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ABSTRACT
We develop a game theoretic model of malware protection using

the state-of-the-art sandbox method, to characterize and compute

optimal defense strategies for anti-malware. We model the strategic

interaction between developers of malware (M) and anti-malware

(AM) as a two player game, where AM commits to a strategy of

generating sandbox environments, and M responds by choosing

to either attack or hide malicious activity based on the environ-

ment it senses. We characterize the condition for AM to protect

all its machines, and identify conditions under which an optimal

AM strategy can be computed efficiently. For other cases, we pro-

vide a quadratically constrained quadratic program (QCQP)-based

optimization framework to compute the optimal AM strategy. In

addition, we identify a natural and easy to compute strategy for

AM, which as we show empirically, achieves AM utility that is close

to the optimal AM utility, in equilibrium.
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1 INTRODUCTION
Malicious programs, ormalware (M) for short, are a threat to individ-

uals, companies, and even military units and intelligence agencies.

One approach to stopping malware is to scan suspected programs

with an anti-malware (AM) program, which can check the sus-

pected program against a list of known, bad programs. In response,

malware resort to manipulating its own code dynamically during

runtime to bypass static signature scanning. To counter this, AM

programs execute suspected programs in a contained, simulated

environment, called a sandbox, in an attempt to trick the malware

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

into showing its true malicious activity. This allows the AM to

check program behavior at run-time against a list of known bad

behaviors. In response, malware now checks its environment to

make an intelligent decision on whether to attack by unleashing

its true malicious activity [7]. This raises the question, what is the
optimal way for AM to protect machines defended by it, frommalware
developers who will study its behavior?

The tools of game theory are well suited to analyze the strategic

interaction between malware developers (M) and anti-malware de-

velopers (AM) in our setting of sandboxing, where AM’s strategies

involve the use of sandbox environments to dynamically analyze

malware. Despite the large literature and wide application of game

theoretic analysis of problems in physical [20] and cyber [10, 16, 17]

security, sandboxing has not been analyzed from a game-theoretic

perspective.

We use computational game-theoretic methods to develop strate-

gies and guidelines to improve the state of the art in sandbox anal-

ysis. Unfortunately, existing literature on game theoretic analysis

of malware do not model the sandboxing problem, because the dy-

namics of the game and utility functions we study in this paper are

quite different from previous work. See Section 2 for more details.

We address the following key research question:

How can we model sandboxing as a game and characterize and
compute optimal strategies for the anti-malaware?

Figure 1: High level depiction of the timing of the game.
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1.1 Our Contributions
Our main conceptual contribution is the first game theoretic model

of the strategic behavior between sandboxing AM and M. Figure 1

illustrates the timing and actions of AM and M on a real machine

that AM defends.

Suppose an AM is installed on some (not necessarily all) ma-

chines. The sandbox game has three stages. On each machine that

AM defends, the AM generates a sandbox according to a strategy

𝜋 within which to analyze the potential malware. Given any ma-

chine environment ®𝑚 that M is executed in, M decides an action of

attacking or hiding according to her chosen strategy 𝜌 . The three

stages are:

Stage 1: AM commits to a sandboxing strategy, when it is deployed

on the real machines it defends.

Stage 2: M observes AM’s strategy and responds with an attack

strategy 𝜌 .

Stage 3: If M bypasses the sandbox in stage 2, then it will be run

on the real machine, and attack according to 𝜌 .

We note that in stage 3, M uses the same attack strategy 𝜌 as it

does in stage 2. This is because M’s decision is based only on the en-

vironment it perceives during execution, and M cannot distinguish

between whether an environment corresponds to a real machine

or one that is being emulated by AM in a sandbox.

M’s goal is to successfully attack as many real machines as pos-

sible. AM’s goal is to protect the maximum number of machines it

defends as possible. A real machine is protected if either M attacks in

the sandbox and is caught, or M bypasses the sandbox but chooses

not to attack the real machine.

Our main technical contributions are analytical solutions of

AM-optimal strategies in equilibrium for a wide range of cases,

and practical algorithms to compute such solutions otherwise. We

summarize our results as a set of guidelines for sandboxing AMs in

Section 8. Our main results are:

• When the AM defends every machine, we identify natural and

easy to compute AM-optimal solutions (Theorems 1 and 2). These

results are summarized in Table 5.

• When AM defends at most half of all real machines, there is an

equilibrium solution where AM protects all machines which it

defends, as we show in Theorem 3. A potential application of

this finding is that the deployment setting may be modified by

creating undefended dummy virtual machines that emulate real

machines, which superficially increase the number of machines

where AM is not installed.

• We provide a quadratically constrained quadratic program

(QCQP) framework in Algorithm 1 for computing an AM-optimal

solution in equilibrium for real world settings where no analytical

solution is known.

• We show through theoretical results or experiments that natural

strategies of sandboxing are effective. For example, even on cases

where no analytical solution is known, generating sandbox envi-

ronments using a distribution identical to the the distribution of

real machines in existence yields good AM utility in practice.

2 RELATEDWORK
Anti-analysis. Sandbox is a general term referring to any simu-

lated or contained environments, such as emulation, virtualization,

or debuggers. Although these tools intend to mimic the original

environment, they often do not do so perfectly. These imperfec-

tions allow programs that can detect them to distinguish between

running within sandboxes from running within normal environ-

ments. This gives programs the capability of decision, specifically

to act benignly while in a sandbox and act maliciously when run-

ning in the normal environment, in an attempt to distinguish the

real environment from the artificial, sandbox environment. This

results in a game of the malware inspecting the sandbox as the

anti-malware attempts to inspect the program. Both parties are

attempting inspection and classification.

Bulazel et al. [7] did a recent survey of automated malware

analysis and evasion. There is extensive literature cataloging the

various ways to detect emulators, virtual machines, and debuggers

[6, 15]. There is also extensive work in engineering solutions that

approximate transparent introspection of programs [1, 8].

Formalization. Blackthorne et al. [3] define a formal framework

for environmentally sensitive malware in which they show the

conditions necessary for malware to distinguish sandboxes and

remain undetected. Blackthorne et al. [2] formalize malware inter-

acting with and distinguishing environments through the lens of

cryptography with the label environmental authentication. They

analyze the interaction in terms of correctness, soundness, and key

sources, but they do not suggest any strategies for game players to

use possible equilibria. Dinaburg et al. [9] present a formalization

for transparent malware analysis. Transparent analysis means using

an environment which is impossible to detect by the program be-

ing analyzed, i.e., the analysis environment is transparent. Kang et

al. [12] also briefly formulate the problem of transparent malware

analysis within emulators, but do not offer any further investigation

than the beginnings of describing transparency.

GameTheory. To the best of our knowledge, our work is the first to
formally model the interaction between M and AM via sandboxing

through the lens of game theory. Game theory has been used to

model various problems in cybersecurity. (See [17, 18] and [10, 16]

for recent surveys). However, relatively little literature exists on

game theoretic analysis of the interactions between the developers

of malware and anti-malware.

Sinha et al. [19] discusses techniques developed to address the

challenges of scale, uncertainty, and imperfect observation by the

attacker in security games modeled as Stackelberg games, and ap-

plications to cybersecurity. Stackelberg games have also been used

to model security games involving web applications [21], network

security [11, 22], competition among multiple malwares [13], and

audit games [4, 5].

Our model has a number of differences with previous work. First,

the AM must commit to the same strategy on every machine of the

same type. Unlike security games, when AM can commit to mixed

strategies, there are an infinite number of pure strategies for even

a naïve AM which uses the same strategy on every machine. Each

pure strategy is represented by a vector with a component for each

type of machine whose value correspond to the probability with

which AM creates a sandbox of that type. This means that unfor-

tunately, standard algorithms and techniques for solving security

games do not apply to the sandbox game.
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𝑢M (𝜋, 𝜌) =
∑︁
®𝑟 ∈M

(
1 − ®𝑑®𝑟

)
®𝜌®𝑟︸       ︷︷       ︸

M attacks | No AM

+ ®𝑑®𝑟
[
1 −

∑︁
®𝑚∈M

®𝜋 ®𝑟
®𝑚 ®𝜌 ®𝑚

]
®𝜌®𝑟︸                        ︷︷                        ︸

M evades sandbox and attacks real machine | AM installed

𝑢AM (𝜋, 𝜌) =
∑︁
®𝑟 ∈M

®𝑑®𝑟︸︷︷︸
AM installed

[ ∑︁
®𝑚∈M

[
®𝜋 ®𝑟
®𝑚 ®𝜌 ®𝑚︸︷︷︸

M caught in sandbox

+ ®𝜋 ®𝑟
®𝑚 (1 − ®𝜌 ®𝑚) (1 − ®𝜌®𝑟 )︸                    ︷︷                    ︸

M evades sandbox, then hides

]
+
(
1 −

∑︁
®𝑚∈M

®𝜋 ®𝑟
®𝑚

)
(1 − ®𝜌®𝑟 )︸                        ︷︷                        ︸

No sandbox. M hides

]

Figure 2: Utility functions of AM and M.

3 MODELING THE SANDBOX GAME
We are given a set M of all types of environments, where each

®𝑚 ∈ M is represented by a 𝑘-vector of features (i.e., emulated clock

time, fingerprint, network connection, etc.) that fully and uniquely

describes machines of type ®𝑚. Every real machine presents some

environment in M natively. Similarly, every sandbox generated

by AM presents also presents an environment in M. Table 1

summarizes the notation used throughout this paper.

Real World Settings are described by |M|-vectors ®𝑒 and ®𝑑 . The
®𝑟 -th component of ®𝑒 , denoted ®𝑒®𝑟 is the fraction of all machines

in existence in the real world that are of type ®𝑟 ∈ M. The ®𝑟 -th
component of

®𝑑 (respectively ®1 − ®𝑑) is the fraction of all real

machines that are of type ®𝑚 and are defended (respectively not
defended) by AM. In addition, we will use 𝐷 and 1 − 𝐷 to denote

the proportion of all real machines that defended, and not defended

by AM, respectively.

AM’s Strategy Space is the set Π of all functions 𝜋 that map

each real machine type ®𝑟 ∈ M to an |M|-vector 𝜋 (®𝑟 ) = ®𝜋 ®𝑟

which describes a distribution over M. On any given real

machine of type ®𝑟 ∈ M, the ®𝑚-th component of ®𝜋 ®𝑟
, denoted

®𝜋 ®𝑟
®𝑚 , gives the probability with which AM generates a sand-

box of type ®𝑚 ∈ M on a real machine of type ®𝑟 when AM

uses strategy 𝜋 . The probability that an AM using a strategy

𝜋 does not generate a sandbox on a real machine ®𝑟 is 1−∑ ®𝑚∈M ®𝜋 ®𝑟
®𝑚 .

Malware’s Strategy Space is the set P of all vectors in [0, 1] |M |
.

Each strategy 𝜌 ∈ P is represented by an |M|-vector ®𝜌 . The ®𝑚-th

component of ®𝜌 , denoted ®𝜌 ®𝑚 is the probability with which M

attacks when presented with an environment ®𝑚 ∈ M. Note that

M cannot distinguish between a sandbox and a real machine that

present the same environment. M’s strategy only depends on the

execution environment ®𝑚 presented to it, regardless of whether it

is an environment presented by a real machine or by a sandbox.

Restrictions on strategy space. We say that AM is naíve if it
generates sandboxes with the same probability distribution on ev-

ery type of real machine, i.e., when AM is restricted to a strategy

𝜋 ∈ Π, where for every pair of real machine types ®𝑟, ®𝑟 ′ ∈ M, it

holds that ®𝜋 ®𝑟 = ®𝜋 ®𝑟 ′
. We say that AM is deterministic if for ev-

ery machine ®𝑟 ∈ M, there is a sandbox environment ®𝑚 which is

deterministically always generated by AM in ®𝑟 . Otherwise, AM

is non-deterministic. We say that AM is sophisticated, if AM can

choose different distributions over M to create sandboxes on any

real machine, i.e., its strategy space is all of Π.
Similarly, M is said to be naïve, if its probability of attack does

not depend on the environment it perceives, i.e., for every pair of

possible environment types ®𝑚, ®𝑚′ ∈ M, it holds that ®𝜌 ®𝑚 = ®𝜌 ®𝑚′ .

M is deterministic if M is restricted to strategies 𝜌 , where for each

®𝑚 ∈ M, ®𝜌 ®𝑚 ∈ {0, 1}, i.e., in each environment M can either only

always attack or always hide. Otherwise, M is non-deterministic. M
is sophisticated when its strategy space is all of P.

We note that in our formulation, for AM and M, deterministic

strategies and non-deterministic strategies are pure strategies.

In other words, there are infinite pure strategies, each of which

assigns a number between 0 and 1 to each machine type, and

deterministic strategies simply mean that each component is either

0 or 1 but not in-between.

Utility Function. AM wants to protect machines it defends (but

not all machines). AM’s payoff (utility) is the expected fraction

of real machines which it defends that are not attacked. M’s

payoff is the expected fraction of machines that are successfully

attacked, regardless of whether the machine is defended by AM.

Consequently, given mixed strategies 𝜋 and 𝜌 of AM and M

respectively, we define M’s utility 𝑢M (𝜋, 𝜌) and AM’s utility

𝑢AM (𝜋, 𝜌) as shown in Figure 2. Notice that if M is caught in a

sandbox, it is not allowed to execute on the real machine, and

therefore cannot attack the real machine. Notice also that payoffs

are bound between 0 and 1.

Solution Concept.Wewill focus on characterizing and computing

the pure strategy subgame perfect equilibrium (SPNE) of the game.

This will give us the optimal strategy for AM while M can per-

fectly respond to AM’s strategies. Computing an AM optimal SPNE

solution involves solving the following optimization problem:

max

𝜋,𝜌
𝑢AM (𝜋, 𝜌)

such that 𝜌 ∈ argmax

𝜌∈P
𝑢M (𝜋, 𝜌)

Unfortunately, this involves solving multiple non-convex quadrati-

cally constrained quadratic programs which are generally NP-hard.

To deal with this, we identify several tractable cases, and suggest

practical algorithms for computing the solution otherwise.
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Notation Meaning

M The set of all possible types of environments.

®𝑚 ∈ M An environment in M, which may be presented by either a real machine or a sandbox.

®𝑟 ∈ M An environment type in M presented by a real machine.

®𝑒 |M|-vector where ®𝑒 ®𝑚 denote the fraction of real machines of type ®𝑚 ∈ M.

®𝑑 |M|-vector where ®𝑑 ®𝑚 denotes the fraction of real machines of type ®𝑚 ∈ M that are defended by AM.

𝐷 Fraction of all real machines in existence that are defended AM.

®𝜋 AM’s strategy: maps each possible real machine environment ®𝑟 to a distribution over M of generating sandboxes.

®𝜋 ®𝑟
®𝑚 The probability that AM generates a sandbox of type ®𝑚 given a real machine of type ®𝑟 .

®𝜌 M’s strategy: An |M|-vector where ®𝜌 ®𝑚 denotes the probability that M attacks when presented an environment ®𝑚.

𝑢AM, 𝑢M Utility functions of AM and M.

Table 1: A summary of notation used frequently throughout this paper.

Natural Strategies.We will evaluate the AM-optimal strategies

against some natural strategies as described in Table 2. For example,

in the Existence strategy, AM generates a sandbox of type ®𝑚 with

probability ®𝜋 ®𝑚 = ®𝑒 ®𝑚 , i.e., the fraction of type ®𝑚 machines.

Name ®𝜋 ®𝑚 Distribution

Existence ®𝑒 ®𝑚 Real machines

Defended

®𝑑 ®𝑚
𝐷

Defended machines

Undefended

1− ®𝑑 ®𝑚
1−𝐷 Undefended machines

%Defended

®𝑑 ®𝑚
®𝑒 ®𝑚

∝ % Defended

%Undefended

1− ®𝑑 ®𝑚
®𝑒 ®𝑚

∝ % Undefended

Majority ®𝜋
argmax ®𝑒 ®𝑚 = 1 Majority

Uniform
1

|M| Uniform

Table 2: Natural strategies for AM.

4 SPNE WHEN AM DEFENDS EVERY
MACHINE

We first consider the case where AM defends all machines. In this

case
®𝑑 ®𝑚 = ®𝑒 ®𝑚 for all M ∈ M. We will prove that Existence is the

optimal strategy to generate sandboxes when AM defends all real

machines when AM is naïve in Theorem 1. This involves randomly

generating sandboxes according to the distribution ®𝑒 , i.e., for each
real machine ®𝑟 ∈ 𝑅, and possible environment ®𝑚 ∈ M, ®𝜋 ®𝑟

®𝑚 = ®𝑒 ®𝑚 .

When AM can commit to a sophisticated strategy, the solution is

even more simple and intuitive: deterministically create a sandbox
of the same type as the real machine being defended. In equilibrium,

AM is guaranteed a utility of 0.75, as we prove in Theorem 2.

Note that in the special case where M is naïve, AM’s optimal

strategy is any strategy that always creates a sandbox on any real

machine. This is because a naïve M cannot distinguish between

different types of machines and the game degenerates into a single-

type model. The example below shows different cases where AM

and a non-naïve M are restricted on different strategy spaces.

Example 1. The simple example of Table 3 illustrates the following

natural message about the impact of modeling choices of the game

on the payoff of AM. In general, allowing AM more flexibility,
or placing more restrictions on M leads to a higher payoff

for AM in equilibrium. At a high level, these roughly correspond

to giving AM more resources and constraining the resources of M.

Table 3 illustrates an example of the various equilibrium strate-

gies and payoffs for a setting with two machines 𝐴 and 𝐵 with

®𝑒 ®𝑎 = 0.4 and ®𝑒 ®𝑏 = 0.6. Specifically, the Equilibrium Strategy column

shows the strategies, where its first column is ®𝜋 ®𝑎 for AM and ®𝜌 ®𝑎 for

M; and its second column is ®𝜋 ®𝑏 for AM and ®𝜌 ®𝑏 for M. The exception

is the fourth row where AM takes a sophisticated deterministic

strategy. Here AM’s strategy is to create a sandbox that emulates

the real machine it is defending, by creating a sandbox of type𝐴 for

all real machines 𝐴 and a sandbox of type 𝐵 for all real machines 𝐵.

When AM uses non-deterministic sandboxing strategies to fight

against a deterministic-strategy-onlyM, AM’s utility increases from

0.6 to 0.76 (first row vs. second row in Table 3). If M is also allowed

to be non-deterministic, then AM’s payoff in equilibrium reduces

slightly to 0.75 (third row in Table 3). As another example, allowing

AM to use sophisticated (but still deterministic) strategies to fight

against M increases the utility from 0.6 to 0.75 (first row vs. fourth

row in Table 3).

We consider the setting with two machines 𝐴 and 𝐵 represented

by feature vectors ®𝑎 and
®𝑏 respectively. We start by restricting M’s

ability to be deterministic only.

Naïve Deterministic vs. Naïve Nondeterministic AM (first row

vs. second row in Table 3). Allowing the flexibility of randomized

sandbox generation increases AM’s utility to 0.76 from 0.6 when

AM is restricted to deterministic generation. Suppose AM assigns

probability 𝜋 ∈ [0, 1] to emulate ®𝑎 and 1 − 𝜋 to emulate
®𝑏. M’s

payoff becomes:

max (0.4 × (1 − 𝜋)︸           ︷︷           ︸
Always attack ®𝑎

, 0.6 × 𝜋)︸   ︷︷   ︸
Always attack

®𝑏

Note that when𝑀 ’s strategy is to always attack𝑢𝑀 = 0 since AM

always creates a sandbox, and that when𝑀 always does not attack

𝑢𝑀 = 0 again. It is easy to see that 𝑢𝑀 is minimized when 𝜋 = 0.4,

i.e., AM mimics the distribution of real machines. M is indifferent

between always attacking ®𝑎 or always attacking
®𝑏, which results in

a payoff of 0.76 to AM.

Remark: When AM is Naïve and deterministic and M is sophis-

ticated, the best strategy for AM is Majority . Note that in this

case AM’s strategy is to pick a single type ®𝑚 and create a sandbox

of type ®𝑚 on all real machines. Then, M’s best response is attacking
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Strategy space

Players

Equilibrium Strategy

Utility

AM M Machine 𝐴 (®𝑒 ®𝑎 = 0.4) Machine 𝐵 (®𝑒 ®𝑏 = 0.6)

Naïve deterministic deterministic

AM 0 1 0.6

M 1 0 0.4

Naïve deterministic

AM 0.4 0.6 0.76

M 1 0 0.24

Naïve Sophisticated

AM 0.4 0.6 0.75

M 0.5 0.5 0.25

Sophisticated deterministic Sophisticated

AM Emulate A Emulate B 0.75

M 0.5 0.5 0.25

Table 3: Example of the equilibrium strategies and payoffs for AM and M for two machines 𝐴 and 𝐵 with ®𝑒 ®𝑎 = 0.4 and ®𝑒 ®𝑏 = 0.6.

®𝑚 with probability 0.5, and always attacking other types. Therefore,

𝑢𝑀 = 1 − 0.75®𝑒 ®𝑚 and 𝑢𝐴𝑀 = 0.75®𝑒 ®𝑚 . Therefore, AM’s utility is

maximized when it picks the type with the highest proportion to

emulate as a sandbox environment, which is exactly the strategy

Majority .

Sophisticated and non-deterministic M (third row vs. second row

in Table 3). Suppose AM assigns probability 𝜋 ∈ [0, 1] to emulate

®𝑎 and 1 − 𝜋 to emulate
®𝑏, and suppose M chooses to attack with

probability 𝜌𝐴 (respectively, 𝜌𝐵 ) in environment ®𝑎 (respectively,
®𝑏).

M’s payoff becomes

0.4 × (𝜋 (1 − 𝜌𝐴) + (1 − 𝑥) (1 − 𝜌𝐵)) × 𝜌𝐴︸                                                  ︷︷                                                  ︸
M succeeds on machine A

+

0.6 × (𝜋 (1 − 𝜌𝐴) + (1 − 𝜋) (1 − 𝜌𝐵)) × 𝜌𝐵︸                                                  ︷︷                                                  ︸
M succeeds on machine B

.
(1)

While this formula seems hard to solve analytically, observe

that no matter what 𝜋 is, M’s payoff is always 0.25 when it chooses

𝜌𝐴 = 𝜌𝐵 = 0.5. Also notice that when 𝜋 = 0.4, Equation (1) becomes

(0.4𝜌𝐴 + 0.6𝜌𝐵) (0.4(1 − 𝜌𝐴) + 0.6(1 − 𝜌𝐵)), which is maximized at

𝜌𝐴 = 𝜌𝐵 = 0.5 giving the equilibrium shown in Table 3.

Sophisticated deterministic AM vs. Nondeterministic M. This is the
last row in Table 3. Similarly to the naíve mixed vs. mixed case,

M can choose 𝜌𝐴 = 𝜌𝐵 = 0.5 to guarantee a payoff of 0.25. AM’s

optimal strategy now becomes always emulating the machine being

defended. ■

Theorems 1 and 2 follow from the observation that (1) when AM

defends all machines, we are faced with a zero-sum game, and (2)

identifying an equilibrium under which AM achieves the highest

possible utility under any equilibrium.

Theorem 1. When AM is installed on every real machine, and AM
is naïve, and can commit to mixed strategies, the natural strategy
Existence , is optimal in equilibrium.

Proof. When AM is naïve, it takes the same distribution for

all types of machine ®𝑟 ∈ M. Therefore, we use ®𝜋 to denote AM’s

strategy. Then we can rewrite the utility of M 𝑢𝑀 (𝜋, 𝜌) as the
following formula: 𝑢𝑀 (𝜋, 𝜌) = (∑®𝑟 ∈M ®𝑒®𝑟 ®𝜌®𝑟 ) (1 −

∑
®𝑚∈M ®𝜋 ®𝑚 ®𝜌 ®𝑚).

Note that since all machines are defended, we have
®𝑑®𝑟 = ®𝑒®𝑟 for all

®𝑟 ∈ M. We also have 𝑢𝐴𝑀 (𝜋, 𝜌) = 1 − 𝑢𝑀 (𝜋, 𝜌).
We begin by noting that for any AM strategy 𝜋 ,𝑀 can guarantee

a utility of at least 0.25 when𝑀 uses a naïve strategy of attacking

with probability 0.5, because
∑

®𝑟 ∈M ®𝑒®𝑟 = 1,

∑
®𝑚∈M ®𝜋 ®𝑚 ≤ 1 and

𝑀’s utility is

𝑢𝑀 (𝜋, 𝜌) = (0.5
∑︁
®𝑟 ∈M

®𝑒®𝑟 ) (1− 0.5
∑︁
®𝑚∈M

®𝜋 ®𝑚) ≥ 0.5× (1− 0.5) = 0.25.

Therefore, for any choice of 𝜋 for AM, if M selects a best response,

𝑢𝐴𝑀 (𝜋, 𝜌) ≤ 0.75.

Now, consider the case where AM adopts the strategy Exis-

tence 𝜋∗ where ®𝜋∗®𝑚 = ®𝑒 ®𝑚 for every ®𝑟 ∈ M. Then 𝑢𝑀 (𝜋, 𝜌) =( ∑
®𝑟 ∈M ®𝑒®𝑟 ®𝜌®𝑟

) (
1 − ∑

®𝑚∈M ®𝑒 ®𝑚 ®𝜌 ®𝑚
)
. In order to maximize 𝑢𝑀 , we

consider its derivative:

𝜕𝑢𝑀

𝜕 ®𝜌®𝑟
= ®𝑒®𝑟

(
1 − 2

∑︁
®𝑚∈M

®𝑒 ®𝑚 ®𝜌 ®𝑚
)

Note that when ®𝜌 ®𝑚 = 0.5 for all ®𝑚 ∈ M (M attacks every type

with probability 0.5),
𝜕𝑢𝑀

𝜕 ®𝜌 ®𝑟
= 0 for every ®𝑚 ∈ M. and 𝑢𝑀 ( ®𝜋, ®𝜌) is

maximized. Then we have 𝑢𝑀 = 0.25 and 𝑢𝐴𝑀 = 0.75 which is

the highest utility that AM can obtain in equilibrium. Therefore,

Existence is an AM-optimal strategy in equilibrium. □

Theorem 2. When AM is installed on every real machine, and AM
is sophisticated, an AM optimal strategy in equilibrium is to emulate
the current machine, i.e., 𝜋 (®𝑟, ®𝑟 ) = 1 for every real machine ®𝑟 .

Proof. When AM is sophisticated, 𝑢𝑀 (𝜋, 𝜌) = ∑
®𝑟 ∈M ®𝑒®𝑟 ®𝜌®𝑟

(
1 −∑

®𝑚∈M ®𝜋 ®𝑟
®𝑚 ®𝜌 ®𝑚

)
. First, we note again that if M uses a naïve strategy

of attacking with probability 0.5, we have

𝑢𝑀 (𝜋, 𝜌) = 0.5
∑︁
®𝑟 ∈M

®𝑒®𝑟
(
1 − 0.5

∑︁
®𝑚∈M

®𝜋 ®𝑟
®𝑚
)
≥ 0.25

∑︁
®𝑟 ∈M

®𝑒®𝑟 = 0.25.

Therefore, M’s utility is at least 0.25 for any AM strategy, and

𝑢𝐴𝑀 (𝜋, 𝜌) ≤ 0.75 for any 𝜋 whenever M takes a best response.

Then we only need to show that M attacking with probability 0.5

is the best response when AM set 𝜋 ®𝑟
®𝑟 = 1 for every real machine ®𝑟 .

Note that in this case, M’s utility is 𝑢𝑀 (𝜋, 𝜌) = ∑
®𝑟 ∈M ®𝑒®𝑟 ®𝜌®𝑟

(
1− ®𝜌®𝑟

)
.

We can easily find that this is maximized at ®𝜌®𝑟 = 0.5 for every

®𝑟 ∈ M, and 𝑢𝑀 = 0.25. Therefore, 𝑢𝐴𝑀 = 0.75when AM set ®𝜋 ®𝑟
®𝑟 = 1,

which is the maximum AM can achieve. Therefore, we conclude

that ®𝜋 ®𝑟
®𝑟 = 1 is an optimal strategy for AM in equilibrium. □

5 COMPUTING SPNEWHEN THERE ARE
UNDEFENDED MACHINES

In this section, we consider the case where AM defends at most

half the real machines, there is an AM-optimal strategy where

Main Track AAMAS 2022, May 9–13, 2022, Online

1205



every machine that AM defends is protected in equilibrium, and

Undefended is one such strategy.

Theorem3. When atmost half of all machines are defended (𝐷 ≤ 1

2
),

there exists an equilibrium solution where AM protects every defended
machine (AM utility is 𝐷), and M always attacks. Specifically, Un-
defended is an AM-optimal strategy in equilibrium, for which M’s
best response is to always attack.

Proof. We start by deriving the utility M receives if it always

attacks. We start by noting that given AM’s naïve strategy 𝜋 , M

evades 𝐷 (1 −∑
®𝑚∈M ®𝜋 ®𝑚 ®𝜌 ®𝑚) sandboxes in expectation. However,

M does not derive utility from machines on which it bypasses the

sandbox but does not attack on the real machine which occurs with

expectation (1−∑ ®𝑚∈M ®𝜋 ®𝑚 ®𝜌 ®𝑚)∑®𝑟 ∈M ®𝑑®𝑟 (1− ®𝜌®𝑟 ). Thus, we rewrite
M’s utility as: 𝑢M =

∑
®𝑚∈M

(
1 − ®𝑑 ®𝑚

)
®𝜌 ®𝑚 + 𝐷 (1 − ∑

®𝑚∈M ®𝜋 ®𝑚 ®𝜌 ®𝑚)

− (1 − ∑
®𝑚∈M ®𝜋 ®𝑚 ®𝜌 ®𝑚)∑®𝑟 ∈M ®𝑑®𝑟 (1 − ®𝜌®𝑟 ) =

∑
®𝑚∈M ®𝜌 ®𝑚 (1 − ®𝑑 ®𝑚 −

𝐷 ®𝜋 ®𝑚) + 𝐷 − (1 −∑
®𝑚∈M ®𝜋 ®𝑚 ®𝜌 ®𝑚)∑®𝑟 ∈M ®𝑑®𝑟 (1 − ®𝜌®𝑟 ) .

Note that whenever 𝐷 ®𝜋 ®𝑚 ≤
(
1 − ®𝑑 ®𝑚

)
for every ®𝑚 ∈ M, we

have that 𝑢𝑀 is maximized when ®𝜌 ®𝑚 = 1 for every ®𝑚 ∈ M. This

is because ®𝜌 ®𝑚 ∈ [0, 1] for every ®𝑚 ∈ M, and 𝐷 ®𝜋 ®𝑚 − (1 − ®𝑑 ®𝑚) ≤ 0

for every ®𝑚 ∈ M. Notice that when M always attacks, AM gets

utility 𝐷 when it always creates a sandbox, which is the maximum

possible utility AM can get, and therefore optimal.

It is easy to see that when AM uses the natural strategy Unde-

fended , i.e., setting ®𝜋 ®𝑚 =
1− ®𝑑 ®𝑚
1−𝐷 , the condition 𝐷 ®𝜋 ®𝑚 ≤

(
1 − ®𝑑 ®𝑚

)
is satisfied for every ®𝑚, and that AM creates a sandbox on every

defended real machine, giving AM a utility of 𝐷 in equilibrium.

Therefore, Undefended is an optimal strategy. □

Example 2. We now consider a world with three types of ma-

chines A, B, and C, with features ®𝑎, ®𝑏, and ®𝑐 , respectively. 10% of

real machines are of type ®𝑎, 20% of type
®𝑏, and the rest are of type ®𝑐 .

AM is installed on 70% of machines of type ®𝑎 and type
®𝑏, and 30%

machines of type ®𝑐 .
When AM’s strategy is Undefended , M’s best response is to

always attack, allowing AM to protect 100% of machines it defends.

In comparison, AM’s utility decreases to protecting only 92.2% of

machines it defends, if it uses the Existence strategy. This is in

sharp contrast to our findings for AM optimal solutions when AM

defends all machines that we observed in Section 4.

Here, we give a detailed analysis of M’s utility when AM uses

the strategy Existence . We list the relevant values in Table 4.

Type ®𝑟 ®𝑒®𝑟 = ®𝜋®𝑟 ®𝑑®𝑟 1 − ®𝑑®𝑟 𝐷 ®𝜋®𝑟
A 0.1 0.07 0.03 0.42

B 0.2 0.14 0.06 0.84

C 0.7 0.49 0.49 0.294

Total 1 𝐷 = 0.42 1 − 𝐷 = 0.58

Table 4: Values for computing 𝑢𝑀 in Example 2 when AM’s
strategy is Existence .

When AM uses Existence , ®𝜋®𝑟 = ®𝑒®𝑟 for every ®𝑟 ∈ M. Note

that for A and B, we have 1 − ®𝑑 ®𝑎 < 𝐷 ®𝜋 ®𝑎 and 1 − ®𝑑 ®𝑏 < 𝐷 ®𝜋 ®𝑏 . On

the other hand, we have 1 − ®𝑑®𝑐 > 𝐷 ®𝜋®𝑐 . As we show below, in the

best response strategy ®𝜌 for M, ®𝜌 ®𝑎 and ®𝜌 ®𝑏 do not equal to 1, while

®𝜌®𝑐 = 1.

We first compute the derivative of 𝑢𝑀 based on the formula used

in the proof of Theorem 3.

𝜕𝑢𝑀

𝜕 ®𝜌 ®𝑚
=

(
1 − ®𝑑 ®𝑚 − 𝐷 ®𝜋 ®𝑚

)
+ ®𝑑 ®𝑚 (1 −

∑︁
®𝑟 ∈M

®𝜋®𝑟 ®𝜌®𝑟 ) + ®𝜋 ®𝑚
∑︁
®𝑟 ∈M

®𝑑®𝑟 (1 − ®𝜌®𝑟 )

=®𝑒 ®𝑚 − ®𝑑 ®𝑚
∑︁
®𝑟 ∈M

®𝜋®𝑟 ®𝜌®𝑟 − ®𝜋 ®𝑚
∑︁
®𝑟 ∈M

®𝑑®𝑟 ®𝜌®𝑟 .

Substituting the values in Table 4, we get:

𝜕𝑢𝑀

𝜕 ®𝜌 ®𝑎
=0.1 − 0.014®𝜌 ®𝑎 − 0.028®𝜌 ®𝑏 − 0.07®𝜌®𝑐

𝜕𝑢𝑀

𝜕 ®𝜌 ®𝑏
=0.2 − 0.028®𝜌 ®𝑎 − 0.056®𝜌 ®𝑏 − 0.14®𝜌®𝑐

𝜕𝑢𝑀

𝜕 ®𝜌®𝑐
=0.7 − 0.07®𝜌 ®𝑎 − 0.14®𝜌 ®𝑏 − 0.294®𝜌®𝑐

Note that
𝜕𝑢𝑀

𝜕 ®𝜌 ®𝑐
is always positive. Therefore ®𝜌®𝑐 = 1, and M always

attacks on ®𝑐 . On the other hand,
𝜕𝑢𝑀

𝜕 ®𝜌 ®𝑎
and

𝜕𝑢𝑀

𝜕 ®𝜌 ®𝑏
equals to zero simul-

taneously when 0.014®𝜌 ®𝑎 + 0.028®𝜌 ®𝑏 = 0.03. (Note that
𝜕𝑢𝑀

𝜕 ®𝜌 ®𝑏
= 2

𝜕𝑢𝑀

𝜕 ®𝜌 ®𝑎
).

Therefore, ®𝜌 ®𝑎 = ®𝜌 ®𝑏 = 5

7
, and ( 5

7
, 5
7
, 1) is an optimal strategy for M.

Next, we consider the fraction of defended machines AM pro-

tects. Note that due to M’s optimal strategy, M can only bypass the

sandbox when AM generates either a type A or B sandbox. This

means M can bypass the sandbox with probability
2

7
. Then, the

probability that a defended machine is attacked by M is:

0.3 × 2

7

× (0.3 × 5

7

+ 0.7 × 1) ≈ 0.078

Therefore, when AM adopts the Existence strategy, it successfully

protects only 92.2% of machines it defends. ■

Impact. Theorem 3 raises interesting possibilities. One such pos-

sibility is to cheaply create sufficiently many virtual or dummy

machines to manipulate the setting so that 𝐷 ≤ 1

2
, allowing us to

trade off some computational resources for complete protection. At

a high level, the idea is similar to honeypots in other cybersecurity

problems.

6 COMPUTING M’S BEST RESPONSE
In this paragraph we provide a method to compute M’s best re-

sponse given a fixed AM strategy. This will be the basis of our

QCQP framework. Before we proceed further, we rewrite the utility

functions of AM and M in vector notation for convenience:

𝑢M ( ®𝜋, ®𝜌) = (®1 − ®𝑑) · ®𝜌︸      ︷︷      ︸
M attacks | No AM

+ ®𝑑 · ®𝜌 − ®𝑑 · ((Π · ®𝜌) ⊙ ®𝜌)︸                        ︷︷                        ︸
M not caught, attacks | AM installed

= ®𝑒 · ®𝜌 − ®𝑑 · ((Π · ®𝜌) ⊙ ®𝜌)

𝑢AM ( ®𝜋, ®𝜌) = ®𝑑 · (1 − ®𝜌) + ®𝑑 · ((Π · ®𝜌) ⊙ ®𝜌)
where ⊙ is the component-wise multiplication operator between

two vectors, and Π is the matrix of AM’s strategies, whose ®𝑟 -th row-

vector is ®𝜋 ®𝑟
. For a fixed AM strategy 𝜋 , we can solve for M’s best

response 𝜌∗ using the Lagrange multipliers for the optimization

Main Track AAMAS 2022, May 9–13, 2022, Online

1206



AM M

AM-optimal strategy

Randomized Sophisticated Randomized Sophisticated

* * * No Always creating a sandbox

No No * Yes Majority

* Yes * Yes Emulate machine being defended

Yes No * Yes Existence

Table 5: Guidelines when AM is installed on every real machine. ∗ indicates that added flexibility has no affect.

problem max ®𝜌 𝑢𝑀 ( ®𝜋, ®𝜌) which are: ∀ ®𝑚 ∈ M, 𝐿 ®𝑚 =
𝜕𝑢M ( ®𝜋, ®𝜌)

𝜕 ®𝜌 ®𝑚
=

®𝑒 ®𝑚 − 2
®𝑑 ®𝑚 ®𝜋 ®𝑚 ®𝜌 ®𝑚 −∑

®𝑙 ∈M\{ ®𝑚} (
®𝑑 ®𝑚 ®𝜋®𝑙 +

®𝑑®𝑙 ®𝜋 ®𝑚) ®𝜌𝑙 .
Computing ®𝜌∗ involves computing the solutions to the following

3
|M |−1 systems of linear equations, and picking the solution that is

feasible and maximizes M’s utility. Each system of linear equations

is indexed by an |M|-vector ®𝑐 ∈ {0, 1, 𝑏} |M |
(except ®𝑐 = ®0), where

𝑏 means “between 0 and 1”, and is constructed by adding the |M|
equations as follows: (i) ®𝜌 ®𝑚 = 0 if ®𝑐 ®𝑚 = 0, (ii) ®𝜌 ®𝑚 = 1, if ®𝑐 ®𝑚 = 1, or

(iii) 𝐿 ®𝑚 = 0 if ®𝑐 ®𝑚 = [0, 1].

7 QCQP FRAMEWORK FOR COMPUTING
AM-OPTIMAL SPNE

We now shift our focus to settings where 𝐷 > 1

2
. Algorithm 1

provides a general quadratically constrained quadratic program

(QCQP) formulation of the problem of computing AM-optimal

SPNEs. We simultaneously solve for AM’s strategy 𝜋∗ and M’s

strategy 𝜌∗ by setting 𝑢AM to be the objective, under the constraint

that 𝜌∗ is the best response to the output strategy for AM 𝜋∗.

Algorithm 1 QCQP to compute AM-optimal SPNE.

1: Input: A real world setting ®𝑒, ®𝑑 .
2: Output: SPNE 𝜋∗, 𝜌∗.
3: An empty set of SPNE solutions 𝑆 .

4: for each ®𝑐 ∈ {0, 1, 𝑏} |M | do
5: Create a QCQP problem 𝑃 with variables ®𝜌 , ®𝜋 .
6: Set the objective as max ®𝜋, ®𝜌 𝑢AM ( ®𝜋, ®𝜌).
7: for each ®𝑚, ®𝑐 ®𝑚 add the binding constraints on ®𝜌 ®𝑚 do
8: if ®𝑐 ®𝑚 = 0, add the constraint ®𝜌 ®𝑚 = 0.

9: if ®𝑐 ®𝑚 = 1, add the constraint ®𝜌 ®𝑚 = 1.

10: if ®𝑐 ®𝑚 = 𝑏, add ®𝜌 ®𝑚 ∈ [0, 1], and 𝐿 ®𝑚 = 0.

11: Feasibility constraints ®𝜋 ®𝑚 ∈ [0, 1],∀ ®𝑚, and ®𝜋.®1 ≤ 1.

12: Compute the solution ®𝜋, ®𝜌 .
13: Test feasibility and constraint violations.

14: Fix ®𝜋 , and compute M’s best response ®𝜌 ′ to ®𝜋 .
15: if 𝑢M ( ®𝜋, ®𝜌) ≥ 𝑢M ( ®𝜋, ®𝜌 ′) then
16: Add ®𝜋, ®𝜌 as an SPNE to 𝑆 .

return Return the SPNE from 𝑆 with the highest AM utility.

Algorithm 1 involves (1) enumerating M’s possible responses

represented by the possible values that ®𝑐 (line 7-10) can take on.

For each ®𝑐 , the algorithm solves the QCQP problem to compute an

optimal AM strategy ®𝜋 in equilibrium and the corresponding best

response strategy ®𝜌 of M strategy (line 12), under the constraints ®𝑐 .
Notice that here, ®𝜋 is an optimal AM strategy in equilibrium when

M is constrained by ®𝑐 . In line 13, the algorithm tests constraint viola-

tions and discards the solution if some constraints are violated. This

test is necessary because of limitations of current QCQP solvers. In

lines 14-16, we fix the AM strategy to be ®𝜋 , and compute ®𝜌 ′ which
is M’s best response to ®𝜋 without any constraints on M, using the

technique described in Section 6, and test if 𝑢M ( ®𝜋, ®𝜌) ≥ 𝑢M ( ®𝜋, ®𝜌 ′).
If the inequality holds, the constrained best response ®𝜌 is also M’s

global best response, and ( ®𝜋, ®𝜌) is an equilibrium, and added to 𝑆 .

If the inequality does not hold, the algorithm discards the solution.

Finally, the algorithm chooses the equilibrium with the highest AM

utility from 𝑆 .

When AM is installed only on machines of a single type, we can

solve for AM’s optimal strategy efficiently as follows. The algorithm

follows from the observation that 𝑢AM becomes a linear function

in ®𝜋 , with no critical points in the interval [0, 1]. Thus we pick the

solution which maximizes AM’s utility from solving the 3
|M | − 1

sets of equations for every combination of setting ®𝜋 ®𝑚 ’s to either

0 or 1 and the corresponding Lagrangian first order conditions on

M’s strategy.

8 GUIDELINES FOR AM
Based on Theorems 1, 2 and 3, we refer to a setting as easy, if either
AM defends all machines, or it defends at most half of all machines.

In these cases, we have analytical solutions to AM optimal SPNE.

We refer to other settings as hard, and solve them using our QCQP-

based Algorithm 1.

Here, we summarize our findings and provide guidelines for

sandboxing AMs. Specifically, we answer the following questions

through experiments: Are there natural and easy to compute
strategies for AM, assuming M best responds, without compromising
utility when compared to the optimal strategy? We consider some

natural strategies which are summarized in Table 2.

Guidelines for Easy Settings.

• When AM defends every real machine, Table 5 summarizes the

AM-optimal strategies under various combinations of restrictions

on strategy spaces of AM and M.

• When AM defends less than half of all real machines, AM should

use the Undefended strategy.

• When AM defends a single type of real machine, AM should use

the algorithm in Section 7 to compute an optimal strategy in

equilibrium.

For hard settings, the QCQP SPNE computed using Algorithm 1

and the Existence strategy yield AM utility close to that of the

BruteForce SPNE on average. Defended also performs consistently

well in practice, yielding AM utility close to both QCQP and Exis-

tence strategies on average.
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8.1 Experimental Setup
To evaluate various sandboxing strategies for hard settings, we

create a dataset of 1000 settings by generating settings involving

machines of two types𝐴, 𝐵 i.i.d. and retaining only the hard settings.

For each hard setting, we compute AM’s utility in the QCQP SPNE

solution, a solution computed using brute force search which we

call BruteForce, as well as AM’s utility when AM plays each of the

natural strategies in Table 2 and M best responds.

We use the QCQP
1
[14] extension of the CVXPY package using

the suggest and improve method. For each subproblem, we compute

10 solutions with random initial suggestions and pick the solution

with the highest AM utility. Solutions are computed using the

alternating direction method of multipliers (ADMM). We discard

solutions with large constraint violations (Line 13 in Algorithm 1).

Then we fix AM’s strategy and compute M’s best response using

the Lagrangian first order conditions as discussed in Section 6. We

only retain solutions for which M’s utility using the QCQP solution

is within 0.01 of M’s utility using the best response (Line 14-16 in

Algorithm 1).

8.2 Experimental Results

(a) AM utility of QCQP solution against natural AM strategies.

(b) AM utility with real strategy against other AM strategies.

Figure 3: Difference in AM utility using QCQP and Exis-

tence vs other natural strategies, and benchmarked against
BruteForce.

In Figure 3, we report the differences between AM’s utilities

using the QCQP SPNE solution QCQP SPNE solution (Figure 3 (a)),

1
https://github.com/cvxgrp/qcqp

and when AM plays the Existence strategy and M best responds

(Figure 3 (b)), respectively against the AM utilities obtained when

AM uses one of the other natural strategies, as well as AM utility in

the SPNE computed using BruteForce as a benchmark. BruteForce

was obtained by discretizing AM and M’s strategy spaces in 0.01

intervals.

Guidelines for Hard Settings.

• Existence yields AM utility close to BruteForce strategy when

M best responds.

• On average AM utility with both Existence and QCQP strategies

are close to AM utility in the BruteForce SPNE. Among all natural

strategies, Existence consistently outperforms or matches other

natural strategies, and even beats QCQP strategies on 31.023% of

simulated settings.

• On average, both QCQP and Existence strategies are close to

each other in terms of AM utility with some exceptions where

the solver failed to find a feasible solution that did not violate the

first order conditions. The two methods complement each other,

as shown in Figure 3, where we observe that they outperform

each other depending on the setting.

• If AM does not know about the distribution ®𝑒 of real machines,

sandboxing according to Defended is a viable alternative and

works well on average.

9 CONCLUSIONS AND FUTUREWORK
We provided the first game theoretic analysis of the sandbox game

and the first theoretical results and practical algorithms for sand-

boxing. Specifically, our results provide concrete guidelines for

deploying sandboxing AMs, allowing an AM developer to compute

AM-optimal strategies under several natural restrictions on the

strategy space of AM and M which correspond to different prac-

tical considerations in the deployment of AM and M. When AM

either defends every machine or defends fewer than half of all real

machines, we identify natural and easy to compute strategies that

are optimal for AM in equilibrium. The problem of computing an

optimal AM strategy becomes harder when AM defends more than

half of the real machines but not all of them. Our QCQP algorithm

compute an optimal AM strategy but is computationally expensive.

However, as we show empirically, the natural and easy to compute

Existence strategy achieves AM utility that is close to optimal in

practice.

There are several exciting avenues for future work: selecting AM

strategies that are robust to M’s selection of strategies in response

to AM, and modeling the resource constraints as AM’s ability to

generate sandboxes, or M’s inability to perfectly observe AM. In-

deed, AM and M may often have different levels of information

about a given deployment or constraints on the computational re-

sources at their disposal. For example, commercially distributed

AM may not be aware of the exact distribution of real machines

where it may be deployed, and therefore be forced to commit to a

naïve strategy. While our results already identify some natural and

easy to compute AM-optimal solutions, fully exploring the impact

of different constraints of information and computational resources

on AM and M, and how to compute effective strategies for AM are

an interesting question for future work.
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