 would have had to take part in the energy project,
for which they are less skilled.”
(LV) “40% of the tasks would have been assigned to dramatically
less-skilled (up to 98.9%) teams and 20% of the tasks would have
been assigned to less-compatible (up to 60.1%) teams, while 40% of
the tasks would have been assigned to equally skilled, compatible
and satisfied teams.”
(GV) “The overall matching of teams to tasks would be 99.98%
less-skilled, 53.62% less-diverse in terms of personality, and 7.37%
less-satisfying. Thus, the alternative allocation would be 36.08%
less-suitable considering all attributes”.

The explanation example above is built by first computing the
relative differences, and then filling out an explanation template in
natural language. In general, the explanation template is common to
all queries—changes only for the IV—and, due to space limitations,
can be found in the supplementary material.

8 EVALUATING EXPLANATIONS
This section evaluates the quality of the explanations that our al-
gorithm generates. First, Section 8.1 specifies the instance of the
TFP-TA selected for our experiments, along with the TFA of choice.
Then, Section 8.2 introduces our evaluation metrics for explana-
tions, some of them adapted from metrics used in the ML literature.
Finally, Section 8.3 reports the results of our evaluation.

8.1 Team formation problem and algorithm
We choose the team formation problem of forming non-overlapping
teams that tackle one task each, and in turn each task is tackled by
only one team. This is a relevant team formation problem in the
MAS literature appearing, for instance, in [15, 17, 31]). We choose
the same attributes as described in our running example: skills,
personality, and agents’ preferences over tasks ({𝑓skills, 𝑓pers, 𝑓sat}).
Each task specifies the skills required by a team to perform it.
Moreover, here we adopt the typical team-size constraint per task
(e.g. [6, 17]). When assigning a team to a task, and similarly to the
competence assignment in [6], we must also decide the required
skills covered by each team member. As oracle 𝑢 that yields suit-
ability, we define: 𝑢 (𝐾, 𝜏, 𝐹) = ∑

𝑓𝑖 ∈𝐹 𝑤𝑖 · 𝑓𝑖 (𝐾, 𝜏). Note that using a
linear combination of multiple attributes to form a scalar function
is a commonly used technique [22]. As aggregating function F
we use the product (F △

=
∏
), since, as claimed by [6, 7], a product

promotes “balanced” team allocations —according to [13], it favours
both increasing the overall team allocation utility and reducing the
differences in individual team allocation quality.

We encode our TFP-TA as a linear program (LP) to subsequently
use an LP solver as team formation algorithm, similarly to [6, 18].
Next we describe such LP encoding. Let K = {𝐾1, 𝐾2, · · · , 𝐾Ξ} ≡
2 |𝐴 | \ {∅} be a set containing all possible teams that can be formed
in 𝐴. We use a decision variable 𝑥𝜉𝜏 ∈ {0, 1} that indicates whether
team 𝐾𝜉 ∈ K is assigned to task 𝜏 ∈ 𝑇 or not. Moreover let 𝑑 be an
|𝐴| × |K | matrix, where 𝑑𝑖,𝜉 is equal to 1 if agent 𝑎𝑖 is part of team
𝐾𝜉 (i.e., 𝑎𝑖 ∈ 𝐾𝜉), and 𝑑𝑖,𝜉 = 0, otherwise. The objective function we
use is the function 𝑢 (𝐾, 𝜏, 𝐹) when we solve the original TFP-TA 𝑝 ,
and the wrapper function 𝑢̃ (𝐾, 𝜏, 𝐹,𝐶𝑞) when we solve a QTFP-TA
𝑝 ′. Thus the LPs are:

max
∑

𝐾𝜉 ,𝜏 s.t.
𝑔 (𝜏)≡𝐾𝜉

𝑥
𝜉
𝜏 · log𝑢 (𝐾𝜉 , 𝜏, 𝐹) (4)

and
max

∑
𝐾𝜉 ,𝜏 s.t.
𝑔 (𝜏)≡𝐾𝜉

𝑥
𝜉
𝜏 · log 𝑢̃ (𝐾𝜉 , 𝜏, 𝐹 ,𝐶𝑞) (5)

subject to (i)
∑
𝐾𝜉 ∈K∩K𝜏 𝑥

𝜉
𝜏 = 1∀𝜏 ∈ 𝑇 , and (ii)∑𝜏 ∈𝑇 ∑

𝐾𝜉 ∈K∩K𝜏 𝑥
𝜉
𝜏 ·

𝑑𝑖,𝜉 = 1 ∀𝑎𝑖 ∈ 𝐴, where K𝜏 ⊆ K is the set of size-compliant teams
for task 𝜏 . Note that equations (i) and (ii) encode the constraints C
of the initial problem (i.e. each task requires one team of a specific
size, each agent belongs to exactly one team, each team tackles
exactly one task, and each task is assigned to exactly one team).

8.2 Evaluation Metrics
To evaluate the quality of explanations we have singled out a num-
ber of offline evaluation metrics, aligned with the existing literature.
Number of attributes (NOA). This is a commonly-used metric in
many explainable models. Indeed, since most XAI models attempt
to give insights on the functionality and the rationale of a black
box (e.g., ML models), it is common to use the number of features
used to justify a decision as a quality index for explanations [32, 37].
This is the case even for non-ML explanatory systems. For instance,
when justifying elections winners in [10], the number of axioms
that backs up the elected winner is used to evaluate the quality of
an explanation. The number of attributes can be also seen as the
number of causes [27] displayed in an explanation, with the general
guideline that good explanations are the simple ones containing a
relatively small number of causes. Here, we consider the number
of attributes that exhibit a utility decrease in the query-compliant
allocation compared to the original allocation.
Mean explainability precision (MEP) [1, 28]. Explainability
precision—resembling the corresponding metric in information
retrieval, classification, and ML in general— is the proportion of
explainable items in a list relative to the total number of items.
Regarding team formation, we measure MEP in terms of the per-
centage of agents, tasks, and attributes for which we can justify
why the alternative query-compliant allocation is worse than the
initial allocation.
Gunning Fog readability (GFR) index [20]. Since we produce
explanations in natural language, we also use the Gunning Fog
readability (GFR) index [20], a well-known readability metric in

Main Track AAMAS 2022, May 9–13, 2022, Online

522

Query Average Number of Attributes | Standard Dev. Mean Explainable Precision Gunning-Fog Reading Index
Individual View Local View Global View Individual View Local View Global View Individual View Local View Global View

Q1 1 | 0 2.2 | 0.8 2.7 | 0.55 65% 40% 67.5% 8.37 8.78 10.61
Q2 1 | 0 2.20 | 0.74 3.00 | 0.71 70% 42.5% 73.75% 9.1 8.77 10.84
Q7 0.91 | 0.20 1.88 | 0.51 2.82 | 0.55 55% 37.17% 70.42% 7.47 8.64 10.63
Q8 0.91 | 0.22 1.86 | 0.51 2.84 | 0.53 55.41% 36.58% 71.04% 7.25 8.51 10.45
Q10 1.06 | 0.23 1.95 | 0.59 2.80 | 0.68 50% 38.5% 70% 8.4 8.76 10.88
Q11 1.18 | 0.58 2.45 | 0.86 2.90 | 0.62 35% 49.5% 72.5% 9.34 8.99 11.8
Q3 0.91 | 0.14 1.87 | 0.47 2.75 | 0.50 91.25% 37.75% 68.75% 7.08 8.53 10.33
Q4 1.55 | 0.49 2.8 | 0.4 3.35 | 0.57 75% 80% 83.75% 12.4 9.05 11.53
Q5 1.29 | 0.45 2.85 | 0.65 3.05 | 0.67 47.5% 54.5% 76.25% 9.89 8.87 11.42
Q6 0.58 | 0.18 2.58 | 0.48 3.03 | 0.43 35% 41.25% 75.63% 8.3 8.76 10.9
Q9 1.41 | 0.49 3.35 | 0.47 3.2 | 0.5 61.67% 73.5% 80% 10.2 8.91 10.79
Q12 1.60 | 0.49 2.20 | 0.92 3.30 | 0.55 17.49% 39.5% 82.5% 14.62 8.75 12.32
Q13 1.18 | 0.39 2.73 | 0.51 3.20 | 0.66 48.87% 47.5% 80.62% 9.82 8.78 11.54

Table 4: Average number of attributes, mean explainable precision, and average Gunning Fog reading index used per explana-
tion per query template.

the literature. The GFR considers: (a) the proportion of “complex
words” relative to the total number of words; and (b) the number of
words per sentence. The resulting score indicates the reading level
by grade needed to comprehend the text.

8.3 Results
Our empirical evaluation employs 20 synthetic instances of the
TFP-TA in Section 8.1 with 10 tasks and ∼ 26.5 agents each. In
supplementary material we fully detail our datasets. Note that we
can easily compute relative differences for IV, since the oracle 𝑢
in Section 8.1 allows to compute the contribution to a team per
agent at low computational cost. We solved each one of the problem
instances with an LP solver to obtain their original allocations.

After that, we generated one query for each query template and
for each original allocation so that each allocation was artificially
challenged by one query of each one of the 13 types. We generated
queries depending on the query template as follows. First, we se-
lected an original allocation. Second, we randomly selected a team
(𝐾) in the allocation. Third, we built one query per query template
by randomly selecting: agents from 𝐾 (for templates Q1, Q7, Q10);
agents from 𝐴 \ 𝐾 (templates Q2, Q10); one agent from 𝐾 and one
from 𝐴 \ 𝐾 (templates Q5, Q9, Q11, Q12, Q13).

Finally, we handed the queries to our algorithm to compute expla-
nations. We evaluated their quality using the metrics in Section 8.2.
Table 4 compiles our results per metric grouped per query template,
which we discuss below comparing explanation views.
Average number of attributes. The first three columns in Table 4
illustrate the average number of attributes used to justify why the
original allocation is preferable to the query-compliant one. That is,
these are the average number of attributes per explanation that: (a)
exhibit a relative gain, and (b) are part of the textual explanation.
The results tell us that the individual view uses less attributes
than the local view, which in turn uses less attributes than the
global view when building an explanation for each query. Moreover,
explanations of simple queries (Q1,Q2, Q7,Q8, Q10 or Q11) use less
attributes compared to more complex ones.
Mean explainable precision.According to Table 4, the GV reaches
higher MEP (at least 67%) than the LV and the IV, i.e., using the
GV we can easily justify why the original allocation is preferred
to the query-compliant one. This is because the TFA’s goal is to
optimise the overall allocation function; and hence, the GV is in
line with the algorithm’s point of view. The LV reaches low MEP

(below 50%), since there are many tasks that are not being affected
at all by the query, and therefore cannot justify why one allocation
is preferred to the other. Finally, the IV exhibits a wide variability
in MEP, since the IV is highly query-dependent. Thus, the GV is
more precise for justifying team formation.
Gunning Fog readability index. In Table 4, we observe that 92%
(36 out of 39) of our explanations achieve scores between 8 (read-
ing level of eighth grade) and 12 (reading level of a high school
senior student), and 6% are very close to 12. Thus, we conclude that
our explanations are easy to read and comprehend. In general we
see that simple queries achieve a low GFR index (∼ 8.36), while
complex queries achieve higher GFR index (∼ 10.33). Notably, the
explanations for both the LV and GV exhibit a ‘stable’ reading index
(the LV index is always ∼ 8.8, the GV index is ∼ 11). This is because,
regardless of the query template, the LV always considers the same
number of tasks (10 in all problem instances), and the GV considers
a constant number of attributes. On the contrary the readability
score for the IV is query-dependent.

9 CONCLUSIONS & FUTUREWORK
In this work we turn to explainable AI within multiagent systems,
and specifically to explanations regarding team formation. Here we
introduced a generic procedure for providing justifications based
on contrastive explanations, that wraps existing team formation
algorithms, with no modifications needed. We build on the notion of
facts and foils [27], and justify the teams formed by exploring ‘what-
if’ scenarios. We described the steps we need to follow in order
to (i) express a ‘what-if’ scenario, (ii) reach a formation of teams
respecting this scenario; and generate an explanation that discred-
its the ‘what-if’ scenario compared to the original teams formed.
Moreover, we identified a number of intuitive query templates that
widely cover questions regarding team formation. Finally, we con-
ducted a preliminary, empirical evaluation on the quality of our
generated explanations over synthetic data. Our results showed
that our explanations are easy to read, they are simple by using a
small number of causes (attributes), and they exhibit an acceptable
mean explainable precision. As future work, regarding our tailor-
ing process, we intend to lift the assumption that we can easily
compute relative differences in the IV, by using e.g., the Labour
Union game payoffs [19] or the Shapley values[36]. Moreover, since
our preliminary results are promising, we should proceed towards
evaluating our explanations by humans in a real-world scenario.

Main Track AAMAS 2022, May 9–13, 2022, Online

523

REFERENCES
[1] Behnoush Abdollahi and Olfa Nasraoui. 2017. Using Explainability for Con-

strained Matrix Factorization. In Proceedings of the Eleventh ACM Conference
on Recommender Systems (Como, Italy) (RecSys ’17). Association for Computing
Machinery, New York, NY, USA, 79–83. https://doi.org/10.1145/3109859.3109913

[2] Amina Adadi and Mohammed Berrada. 2018. Peeking Inside the Black-Box: A
Survey on Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018), 52138–
52160. https://doi.org/10.1109/ACCESS.2018.2870052

[3] Shaull Almagor and Morteza Lahijanian. 2020. Explainable Multi Agent Path
Finding (AAMAS ’20). International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 34–42.

[4] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and Ste-
fano Leonardi. 2010. Power in Unity: Forming Teams in Large-Scale Community
Systems. International Conference on Information and Knowledge Management,
Proceedings, 599–608. https://doi.org/10.1145/1871437.1871515

[5] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and
Stefano Leonardi. 2012. Online Team Formation in Social Networks. In Proceedings
of the 21st International Conference on World Wide Web (Lyon, France) (WWW
’12). Association for Computing Machinery, New York, NY, USA, 839–848. https:
//doi.org/10.1145/2187836.2187950

[6] Ewa Andrejczuk, Rita Berger, Juan A. Rodríguez-Aguilar, Carles Sierra, and
Víctor Marín-Puchades. 2018. The composition and formation of effective teams:
computer science meets organizational psychology. Knowledge Eng. Review 33
(2018), e17. https://doi.org/10.1017/S026988891800019X

[7] Ewa Andrejczuk, Filippo Bistaffa, Christian Blum, Juan A. Rodríguez-Aguilar, and
Carles Sierra. 2019. Synergistic team composition: A computational approach to
foster diversity in teams. Knowledge-Based Systems 182, 104799 (10/2019 2019).
https://doi.org/10.1016/j.knosys.2019.06.007

[8] Yoram Bachrach, Reshef Meir, Kyomin Jung, and Pushmeet Kohli. 2010. Coali-
tional Structure Generation in Skill Games. 24th AAAI Conference on Arti-cial
Intelligence (AAAI) 2.

[9] P. Ballesteros-Pérez, Ma. C. González-Cruz, and M. Fernández-Diego. 2012. Hu-
man resource allocation management in multiple projects using sociometric
techniques. International Journal of Project Management 30, 8 (2012), 901–913.

[10] Arthur Boixel and Ulle Endriss. 2020. Automated Justification of Collective Deci-
sions via Constraint Solving. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems (Auckland, New Zealand) (AAMAS
’20). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 168–176.

[11] Luca Capezzuto, Danesh Tarapore, and Sarvapali D. Ramchurn. 2020. Any-
time and Efficient Coalition Formation with Spatial and Temporal Constraints.
arXiv:2003.13806 [cs.MA]

[12] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. 2019. Machine
Learning Interpretability: A Survey on Methods and Metrics. Electronics 8, 8
(2019). https://doi.org/10.3390/electronics8080832

[13] Yann Chevaleyre, Paul E Dunne, Ulle Endriss, Jerome Lang, Michel Lemaitre,
Nicolas Maudet, Julian Padget, Steve Phelps, Juan A Rodrguez-Aguilar, and Paulo
Sousa. 2006. Issues in Multiagent Resource Allocation. Informatica 30 (2006),
3–31.

[14] Chad Crawford, Zenefa Rahaman, and Sandip Sen. 2016. Evaluating the Efficiency
of Robust Team Formation Algorithms. In Autonomous Agents and Multiagent Sys-
tems, Nardine Osman and Carles Sierra (Eds.). Springer International Publishing,
Cham, 14–29.

[15] E. Czatnecki and A. Dutta. 2019. Hedonic Coalition Formation for Task Allocation
with Heterogeneous Robots. In 2019 IEEE International Conference on Systems,
Man and Cybernetics (SMC). 1024–1029.

[16] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. 2018. Explainable artificial
intelligence: A survey. In 2018 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). 0210–0215.
https://doi.org/10.23919/MIPRO.2018.8400040

[17] Athina Georgara, Juan A. Rodríguez-Aguilar, and Carles Sierra. 2021. Towards a
Competence-Based Approach to Allocate Teams to Tasks. International Foundation
for Autonomous Agents and Multiagent Systems, Richland, SC, 1504–1506.

[18] Athina Georgara, Carles Sierra, and Juan A. Rodríguez-Aguilar. 2020. TAIP:
an anytime algorithm for allocating student teams to internship programs.
arXiv:2005.09331 [cs.AI]

[19] Sreenivas Gollapudi, Kostas Kollias, Debmalya Panigrahi, and Venetia Pliat-
sika. 2017. Profit Sharing and Efficiency in Utility Games. In 25th Annual Euro-
pean Symposium on Algorithms (ESA 2017) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 87), Kirk Pruhs and Christian Sohler (Eds.). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 43:1–43:14.
https://doi.org/10.4230/LIPIcs.ESA.2017.43

[20] R. Gunning. 1952. The Technique of Clear Writing. McGraw-Hill. https://books.
google.gr/books?id=ofI0AAAAMAAJ

[21] Jimmy H. Gutiérrez, César A. Astudillo, Pablo Ballesteros-Pérez, Daniel Mora-
Melià, and Alfredo Candia-Véjar. 2016. The Multiple Team Formation Problem
Using Sociometry. Comput. Oper. Res. 75, C (Nov. 2016), 150–162.

[22] J. Horn, N. Nafpliotis, and D.E. Goldberg. 1994. A niched Pareto genetic algorithm
for multiobjective optimization. In Proceedings of the First IEEE Conference on
Evolutionary Computation. IEEE World Congress on Computational Intelligence.
82–87 vol.1. https://doi.org/10.1109/ICEC.1994.350037

[23] Akiva Kleinerman, Ariel Rosenfeld, and Sarit Kraus. 2018. Providing Explanations
for Recommendations in Reciprocal Environments. In Proceedings of the 12th
ACM Conference on Recommender Systems (Vancouver, British Columbia, Canada)
(RecSys ’18). Association for Computing Machinery, New York, NY, USA, 22–30.
https://doi.org/10.1145/3240323.3240362

[24] Sarit Kraus, Amos Azaria, Jelena Fiosina, Maike Greve, Noam Hazon, Lutz Kolbe,
Tim-Benjamin Lembcke, Jorg Muller, Sören Schleibaum, and Mark Vollrath. 2020.
AI for Explaining Decisions in Multi-Agent Environments. Proceedings of the
AAAI Conference on Artificial Intelligence 34 (04 2020), 13534–13538. https:
//doi.org/10.1609/aaai.v34i09.7077

[25] Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a Team of
Experts in Social Networks. In Proceedings of the 15th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (Paris, France)
(KDD ’09). Association for Computing Machinery, New York, NY, USA, 467–476.
https://doi.org/10.1145/1557019.1557074

[26] Zachary C. Lipton. 2018. The Mythos of Model Interpretability: In Machine
Learning, the Concept of Interpretability is Both Important and Slippery. Queue
16, 3 (June 2018), 31–57. https://doi.org/10.1145/3236386.3241340

[27] Tim Miller. 2018. Explanation in Artificial Intelligence: Insights from the Social
Sciences. arXiv:1706.07269 [cs.AI]

[28] Sina Mohseni, Niloofar Zarei, and Eric D. Ragan. 2020. A Multidisciplinary
Survey and Framework for Design and Evaluation of Explainable AI Systems.
arXiv:1811.11839 [cs.HC]

[29] Francesca Mosca and Jose M. Such. 2021. ELVIRA: An Explainable Agent for Value
and Utility-Driven Multiuser Privacy. International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 916–924.

[30] Sameera S. Ponda, Luke B. Johnson, Alborz Geramifard, and Jonathan P. How.
2015. Cooperative Mission Planning for Multi-UAV Teams. Springer Netherlands,
Dordrecht, 1447–1490. https://doi.org/10.1007/978-90-481-9707-1_16

[31] Fredrik Präntare and Fredrik Heintz. 2020. An anytime algorithm for optimal
simultaneous coalition structure generation and assignment. Autonomous Agents
and Multi-Agent Systems 34, 1 (03 Mar 2020), 29. https://doi.org/10.1007/s10458-
020-09450-1

[32] Avi Rosenfeld. 2021. Better Metrics for Evaluating Explainable Artificial Intelli-
gence. International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 45–50.

[33] Avi Rosenfeld and Ariella Richardson. 2019. Explainability in human–agent
systems. Autonomous Agents and Multi-Agent Systems 33, 6 (01 Nov 2019), 673–
705. https://doi.org/10.1007/s10458-019-09408-y

[34] Wojciech Samek and Klaus-Robert Müller. 2019. Towards Explainable Artificial
Intelligence. Springer International Publishing, Cham, 5–22. https://doi.org/10.
1007/978-3-030-28954-6_1

[35] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. 2017. Explainable
artificial intelligence: Understanding, visualizing and interpreting deep learning
models. arXiv preprint arXiv:1708.08296 (2017).

[36] L.S. Shapley. 1953. A Value for n-Person Games. In Contributions to the Theory of
Games II, H. Kuhn and A.W. Tucker (Eds.). Princeton University Press, Princeton,
307–317.

[37] Yongfeng Zhang and Xu Chen. 2020. Explainable Recommendation: A Survey
and New Perspectives. Foundations and Trends® in Information Retrieval 14, 1
(2020), 1–101. https://doi.org/10.1561/1500000066

Main Track AAMAS 2022, May 9–13, 2022, Online

524

https://doi.org/10.1145/3109859.3109913
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1145/1871437.1871515
https://doi.org/10.1145/2187836.2187950
https://doi.org/10.1145/2187836.2187950
https://doi.org/10.1017/S026988891800019X
https://doi.org/10.1016/j.knosys.2019.06.007
https://arxiv.org/abs/2003.13806
https://doi.org/10.3390/electronics8080832
https://doi.org/10.23919/MIPRO.2018.8400040
https://arxiv.org/abs/2005.09331
https://doi.org/10.4230/LIPIcs.ESA.2017.43
https://books.google.gr/books?id=ofI0AAAAMAAJ
https://books.google.gr/books?id=ofI0AAAAMAAJ
https://doi.org/10.1109/ICEC.1994.350037
https://doi.org/10.1145/3240323.3240362
https://doi.org/10.1609/aaai.v34i09.7077
https://doi.org/10.1609/aaai.v34i09.7077
https://doi.org/10.1145/1557019.1557074
https://doi.org/10.1145/3236386.3241340
https://arxiv.org/abs/1706.07269
https://arxiv.org/abs/1811.11839
https://doi.org/10.1007/978-90-481-9707-1_16
https://doi.org/10.1007/s10458-020-09450-1
https://doi.org/10.1007/s10458-020-09450-1
https://doi.org/10.1007/s10458-019-09408-y
https://doi.org/10.1007/978-3-030-28954-6_1
https://doi.org/10.1007/978-3-030-28954-6_1
https://doi.org/10.1561/1500000066

	Abstract
	1 Introduction
	2 A general team formation problem for task allocation
	3 The Justification Algorithm
	4 Identifying User Queries
	5 Query Translation
	6 Problem Transformation
	7 Building Contrastive Explanations
	8 Evaluating explanations
	8.1 Team formation problem and algorithm
	8.2 Evaluation Metrics
	8.3 Results

	9 Conclusions & Future Work
	References

