Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Optimal Download Cost of Private Information Retrieval for Arbitrary Message Length

Authors Info & Claims
Published:01 December 2017Publication History
Skip Abstract Section

Abstract

A private information retrieval (PIR) scheme is a mechanism that allows a user to retrieve any one out of <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> messages from <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> non-communicating replicated databases, each of which stores all <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> messages, without revealing anything (in the information theoretic sense) about the identity of the desired message index to any individual database. If the size of each message is <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula> bits and the total download required by a PIR scheme from all <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> databases is <inline-formula> <tex-math notation="LaTeX">$D$ </tex-math></inline-formula> bits, then <inline-formula> <tex-math notation="LaTeX">$D$ </tex-math></inline-formula> is called the download cost and the ratio <inline-formula> <tex-math notation="LaTeX">$L/D$ </tex-math></inline-formula> is called an achievable rate. For fixed <inline-formula> <tex-math notation="LaTeX">$K,N\in \mathbb {N}$ </tex-math></inline-formula>, the capacity of PIR, denoted by <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula>, is the supremum of achievable rates over all PIR schemes and over all message sizes, and was recently shown to be <inline-formula> <tex-math notation="LaTeX">$C=(1+1/N+1/N^{2}+\cdots +1/N^{K-1})^{-1}$ </tex-math></inline-formula>. In this paper, for arbitrary <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula>, we explore the minimum download cost <inline-formula> <tex-math notation="LaTeX">$D_{L}$ </tex-math></inline-formula> across all PIR schemes (not restricted to linear schemes) for arbitrary message lengths <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula> under arbitrary choices of alphabet (not restricted to finite fields) for the message and download symbols. If the same <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula>-ary alphabet is used for the message and download symbols, then we show that the optimal download cost in <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula>-ary symbols is <inline-formula> <tex-math notation="LaTeX">$D_{L}=\lceil \frac {L}{C}\rceil$ </tex-math></inline-formula>. If the message symbols are in <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula>-ary alphabet and the downloaded symbols are in <inline-formula> <tex-math notation="LaTeX">$M'$ </tex-math></inline-formula>-ary alphabet, then we show that the optimal download cost in <inline-formula> <tex-math notation="LaTeX">$M'$ </tex-math></inline-formula>-ary symbols, <inline-formula> <tex-math notation="LaTeX">$D_{L}\in \{\lceil ~({L'}/{C})\rceil, \lceil ~({L'}/{C}\rceil -1,\lceil ~({L'}/{C})\rceil -2\}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$L'= \lceil L \log _{M'} M\rceil$ </tex-math></inline-formula>, i.e., the optimal download cost is characterized to within two symbols.

References

  1. [1] Chor B., Goldreich O., Kushilevitz E., and Sudan M., “Private information retrieval,” in Proc. 36th Annu. Symp. Found. Comput. Sci., 1995, pp. 4150.Google ScholarGoogle Scholar
  2. [2] Chor B., Kushilevitz E., Goldreich O., and Sudan M., “Private information retrieval,” J. ACM, vol. 45, no. 6, pp. 965981, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. [3] Ambainis A., “Upper bound on the communication complexity of private information retrieval,” in Automata, Languages and Programming. London, U.K.: Springer-Verlag, 1997, pp. 401407.Google ScholarGoogle Scholar
  4. [4] Beimel A., Ishai Y., and Kushilevitz E., “General constructions for information-theoretic private information retrieval,” J. Comput. Syst. Sci., vol. 71, no. 2, pp. 213247, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Beimel A., Ishai Y., Kushilevitz E., and Raymond J.-F., “Breaking the $O(n^{1/(2k-1)})$ barrier for information-theoretic private information retrieval,” in Proc. 43rd Annu. IEEE Symp. Found. Comput. Sci., Nov. 2002, pp. 261270.Google ScholarGoogle Scholar
  6. [6] Yekhanin S., “Locally decodable codes and private information retrieval schemes,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2007.Google ScholarGoogle Scholar
  7. [7] Dvir Z. and Gopi S., “2-Server PIR with sub-polynomial communication,” in Proc. 47th Annu. ACM Symp. Theory Comput. (STOC), 2015, pp. 577584.Google ScholarGoogle Scholar
  8. [8] Beimel A., Ishai Y., and Malkin T., “Reducing the servers computation in private information retrieval: PIR with preprocessing,” in Advances in Cryptology—CRYPTO. Berlin, Germany: Springer-Verlag, 2000, pp. 5573.Google ScholarGoogle Scholar
  9. [9] Gertner Y., Goldwasser S., and Malkin T., “A random server model for private information retrieval,” in Randomization and Approximation Techniques in Computer Science. Berlin, Germany: Springer-Verlag, 1998, pp. 200217.Google ScholarGoogle Scholar
  10. [10] Di-Crescenzo G., Ishai Y., and Ostrovsky R., “Universal service-providers for database private information retrieval,” in Proc. 17th Annu. ACM Symp. Principles Distrib. Comput., 1998, pp. 91100.Google ScholarGoogle Scholar
  11. [11] Shah N., Rashmi K., and Ramchandran K., “One extra bit of download ensures perfectly private information retrieval,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Mar. 2014, pp. 856860.Google ScholarGoogle Scholar
  12. [12] Chan T. H., Ho S.-W., and Yamamoto H., “Private information retrieval for coded storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Nov. 2015, pp. 28422846.Google ScholarGoogle Scholar
  13. [13] Fazeli A., Vardy A., and Yaakobi E., “Codes for distributed PIR with low storage overhead,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Nov. 2015, pp. 28522856.Google ScholarGoogle Scholar
  14. [14] Tajeddine R. and Rouayheb S. E.. (Feb. 2016). “Private information retrieval from MDS coded data in distributed storage systems.” [Online]. Available: https://arxiv.org/abs/1602.01458Google ScholarGoogle Scholar
  15. [15] Rao S. and Vardy A.. (May 2016). “Lower bound on the redundancy of PIR codes.” [Online]. Available: https://arxiv.org/abs/1605.01869Google ScholarGoogle Scholar
  16. [16] Blackburn S. and Etzion T.. (Jul. 2016). “PIR array codes with optimal PIR rate.” [Online]. Available: https://arxiv.org/abs/1607.00235Google ScholarGoogle Scholar
  17. [17] Simon Blackburn T. E. R. and Paterson M. B.. (Sep. 2016). “PIR schemes with small download complexity and low storage requirements.” [Online]. Available: https://arxiv.org/abs/1609.07027Google ScholarGoogle Scholar
  18. [18] Banawan K. and Ulukus S.. (Sep. 2016). “The capacity of private information retrieval from coded databases.” [Online]. Available: https://arxiv.org/abs/1609.08138Google ScholarGoogle Scholar
  19. [19] Zhang Y., Wang X., Wei H., and Ge G.. (Sep. 2016). “On private information retrieval array codes.” [Online]. Available: https://arxiv.org/abs/1609.09167Google ScholarGoogle Scholar
  20. [20] Sun H. and Jafar S. A.. (Feb. 2016). “The capacity of private information retrieval.” [Online]. Available: https://arxiv.org/abs/1602.09134Google ScholarGoogle Scholar
  21. [21] Sun H. and Jafar S. A.. (Jan. 2016). “Blind interference alignment for private information retrieval.” [Online]. Available: https://arxiv.org/abs/1601.07885Google ScholarGoogle Scholar
  22. [22] Sun H. and Jafar S. A.. (May 2016). “The capacity of robust private information retrieval with colluding databases.” [Online]. Available: https://arxiv.org/abs/1605.00635Google ScholarGoogle Scholar

Index Terms

  1. Optimal Download Cost of Private Information Retrieval for Arbitrary Message Length
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image IEEE Transactions on Information Forensics and Security
          IEEE Transactions on Information Forensics and Security  Volume 12, Issue 12
          Dec. 2017
          294 pages

          1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

          Publisher

          IEEE Press

          Publication History

          • Published: 1 December 2017

          Qualifiers

          • research-article