Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Distributed Cophasing With Autonomous Constellation Selection

Authors Info & Claims
Published:01 November 2017Publication History
Skip Abstract Section

Abstract

In this paper, we consider a distributed cophasing (DCP) technique in which multiple sensor nodes (SNs) communicating their observations to a fusion center (FC) need to transmit different classes of data requiring different levels of error protection. To achieve this, we propose a variant of the DCP technique with autonomous constellation selection at the different SNs. In the first stage of the two-stage time division duplexed cophasing scheme, the SNs obtain estimates of the channels to the FC using pilot symbols transmitted by the latter. Following this, the SNs simultaneously transmit their data symbols prerotated according to the estimated channel phases to combine coherently at the FC. The symbols transmitted by different SNs are drawn from possibly different constellations selected based on the estimated instantaneous channel gains. We show that this scheme is equivalent to transmitting symbols from hierarchical constellations. Based on the properties of hierarchical constellations, we develop recursive expressions for the BER of the proposed system. Following this, we use the properties of the effective channel coefficients to show that it is possible to recover the transmitted data bits from the signal received at the FC blindly, without requiring explicit pilot symbols to be sent by the power-starved SNs. We develop three blind channel estimation and data detection schemes for the presented system model. Using Monte Carlo simulations, we show that the proposed blind channel estimation algorithm achieves a probability of error performance close to that with genie aided perfect channel state information (CSI) at the FC, while using only a moderate number of unknown data symbols for channel estimation.

References

  1. [1] Voas J., “Demystifying the Internet of Things,” Computer, vol. 49, pp. 8083, Jun. 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Razzaque M. A., Milojevic-Jevric M., Palade A., and Clarke S. , “Middleware for Internet of Things: A survey,” IEEE Internet Things J., vol.  3, no. 1, pp. 7095, Feb.  2016.Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Chamberland J. and Veeravalli V. , “Wireless sensors in distributed detection applications,” IEEE Signal Process. Mag., vol. 24, no. 3 , pp. 1625, May 2007.Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Tu Y.-S. and Pottie G., “Coherent cooperative transmission from multiple adjacent antennas to a distant stationary antenna through AWGN channels,” in Proc. IEEE 55th Veh. Technol. Conf., May 2002, pp. 130134. Google ScholarGoogle Scholar
  5. [5] Mudumbai R., Brown D., Madhow U., and Poor H., “Distributed transmit beamforming: Challenges and recent progress,” IEEE Commun. Mag., vol. 47, no. 2, pp. 102110, Feb. 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. [6] Mudumbai R., Barriac G., and Madhow U., “On the feasibility of distributed beamforming in wireless networks,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 17541763, May 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. [7] Chaythanya K., Annavajjala R., and Murthy C., “ Comparative analysis of pilot-assisted distributed cophasing approaches in wireless sensor networks ,” IEEE Trans. Signal Process., vol. 59 , no. 8, pp. 37223737, Aug.  2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. [8] Mudumbai R., Hespanha J., Madhow U., and Barriac G., “Distributed transmit beamforming using feedback control,” IEEE Trans. Inf. Theory, vol.  56, no. 1, pp. 411426, Jan.  2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. [9] Chopra R., Murthy C. R., and Annavajjala R., “ Multistream distributed cophasing,” IEEE Trans. Signal Process. , vol. 65, no. 4, pp. 10421057 , Feb. 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Cover T., “Broadcast channels,” IEEE Trans. Inf. Theory, vol. IT-18, no. 1 , pp. 214, Jan. 1972. Google ScholarGoogle Scholar
  11. [11] Ramchandran K., Ortega A., Uz K. M., and Vetterli M., “Multiresolution broadcast for digital HDTV using joint source/channel coding,” IEEE J. Sel. Areas Commun. , vol. 11, no. 1, pp. 623, Jan. 1993.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. [12] Isaka M., Fossorier M. P. C., Morelos-Zaragoza R. H., Lin S., and Imai H., “Multilevel coded modulation for unequal error protection and multistage decoding. II. Asymmetric constellations,” IEEE Trans. Commun., vol. 48, no. 5, pp. 774786, May 2000.Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Kim I.-M., Ghassemzadeh S. S., and Tarokh V., “ Optimized nonuniform PSK for multiclass traffic and its application to space-time block codes ,” IEEE Trans. Commun., vol. 54, no. 2, pp. 364373, Feb. 2006 .Google ScholarGoogle Scholar
  14. [14] Pursley M. B. and Shea J. M., “Nonuniform phase-shift-key modulation for multimedia multicast transmission in mobile wireless networks,” IEEE J. Sel. Areas Commun., vol. 17 , no. 5, pp. 774783, May  1999.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [15] Pursley M. B. and Shea J. M., “Adaptive nonuniform phase-shift-key modulation for multimedia traffic in wireless networks ,” IEEE J. Sel. Areas Commun., vol. 18 , no. 8, pp. 13941407, Aug.  2000.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Yang L.-L. and Hanzo L., “A recursive algorithm for the error probability evaluation of M-QAM,” IEEE Commun. Lett., vol. 4, no. 10, pp. 304306, Oct. 2000.Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Vitthaladevuni P. K. and Alouini M. S. , “A recursive algorithm for the exact ber computation of generalized hierarchical QAM constellations,” IEEE Trans. Inf. Theory, vol.  49, no. 1, pp. 297307, Jan.  2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Lee S. J., Kim K. A., Jung J. S., and Lee S. C. , “Analytical performance evaluation of hierarchical 16 QAM for multicast/broadcast transmission,” IEEE Commun. Lett., vol. 16, no. 10, pp. 15361539, Oct. 2012.Google ScholarGoogle Scholar
  19. [19] Chang S. H., Rim M., Cosman P. C., and Milstein L. B. , “Optimized unequal error protection using multiplexed hierarchical modulation,” IEEE Trans. Inf. Theory, vol. 58, no. 9, pp. 58165840, Sep. 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Rahman M. M. U., Mudumbai R., and Dasgupta S., “Consensus based carrier synchronization in a two node networks,” in Proc. 18th IFAC World Congr. , Jun. 2011, pp. 1003810043. Google ScholarGoogle Scholar
  21. [21] Zhou S. and Giannakis G. , “How accurate channel prediction needs to be for transmit-beamforming with adaptive modulation over Rayleigh MIMO channels?” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 12851294, Jul. 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Banavar M. K., Smith A. D., Tepedelenlioglu C., and Spanias A. , “On the effectiveness of multiple antennas in distributed detection over fading MACs,” IEEE Trans. Wireless Commun., vol. 11, no. 5, pp. 1744 1752, May 2012.Google ScholarGoogle Scholar
  23. [23] Ciuonzo D., Romano G., and Salvo-Rossi P., “ Channel-aware decision fusion in distributed MIMO wireless sensor networks: Decode-and-fuse vs. decode-then-fuse ,” IEEE Trans. Wireless Commun., vol. 11 , no. 8, pp. 29762985, Aug.  2012.Google ScholarGoogle Scholar
  24. [24] Ciuonzo D., Salvo-Rossi P., and Dey S., “ Massive MIMO channel-aware decision fusion,” IEEE Trans. Signal Process., vol. 63, no. 3, pp. 604 619, Feb. 2015.Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Manesh A., Murthy C., and Annavajjala R., “ Physical layer data fusion via distributed co-phasing with general signal constellations,” IEEE Trans. Signal Process., vol. 63, no. 17 , pp. 46604672, Sep. 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Chang S. H., Rim M., Cosman P. C., and Milstein L. B. , “Optimized unequal error protection using multiplexed hierarchical modulation,” IEEE Trans. Inf. Theory, vol. 58, no. 9, pp. 58165840, Sep. 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. [27] Chrystal G., Algebra, an Elementary Text-book for the Higher Classes of Secondary Schools and for Colleges, Part 2. Providence, RI, USA: Amer. Math. Soc. , 1964.Google ScholarGoogle Scholar
  28. [28] Papoulis A. and Pillai S. U. , Probability, Random Variables, and Stochastic Processes, 4th ed. New York, NY, USA : McGraw-Hill Higher Education, 2002.Google ScholarGoogle Scholar
  29. [29] Pal N. R. and Bezdek J. C. , “On cluster validity for the fuzzy c-means model,” IEEE Trans. Fuzzy Syst., vol. 3, no. 3, pp. 370379, Aug. 1995.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [30] Anderson D. T., Bezdek J. C., Popescu M., and Keller J. M. , “Comparing fuzzy, probabilistic, and possibilistic partitions,” IEEE Trans. Fuzzy Syst., vol. 18, no. 5, pp. 906918 , Oct. 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. [31] Havens T. C., Bezdek J. C., Leckie C., Hall L. O., and Palaniswami M., “Fuzzy c-means algorithms for very large data ,” IEEE Trans. Fuzzy Syst., vol. 20, no. 6 , pp. 11301146, Dec. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Narasimhan T. and Chockalingam A., “Channel hardening-exploiting message passing (CHEMP) receiver in large-scale MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 847860, Oct. 2014.Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Wood G. R., “The bisection method in higher dimensions,” Math. Program., vol. 55, no. 1, pp. 319337, 1992.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Distributed Cophasing With Autonomous Constellation Selection
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image IEEE Transactions on Signal Processing
              IEEE Transactions on Signal Processing  Volume 65, Issue 21
              Nov.1, 2017
              279 pages

              1053-587X © 2017 IEEE

              Publisher

              IEEE Press

              Publication History

              • Published: 1 November 2017

              Qualifiers

              • research-article
            • Article Metrics

              • Downloads (Last 12 months)0
              • Downloads (Last 6 weeks)0

              Other Metrics